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HIV VACCINE

B HIV Extraordinarily Diverse

B

HIV-1C pairwise amino acid diversity (n=73 sequences)
Protein Mean (%) Range (%)

Pol 6.4 0.2-10.2
Vif 11.6 0.5-22.1
Vpr 11.9 1.0-24.5
Rev 17.4 2.7-46.8
Tat 18.3 4.2-39.1
Nef 18.6 5.1-30.6
Env 20.0 7.4-26.4

Vpu 25.2 2.4-50.0
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. HIV VACCINE
A TRIALS NETWORK

Objectives of HIV Vaccine Efficacy Trial

Primary objective: Assess vaccine efficacy (VE) to
prevent HIV infection

Secondary objective: Assess if and how VE varies with
genotypic/phenotypic characteristics of HIV

For each infected subject, measure the distance V
between the infecting virus and the virus(es)
represented in the vaccine

Avallable data:
Vaccine group: (Xai, 81, 8iVai), i=1,---,m
Placebo group: (Xai, &, &Vai), =1, ,n
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HIV VACCINE

A TRIALS NETWORK

Categorization of HIV Strains

Case 1: V a small number of ordered categories

E.g.: V €{0,1,2,34} substitutions/deletions in the
HIV V3 loop tip sequence GPGRAF

For each strain category j, can study VE(t, j)
using cause-specific hazard functions or
cumulative incidence functions:

- Agj(t) - Ryt
A2 (t) F; (t)

)\kj (t) = |imh1_>o P{Tk € [t,t+h1), k= j|Tk >1t}/hy
R (t) = P{Tk <t,Vie= j} = Jg Sk(s—)dAj (S)

or VE(t,j)=1

VE(t, j) = 1
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HIV VACCINE - - I
AL Categorization of HIV Strains

Case 2: V a large number of ordered categories

E.g.. V = percent amino acid mismatch
= Treat V as continuous, V € [0,1]

Gag fragment alignment

Pl VQNL QGQM VHQAI SPRTL

................ T
.......... .R......T
.......... T.A ......
.......... R
Voo .. T.A .G
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Previous Work on Inferring Dependency
of VE onv

HIV VACCINE
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B

Semiparametric modeling approach developed by
Gilbert et al. (1999, Biometrika; 2000, Ann Stat)
Limitations of method:

Interpretation conditional on infection

Functional form relating VE and v specified
parametrically

Does not account for time to HIV infection
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Current Work on Statistical Methods

Objective: Develop methods for testing and estimation
of VE(t,v) defined based on continuous mark-specific
hazard and cumulative incidence functions

Mark-specific hazard functions:

Ak(t,v) = pim P{Tk € [t,t + h1),Vk € [V,v+h2) [Tk >t} /by

Mark-specific cumulative incidence functions:

F(t,v) = hlimOP{Tk <t,Vk € [v,v+ho)}/hy
2—)
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HIV VACCINE

%Mm‘m Vaccine Efficacy Parameters

Overall vaccine efficacy definitions:
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HIV VACCINE

I Vaccine Efficacy Parameters

B

Mark-specific vaccine efficacy definitions:

A
VE(t,v) =1- 37

VES(t,v) = 1- 2

d _ P{T1<tVi<v}
VER(LY) =1- 555y

VE™(t,v) = [JVES(t,u)du
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HIY o Interpretation of VE(t,v) =1 ﬁz(t x)
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B

Interpretation of Ag(t,v) restricted to actual study
conditions (crude hazard)

Would like to study the net hazard: rate of failure by
mark v in the absence of any competing viral strains

Unidentifiable
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AR Interpretation of VE(t,v) = 1 — 1Y)

Factorization:
)\k(t,V) — )\Ek(tav) X )\Tk(t7v)

Aek(t,v) = Exposure hazard

Markov intensity of exposures to strains with
divergence v

A1k(t,v) = Transmission probability conditional on
exposure to a strain with divergence v at time t

ATk(t,V) = limp, n,—oPr(Tk € [t,t+h1),Vk € [v,v+ho)| T > t,
exposed in[t,t +hp)to HIV wiV € [v,v+hy)) /hihy
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%%%YVACCRK Interpretation of VE(t,v) =1 A (L,V)

VE(t,v) measures a mixture of vaccine/placebo-group
differences In:

mark-specific exposure rates
per-mark-specific exposure transmission
probabilities

Interest in vaccine efficacy parameter based on
transmission probabilities: VE (t,v) =

Pr(Ty € [t,t+h1),Vh € [v,v+ho)|Ty > t,exp WiV € [V,v+hy))

iy, h,—
OB (T, € [t,t+ hp), Vo € Vv + hp) T2 > to, exp WiV, € [, v+ hp))

Approach: Assume Ag1(t,v)/Ag2(t,v) =1, so that the
identifiable parameter VE(t,v) equals VE' (t, V)
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Ignoring the Mark Variable Can Mislead in
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B

Consider a mark-specific PH model:
A(t,v|z=0) = Ag(V) = e

At,v]z=1) = Ag(v)ed+hY
Marginal PH model (ignoring the mark):

At (t]2 :/01)\(t,v\z)dv= (ey;1> &7
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. HIV VACCINE
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Ignoring the Mark Variable Can Mislead in
Assessing Vaccine Efficacy

In the mark-specific PH model
VE(v) =1— e thY

In the marginal PH model

* *\ a eV+B_]_ y
VE*=1—exp(f")=1—e ( v )(evl>

By varying y over the real line, VE* varies over all
possible values of VE(v) (0 <v< 1)

VE* depends on the baseline mark-specific hazard

= The marginal estimand VE* is affected by a model

feature irrelevant for assessing vaccine efficacy
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Ignoring the Mark Variable Can Mislead in
B Assessing Vaccine Efficacy

B

When the baseline does not involve the mark (y = 0):
VE* = [{VE(v)dv

Example of VE(v) and VE* for alpha=-1, beta=1, gamma=0

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

mark v February 21, 2005 - p.16/80



Hypothesis Testing 1: Any Efficacy
AR Against Any Virus?

B

Consider VE(t,v) = 1— Qim
Test
HS :VE(t,v) = Oforallve[0,1],t €0,T]

Versus
HY:VE(t,v) > 1forall (t,v) e [0,1]x][0,1];
HY:VE(t,v) # 1forsome (t,v)e[0,1]x[0,1]

with strict inequality for some (t,v) € [0,7] x [0,1] in HY

HY < AE; 0 for all ve [0,1],t € |0, T]
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Doubly cumulative mark-specific hazard functions
Aw(t,V) = / /)\ksu )dsdu, k=12

Idea of testing procedures: Compare a honparametric
estimate of A1(t,v) with a nonparametric estimate of

/\2(t7V0
Large differences for some v indicate departures from
S
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HIV Vacee Nonparametric MLE of Ay(t, V)

B

Likelihood:

[ ficXia Via) [ ] Sc(Xai) = |:| Ak(Xidi, Vi) _|n_klexp {_/01

Log-likelihood:

//Iog)\k s,V)N(ds,dv) — //Yk )AK(S,V) dsdv

Ay
Ak(S,V) dsdv}
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HIV Vacee Nonparametric MLE of Ay(t, V)

B

= Nonparametric MLE given by:

. t Ny (d
A (t,V) :/O $k(23V)’ t>0, ve[0,1]

Yi(t) (X > 1)

Nk(t,v) = Z'(in <t, & =1,V <V)

| =
Huang and Louis (1998, Biometrika)

February 21, 2005 - p.20/80



Test Process and Test Statistics for
L YoCTE - 0
Evaluating Hj

B

Test process:

L(t,v) = \@ /a t Hn(S) [/A\l(ds,v)—f\z(ds,v)}

where ais a constant > 0

ldea: Use a functional of L}(-,-) that summarizes
departures from H
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Test Process and Test Statistics for
L YoCTE - 0
Evaluating Hj

B

Let wy (V) be a known nonnegative weight function

Test statistics for detecting H3

Test statistics for detecting Hg
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Hypothesis Testing 2: Differential
R Efficacy by Viral Divergence?

B

If HJ is rejected, then sensible to test

Ho:VE(t,v) = VE(t)forallve|0,1],t €|0,T]
Versus
Hy :VE(t,vi) > VE(t,vo) forall vi <wvo,t € [0, 1]

Ho :VE(t,vi) # VE(t,v2) for some v; < wo.t € |0, T]

with strict inequality for some t,vq,vo In Hq

Ho < Q;Em does not depend on v
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Idea of testing procedures: Compare a honparametric
estimate of A1(t,v) — Ax(t,v) with an estimate under Hg

Ho holds <

tA1(S)
0 A2(S)

Under Ho, estimate A1(t,v) — Ax(t,v) by

Aq(t,V) = Ao(ds, V)

— A~ —

/t ﬁ1(S)_1 Ax(ds, V)
0 [ A2(s)
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Here

M= [k (5 dhus

This is a standard kernel smoothing method to
estimate the hazard functions, as described In
Andersen, Borgan, Gill, and Keiding (1993)
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Nonparametric Test Process for
Evaluating Hg

HIV VACCINE
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B

Test process:

LoP(t,v) ,/nan/ Hn (s /A\l(ds,v)—il(s)f\z(ds,v)
A2(S)

Let

Agp(tavla\/Z) — Lﬂp(t,V]_) + Lﬂp(t,VZ) o ZLQp(L (Vl _|_V2)/2)

February 21, 2005 - p.26/80



Nonparametric Test Statistics for
HIV VACCINE .
s Evaluating Ho

B

Idea: Use a functional of Ly"(+,-) that summarizes
departures from Hy

Nonparametric test statistics:

NP _
U," =

SupV1<V2 Sup0§t1<t2<1’ [Agp(t27 V17 VZ) o Aﬂp(tlv V17 VZ)}

U;p — SupV1<V2 Sup0§t1<t2<1’ ‘Aﬂp(t27V17V2) T ARp(tLVlaVZ)‘
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Alternative Semiparametric Test Process
HIV VACCINE .
s for Evaluating Hg

B

Replace the nonparametric kernel estimates = Ma(S) with

A2 (s)
an estimate from a standard Cox model of the hazard
ratio:
A1(S ~
M _ o)
A2(S)

where (3 is the maximum partial likelihood estimator

Semiparametric test process:

LEP(t,v) = w/nl—nnzft Hn(S) [/A\l(ds,v)—exp(ﬁ)f\g(ds,v)
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Semiparametric Test Statistics for
HIV VACCINE .
s Evaluating Ho

B

Use the same functionals as for the nonparametric
test statistics

Semiparametric test statistics:

L/J\fp — SupV]_<V2 Sup0§t1<t2<1’ [Aﬁp(t27\/17v2) _ Aﬁp(tlvvla\IZ)}

UZSp — SupV1<V2 Sup0§t1<t2<T |A?]p(t2,V1,V2) _ A?\p(tla\/l)vZ)‘
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Common Framework for the Test Process

General test process:

L (t,v) = ,/nl—r?Z/at Hn () [/A\l(ds,v) —T(s)A2(ds, V)

The superscript r reflects the choice of function 1(s) in
the test process and indicates whether it is used to:

Test HJ (r as 1 implies 7(s) = 1)
Test Ho nonparametrlcally (r as np implies

7(s) = A1(s)/A2(9))

Test Hp semiparametrically (r as sp implies
T(s) =exp(B))
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HIV VACCINE

7 Common Framework for the Test Process

B

Forr =1, [-] in Li(t,v) compares /A\l(ds,v) and f\g(ds,v)

Forr=nporr=sp, [-]in L;(t,v) compares
7\1(ds, V) —/A\z(ds, V) to an estimate of
A1(ds,v) — Ax(ds,v) under Hg

February 21, 2005 - p.31/80



Why do the Statistics U;*/U* Measure
HIV VACCINE
B Departures From Hgp?

B

By the proof of Theorem 2 (stated later),

(n/nano) Y2 (AT (to, v1, Vo) — AL (t1, V1, Vo)]

converges in probability to o(t1,to,v1,v0) =

to
/ /’1+V2 S)(A1(s,V) —r(s)A2(s,v))dvds
V1+V2

/ / S)(A1(S,v) —r(s)A2(s,v))dvds,

where r(s) = A1(s)/A2(s) or exp(p)
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HIV VACCINE

A TRIALS NETWORK

Why do the Statistics U;"/U;” Measure
Departures From Hg?

Under Hog, O(t1,t2,v1,V2) = 0 for all t1,t> € [0, 7] and
V1,V2 € [O, 1]

Under H; and some smoothness conditions,
O(ty,t2,v1,Vv2) > 0 for some t; <ty € [0, 7] and

V1 < Vo & [O, 1]

Therefore a large value of U! provides evidence
against Hqg in the direction of Hq

Similarly a large value of U} provides evidence
against Hg in the direction of Hy
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Summary of Asymptotic Properties of the
WW% Tests of Hy

The following theoretical properties of all of the above
tests are proved in Gilbert, McKeague, and Sun
(2006)

Tests have asymptotically correct size

Tests are asymptotically consistent against H1 and
H»>, respectively

Critical values are unknown and are difficult to
obtain
= Critical values approximated by the Gaussian
multipliers technique (useful trick in survival
analysis)
ldea stems from Lin et al. (1993, 1994,
Biometrika)
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W“@Mm“ Theorems Stating Asymptotic Properties

Theorem 1: Suppose certain regularity conditions,
including that Ay(t) is twice continuously differentiable over
0,7+ 0],k=1,2, Ax(t) is bounded away from zero on

a/2, T+ d], Ax(t,v) > 0 and d%Ax(t,v)/dt? is continuous on
0,7+ 9] x |0,1]. Also assume the kernel function K(-) has
bounded variation. Suppose nbZ — o and nb® — 0 for
k=1,2. Then, under Hg

L"P(t,v)-Z5L"P(t,v) in D([a,7] % [0,1]) as n— o.

(The limit process L"P(t,v) is defined in Gilbert, McKeague,
and Sun (2006))
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. HIV VACCINE
A TRIALS NETWORK

Implication of Theorem 1: Asymptotically
Correct Size

Let U;'"? be defined the same as U™, with LaP(t, v)
replaced with L"P(t,v)

By the continuous mapping theorem, Gj”pﬂuj”p

under Ho, so P(U;" > ¢jq) — a, where cjq is the upper
a-quantile of U
However, the cjq are unknown and very difficult to

estimate due to the complicated nature of the limit
process L"P(t,v)

= Use the Gaussian multipliers simulation
procedure to approximate Cjq
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w Implication of Theorem 2: Asymptotically
Sl LY oo .
- Consistent

Theorem 2. In addition to the conditions given in Theorem

1, assume that A1(t,v) and A,(t,v) are continuous and that
H(t,v) >0o0n [0,1| x |0,1]. Then,

P(UP > c1q) =1 as n— o under Hy,

and
P(U;P > cpq) — 1 as n— o under Hy

Theorems 1 and 2 also hold for Ly” and U, j = 1,2,

under the same conditions except that the conditions
on A(t) are replaced by the proportional marginal
hazards assumption A1(t)/A2(t) = exp(B)
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. HIV VACCINE
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Multipliers Technique is Justified
Asymptotically

Heuristic summary of Gaussian Multipliers technigue
(detalls in Gilbert, McKeague, and Sun, 2006)

Formulate a null test process L[ (t,v), which is a

function of the observed data sequence and of

standard normal variables W, i =1,...,ng,k=1,2
Martingales M(ds, u) are replaced with
WiiNk(ds,u), where W, i =1,....n.,k=1,2 are
Independent standard normal variables

The weak limit of the process L["(t,v) given the

observed data is the same as the weak limit of

L;,(t,v) under the null hypothesis Hg

That is, Theorem 3 states that

L™ (t,v)-Z5L7 (t,v) in D([a, 7] % [0,1]) under Ho as
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Multipliers Technique is Justified
HIV VACCINE .
A Asymptotically

B

Theorem 3 justifies the following (simple) simulation
procedure for obtaining a p-value based on Ujr:

Compute Ujr based on the test process L (t,V)

Compute Ujr*l, - ,U[*® based on simulated null
test processes L (t,V) (e.g., B=1000)

Set the p— value as the fraction of the Ujr*’s that
are > U
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Considerations in Choosing the Weight
wHIVVACCINE
J| TRIALS NETWORK Process Hn(S)

L (t,v) = @/{: Hn(s) [f\l(ds,v)—?(s)f\g(ds,v)}

Would like to choose Hy(t) to make the testing
procedure asymptotically distribution-free

Elusive

Choose Hy(t) to up-weight early or late differences

Choose Hj(t) to minimize variability in the test
process; e.g., dampen instability in the right-tail
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B

Sample size too small to reliably estimate
VE(t,v) = 1 — 2t¥

Z(tav)
Focus on
Fl(t V)
VE“(t,v) = 1-— ’
(V) ALY
. P(TH <t.V V.V+h
1 im POLStVIE v h)

P(T, <t,Vo € [v,v+h))
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HIV VACCINE

TRIALS NETWORK

Estimation of VE®(t,v)

Estimate VE®(t,v) by 1 — BY) \where

z(t,V)
(V “) Ni(ds, du).

S(t) = Kaplan-Meier estimate of S(t)

tv

bk

F(t,v) = continuous analog of F;(t) for discrete mark
(Prentice et al., 1978)

('Ekj (t) = /Ot S;S;)) N; (d5)>
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Variance and Confidence Interval
Estimation

HIV VACCINE

TRIALS NETWORK

B

Var{FR(t,v)} can be estimated by

2 Bk ()] waosa

95% pointwise Cls for VE®(t,v) = 1 —Fy(t,v) /F(t,V):

. Var{Fi(t,v)}  Var{B(t,v)}
1 — (1_VE (t,V)) exp (Zl:za/Z I/z\l(tj;v)z + |/:\2(t,V)2 )
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Alternative Mark-Specific Vaccine
HIV VACCINE .
PO Efficacy Parameter

B

Consider

P{Tl <t,V; < V}

VE®(t.v) =1—
( ’ ) P{ngt,VZSV}

Equivalent to discrete mark case

Estimate each cumulative probability by
nonparametric MLE
(Huang and Louis, 1998, Biometrika)

Can obtain empirical likelihood-based Cls for
VE®(t,v)
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HIV VACCINE

TRIALS NETWORK

B

Bandwidth Selection

Nonparametric testing procedure requires bandwidths
b1, by for

Xl(t) and Xz(t)
Estimation procedure requires bandwidths by, by, for
Fi(t,v) and F(t,v)

Approach: Minimize an estimate of the mean
Integrated squared error (MISE); e.qg., as in Andersen,
Borgan, Gill, and Keiding (1993)

e.g., MISE(A(+)) = E [{Ax(t) — Aw(t) }2dlt
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TRIALS NETWORK SimUIation EXperlment

B

Results presented for 8 experiments:
No. of HIV infections in placebo arm: 48, 95, 190

VES(36) =1 3¢ : 0.33 0r 0.67

Exponential failure times [20% random dropoult],
uniform marks in placebo arm, vaccine arm marks

from density

1
Vv =15 (1.5%/8 —0.51/F)

(v+0.5)/P)-1

3 =1 corresponds to Hg
B =0.5,0.25 correspond to H; (monotone altern)

Also consider a 2-sided alternative:
fv(v) = 2vi(v< )+ (5 - Sv)l(v> 3)
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w“@w&“ Size of Tests of H
Results for null case of VE(t,v) =0
Empirical Power (x 100%) for Testing HY and HY

n=100 n,=200 nx=400
Test Altern.  (48)? (95) (190)

Cox! 5.2 5.0 5.8
U HY 7.9 5.0 6.6
U; HY 7.7 5.3 6.0
U3 HJ 5.9 7.0 5.3
Uj HY 6.7 5.3 5.2

lWwald z-test from standard Cox model, ignoring the mark
2Average number of subjects infected in group 2 (placebo)

ruary 21, 2005 - p.
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HIV VACCINE

TRIALS NETWORK

Power of Ul and U3 for Testing HY

The tests of Hg have correct size (near 0.05)
Next assess power of the tests

In the following 2 plots, Alt O, Alt 1, Alt 2 correspond to
B =1,05,0.25, respectively

Power achieved with the test statistics Ui and U} is

compared to the power of the ordinary Cox model
Wald test of VE(t) = 0 that ignores the mark variable
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HIV VACCINE

i Simulation Experiment: Tests of H

Power for testing VE(t,v) = 0, 48 placebo infections, VE = 0.33

True VE(36,v) Power of Ur1_1 Power of UM1_2
1 q 1 4 1 7
_05 —
0.8 0.8
0 N _— -— -— -— -— -— -— -— -— - _— -— -— -— -— -— -— -— -
0.6 prs 0.6
-
0.4 0.4
_l —
- - - Cox model ignoring mark, 1-sided - - - Cox model ignoring mark, 1-sided
Cox model ignoring mark, 2—sided Cox model ignoring mark, 2-sided
0.2 0.2
-15
[N I B I T T [N I B I T T
2= o7 A0  Altl  Alt2  Alt 2-sided o7 A0  Altl  Alt2  Alt 2-sided
I T T T T 1
0 0.2 0.4 0.6 0.8 1
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HIV VACCINE

i Simulation Experiment: Tests of H

Power for testing VE(t,v) = 0, 48 placebo infections, VE = 0.67

True VE(36,v) Power of Ur1_1 Power of UM1_2

1 4 1 —— _w- o o o= 1 —— _w- o o o
(__J (__J
_05 —
0.8 0.8
0 —
0.6 0.6
- - - Cox model ignoring mark, 1-sided - - - Cox model ignoring mark, 1-sided
Cox model ignoring mark, 2-sided Cox model ignoring mark, 2-sided
0.4 — 0.4
_1 —
0.2 0.2
-15
[N I B I T T [N I B I T T
2= o7  Alt0  Alt1  Alt2  Alt2-sided o7 Alt0  Alt1  Alt2  Alt2-sided
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HIV VACCINE

wmmm Summary of Results for Tests of H}

The tests of Hg have appropriate sizes and high
powers

When VE(t,v) declines with v, they have greater
power than the Cox model Wald test of VE =0

Therefore accounting for the mark variable can
substantially improve efficiency

For clinical trials with strong reasons to suspect
that the mark-specific relative risk is monotone in
the mark, consider accounting for the mark in a
secondary analysis of the treatment effect
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HIV VACCINE

I Simulation Results for Tests of Hg

B

Next consider simulation results for testing
Ho : VE(t,v) =VE(t)

In the following 4 plots, Null, Alt 1, Alt 2 correspond to
B =1.0,0.5,0.25, respectively
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HIV VACCINE

P NN Simulation Results for Tests of Hg

Power for testing VE(t,v) independent of v, 95 placebo infections, VE = 0.33

True VE(36,v) Power of U_1 Power of U_2
14 14 14
-
0.8 ' 0.8 s
0.5 -
0.6 - 0.6 -
04 7 0.4 :
0 -
—— NP tests —— NP tests
-+ SPtests R - SPtests
0.2 - 0.2 - [
005 — <« oo RGP . . ... e e e e e e 005 — « o v cc- D « « oo oo e a o e e e
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HIV VACCINE

s RO Simulation Results for Tests of Hg

Power for testing VE(t,v) independent of v, 95 placebo infections, VE = 0.67
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Power for testing VE(t,v) independent of v, 190 placebo infections, VE = 0.33

True VE(36,v) Power of U_1 Power of U_2
1 15 15
) [
0.8 — 0.8 —
0.5
0.6 — 0.6 —
0.4 0.4 -
0 —
— NP tests —— NP tests
-+ SP tests - SP tests
0.2 — 0.2 —
005 — « - - - ORGP - - - - - oo oo oc e e e s s e e e e e s 005 — « -« B e
05 - 0- Null  Altl  Alt2  Alt 2-sided 0- Null  Altl  Alt2  Alt 2-sided

February 21, 2005 - p.55/80



HIV VACCINE

s RO Simulation Results for Tests of Hg

Power for testing VE(t,v) independent of v, 190 placebo infections, VE = 0.67

True VE(36,v) Power of U_1 Power of U_2
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. HIV VACCINE
A TRIALS NETWORK

Summary of Results for Testing Hg

Satisfactory performance at moderate sample sizes

Somewhat surprisingly, for small/moderate samples
the semiparametric tests did not provide greater
power than the nonparametric tests in the case that
the failure times had proportional hazards

Explanation: Test process involves contrasts

A1 (dt,v) — F(t)Ax(dt, V)

__ widehatAy (1)
Aa(t)

with 1{(t) or exp([? )
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HIV VACCINE

wTRIALSNETWORK Summary Of ReSUItS fOr TeSting HO

Additional simulations were conducted to assess
performance of tests when the proportional hazards
assumption fails

The empirical sizes of U;P and U,P frequently missed

0.05 by an amount more than 2 or 3 Monte Carlo
standard deviations (results not shown)

As predicted from theory, the semiparametric tests fall
when the proportional hazards assumption fails

Nonparametric tests recommended in practice
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HIV VACCINE

HAISRETVON Example: Vax004 Efficacy Trial

B

Primary analysis: No vaccine efficacy to prevent HIV

Infection
Number Number Percent
Randomized Infected Infected
Vaccine 3598 241 6.7%
Placebo 1805 127 7.0%

VE =5.7%, 95% Cl —17.0% to 24.0%,p= 0.59
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Time to HIV Infection Similar in Vaccine
HIV VACCINE
and Placebo Arms

B

Estimated HIV-Free Curves

0.9 ——  Vaccine
----- Placebo
0.8 Estimated VE = 6%, 95% CI -17% to 24%

HIV infection-free probability

Log-rank p = 0.59
0.8 J P

[ { { { { { { { \

0 6 12 18 24 30 36 42 48

months since entry
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HIV VACCINE

A TRIALS NETWORK

Evaluating VE(t,v) for Pre-specified
MarksV =v

VN = percent aa mismatch in a region of gp120 of
the infecting strain relative to the MN vaccine strain

Venes defined similarly for the reference strain GNES

V = min(Mun, VeNES)
“distance to the nearest immunogen

Regions for distances:

Neutralizing face core (~ 30 amino acids)

Neutralizing face core + V2/V3 loop regions
(~ 110 amino acids)

V3 loop region (~ 33 amino acids)

February 21, 2005 - p.61/80






Silent
Face
Non-
Neutralizing
Face

| Neutralizing
Face




HIV VACCINE

@ TRIALS NETWORK

Distributions of Genetic Distances V

» 337/368 (92%) infected subjects have sequence data
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HIV VACCINE

st Implementation of Inferential Procedures

B

Welight process within test process:

o) — \/ﬁ(t)%(t)

np  No

Epanechnikov kernel K(x) = 0.75(1 — x2)I (|x| < 1);
Gasser and Muller (1979) tail correction

Bandwidths for Xk(t) ;
Optimal bandwidths b; = 1.83,b, = 2.10

Bandwidths for F(36,V) :

b1 and by, = separately optimized using 2-fold
cross-validation
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HIV VACCINE

BB Results of Tests of HY : VE(t,v) =0

B

Time-spant € [2,36] months
P-values obtained using 10000 simulations

Distance Test Stat. p-value
Neut face Ul p=0.15
Ul p=0.05
U} p=0.32
U} p=0.14
Neut face + V2/V3 Ul p=0.18
U3 p=0.26
U} p=0.36
Uz p=0.59
V3 loop Ul p=0.15
us p=0.61
U3 p=0.30

AN

u; p=0.72
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HIV VACCINE

SO Results of Tests of Hy: VE(t,v) = VE(t)

B

Time-spant € [2,36] months
P-values obtained using 10000 simulations

Distance Test Stat. p-value
Neut face u;P /P p=0.041,/0.095
usP/asp p=0.24/0.11

Neut face + V2/v3  U/P/U;P p=0.62,/0.60
usP/asP p=0.84/0.26

V3 loop U;P/0p° p=0.96/0.95
u,P/uP p=0.94/0.73
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% HIV VACCINE
TRIALS NETWORK

LnP(t,v) and 8 Ln"*(t,Vv): Neut face

Test process and 8 simulated test processes for neutralizing face core distance

()
(N )Pyl

(I\‘l) %\

™ ™
= =
= =

"
=
=

(N )Pyl

(N )Pyl

(N )Pyl

t
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% HIV VACCINE
TRIALS NETWORK

LnP(t,v) and 8 Ln""(t,Vv): Neut face + V2/V3

Test process and 8 simulated test processes for neutralizing face core + V2/V3 distance

(")
(I\‘l) x|

(I\‘l) %\

"
=
=

(N Myl

(A D]

(N )Pyl

(N )Pyl

(/\‘ 1) x

t
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% HIV VACCINE
TRIALS NETWORK

LnP(t,v) and 8 LpP"(t,v): V3 loop

Test process and 8 simulated test processes for V3 loop distance

(N )Pyl

(N N+l

™
:—f
<
-

™
:—f
<
-

(I\‘ 1) %\

(N Myl

t
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HIV VACCINE

TRiALS NERVORK VE®(36,v) versus v: Neut face

VE”~c(36,v) as a function of neutralizing face core distance v

—— Estimated VE"c(36,v)
= = 95%Cls

0.8

0.6 N

0.4 — ~

0.2 —

Overall VE~c

VEAC(36,v)

0 0.05 0.1

strain distance v February 21, 2005 — p.69/80



HIV VACCINE

| TSN VE®(36,v) versus v: Neut face + V2/V3
VE”~c(36,v) as a function of neutralizing face core + V2/V3 distance v
' —— Estimated VE"c(36,v) ,,

VEAC(36,V)
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0.4

0.2

= = 95%ClIs
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HIV VACCINE

ANV VE®(36,v) versus v: V3 loop

VE”c(36,v) as a function of V3 loop distance v

—— Estimated VE~c(36,v) | !
= = 95%Cls )
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0.4 —

0.2 —
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VE~dc(36,v) as a function of neutralizing face core distance v

February 21, 2005 - p.72/80
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VE~dc(36,v) as a function of neutralizing face core + V2/V3 distance v
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V3 loop

VEY(36,V) versus v

HIV VACCINE
" TRIALS NETWORK

VEAdc(v)

0.8 —

0.4

VE~dc(36,v) as a function of V3 loop distance v
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w Key Question: How Define the HIV Metric
. HIV VACCINE
A TRIALS NETWORK V ?

The approach is inter-collaborative:
virologists/immunologists/structural
biologists/statisticians seek to identify an
Immunologically relevant HIV sequence metric V

Problem complicated for antibody vaccines
(need knowledge of 3-D structure)

Simpler for T cell vaccines (linear epitopes)

E.g., weighted potential T cell epitope (WPTE)
distance: one minus the fraction of 9-mers in
the infecting virus also in the vaccine
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HIV VACCINE

et Current Research: Regression Modeling

B

Conditional mark-specific hazard: A (t,v|z(t)) =

|Imh1 hzﬁop{T e t,t+h1),Velvv+hy)|T >t,Z(t) =2z1t)} /hihy
Mark-specific proportional hazards model:

A(t.viz(t)) = Ao(t.v)exp { B(v) " z(t)}
B(Y) = (B(v).BW))T

B1(v) corresponds to vaccine/placebo status
(parametric or unspecified)

B2(v) corresponds to other covariates (parametric)
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HIV VACCINE

TRIALS NETWORK

B

Applications to Vaccine Efficacy Trials

Test for vaccine efficacy varying with the mark:
Ho:VE(V) =VE

Model-based alternative to the nonparametric
tests

Test for vaccine efficacy at any mark value:
Ho:VE(v) =0for all v

Estimate VE(v) both for 31(v) unspecified and
specified parametrically
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HIV VACCINE

me Applications to Vaccine Efficacy Trials

Include covariates

Control for confounders, estimate
covariate-adjusted VE(v)

Assess possible differences in VE(v) at different
covariate levels [interactions]
Does a genetic trait affect whether the vaccine
selectively protects?
Does the level of Immune response to
vaccination affect whether the vaccine
selectively protects?
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Example of VE(v) Depending on Immune
HIV VACCINE
y TRIALS NETWORK R ep Onse
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Complimentary Approach: Antigen
s R Scanning (Addressed in Lecture 9)

B

Scan all peptide regions of length 9

Goal: Identify regions where peptide sequences from
Infected vaccinees are more divergent from the
Immunogen peptide than peptide sequences from
Infected placebo recipients [Topic of Lecture 9]

Sliding window for
analyzing 8-mers

Reference amino acid sequence

[in the vaccine construct] CTRPNNNTRKSTRI--GPGOTFYAAGEIGGKIRLAYC...

Vaccine group sequences . CTGPNNNTRKSMRI--GPGOTFYATGEIVGDIRQAHC...
2. CGRPNNNTRKSVRI--GPGQTFYATEAIGGDIRGAHC...

75. CGRPNNNTRKSGRI--GPGOQTFFATGIIGGDIRQAHC...

Placebo group sequences 1. CTRPNNNTRKSVRI--GPGOQTFYATGEITGDIRQAYC...
2. CTRPGNNGRRSVRI--GPGOQAFRATGDIIGDIRAAHC...

125. CGRPGNNTRKSVRI--GPGQAFYATYDIIGDIRKAYC...
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