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HIV Extraordinarily Diverse

HIV-1C pairwise amino acid diversity (n=73 sequences)
Protein Mean (%) Range (%)

Pol 6.4 0.2-10.2
Vif 11.6 0.5-22.1
Vpr 11.9 1.0-24.5
Rev 17.4 2.7-46.8
Tat 18.3 4.2-39.1
Nef 18.6 5.1-30.6
Env 20.0 7.4-26.4
Vpu 25.2 2.4-50.0
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Objectives of HIV Vaccine Efficacy Trial

• Primary objective: Assess vaccine efficacy (V E) to
prevent HIV infection

• Secondary objective: Assess if and how V E varies with
genotypic/phenotypic characteristics of HIV
• For each infected subject, measure the distance V

between the infecting virus and the virus(es)
represented in the vaccine

• Available data:

• Vaccine group: (X1i,δ1i,δ1iV1i), i = 1, · · · ,n1

• Placebo group: (X2i,δ2i,δ2iV2i), i = 1, · · · ,n2
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Categorization of HIV Strains

• Case 1: V a small number of ordered categories

• E.g.: V ∈ {0,1,2,3+} substitutions/deletions in the
HIV V3 loop tip sequence GPGRAF

• For each strain category j, can study V E(t, j)
using cause-specific hazard functions or
cumulative incidence functions:

V E(t, j) = 1−
λ1 j(t)

λ2 j(t)
or V E(t, j) = 1−

F1 j(t)

F2 j(t)

λk j(t) = limh1→0 P{Tk ∈ [t, t +h1),Vk = j|Tk ≥ t}/h1

Fk j(t) = P{Tk ≤ t,Vk = j} =
∫ t

0 Sk(s−)dΛk j(s)
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Some Literature on the Analysis of
Discrete Competing Risks Data

• Prentice et al. (1978, Biometrics)
• Gray (1988, Ann Stat)
• Aly, Kochar, and McKeague (1994, JASA)
• Lunn and McNeil (1995, Biometrics)
• Lam (1998, Biometrika)
• Hu and Tsai (1999, Statistica Sinica)
• Luo and Turnbull (1999, Statistica Sinica)
• Sun (2001, J Nonpar Stat)
• McKeague, Gilbert, and Kanki (2001, Biometrics)
• Fine (2001, JASA)
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Categorization of HIV Strains

• Case 2: V a large number of ordered categories
• E.g.: V = percent amino acid mismatch

⇒ Treat V as continuous, V ∈ [0,1]

Gag fragment alignment

PIVQNLQGQM VHQAISPRTL
.......... ..R......T
.......... ..R......T
.......... T.A.......
.......... ..R.......
.V........ T.A..G....
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Previous Work on Inferring Dependency
of V E on v

• Semiparametric modeling approach developed by
Gilbert et al. (1999, Biometrika; 2000, Ann Stat)

• Limitations of method:
• Interpretation conditional on infection
• Functional form relating V E and v specified

parametrically
• Does not account for time to HIV infection
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Current Work on Statistical Methods

• Objective: Develop methods for testing and estimation
of V E(t,v) defined based on continuous mark-specific
hazard and cumulative incidence functions

• Mark-specific hazard functions:

λk(t,v) = lim
h1,h2→0

P{Tk ∈ [t, t +h1),Vk ∈ [v,v+h2)|Tk ≥ t}/h1h2

• Mark-specific cumulative incidence functions:

Fk(t,v) = lim
h2→0

P{Tk ≤ t,Vk ∈ [v,v+h2)}/h2
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Vaccine Efficacy Parameters

Overall vaccine efficacy definitions:

• V E(t) = 1− λ1(t)
λ2(t)

• V Ec(t) = 1− F1(t)
F2(t)
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Vaccine Efficacy Parameters

Mark-specific vaccine efficacy definitions:

• V E(t,v) = 1− λ1(t,v)
λ2(t,v)

• V Ec(t,v) = 1− F1(t,v)
F2(t,v)

• V Edc(t,v) = 1− P{T1≤t,V1≤v}
P{T2≤t,V2≤v}

• V E int(t,v) =
∫ v

0 V Ec(t,u)du
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Interpretation of V E(t,v) = 1− λ1(t,v)
λ2(t,v)

• Interpretation of λk(t,v) restricted to actual study
conditions (crude hazard)

• Would like to study the net hazard: rate of failure by
mark v in the absence of any competing viral strains
• Unidentifiable
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Interpretation of V E(t,v) = 1− λ1(t,v)
λ2(t,v)

• Factorization:

λk(t,v) = λEk(t,v)×λT k(t,v)

• λEk(t,v) = Exposure hazard

Markov intensity of exposures to strains with
divergence v

• λT k(t,v) = Transmission probability conditional on
exposure to a strain with divergence v at time t

λT k(t,v) = limh1,h2→0Pr(Tk ∈ [t, t +h1),Vk ∈ [v,v+h2)|Tk ≥ t,

exposed in [t, t +h1) to HIV w/Vk ∈ [v,v+h1))/h1h2
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Interpretation of V E(t,v) = 1− λ1(t,v)
λ2(t,v)

• V E(t,v) measures a mixture of vaccine/placebo-group
differences in:
• mark-specific exposure rates
• per-mark-specific exposure transmission

probabilities
• Interest in vaccine efficacy parameter based on

transmission probabilities: V ET (t,v) =

limh1,h2→0
Pr(T1 ∈ [t, t +h1),V1 ∈ [v,v+h2)|T1 ≥ t,exp w/V1 ∈ [v,v+h2))

Pr(T2 ∈ [t, t +h1),V2 ∈ [v,v+h2)|T2 ≥ t2,exp w/V2 ∈ [v,v+h2))

• Approach: Assume λE1(t,v)/λE2(t,v) = 1, so that the
identifiable parameter V E(t,v) equals V ET (t,v)
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Ignoring the Mark Variable Can Mislead in
Assessing Vaccine Efficacy

• Consider a mark-specific PH model:

λ (t,v|z = 0) = λ0(v) = eγv

λ (t,v|z = 1) = λ0(v)eα+βv

• Marginal PH model (ignoring the mark):

λT (t|z) =
∫ 1

0
λ (t,v|z)dv =

(
eγ −1

γ

)
eβ ∗z

β ∗ = α + log

(
eγ+β −1

γ +β

)
− log

(
eγ −1

γ

)
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Ignoring the Mark Variable Can Mislead in
Assessing Vaccine Efficacy

• In the mark-specific PH model

V E(v) = 1− eα+βv

• In the marginal PH model

V E∗ = 1− exp(β ∗) = 1− eα

(
eγ+β −1

γ +β

)(
γ

eγ −1

)

• By varying γ over the real line, V E∗ varies over all
possible values of V E(v) (0 < v < 1)

• V E∗ depends on the baseline mark-specific hazard

⇒ The marginal estimand V E∗ is affected by a model
feature irrelevant for assessing vaccine efficacy

February 21, 2005 – p.15/80



Ignoring the Mark Variable Can Mislead in
Assessing Vaccine Efficacy

• When the baseline does not involve the mark (γ = 0):
V E∗ =

∫ 1
0 V E(v)dv
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Hypothesis Testing 1: Any Efficacy
Against Any Virus?

• Consider V E(t,v) = 1− λ1(t,v)
λ2(t,v)

• Test

H0
0 : V E(t,v) = 0 for all v ∈ [0,1], t ∈ [0,τ]

versus
H0

1 : V E(t,v) ≥ 1 for all (t,v) ∈ [0,τ]× [0,1];

H0
2 : V E(t,v) 6= 1 for some (t,v) ∈ [0,τ]× [0,1]

with strict inequality for some (t,v) ∈ [0,τ]× [0,1] in H0
1

• H0
0 ⇔ λ1(t,v)

λ2(t,v)
= 0 for all v ∈ [0,1], t ∈ [0,τ]
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Hypothesis Testing 1

• Doubly cumulative mark-specific hazard functions

Λk(t,v) =
∫ v

0

∫ t

0
λk(s,u)dsdu, k = 1,2

• Idea of testing procedures: Compare a nonparametric
estimate of Λ1(t,v) with a nonparametric estimate of
Λ2(t,v)

• Large differences for some v indicate departures from
H0

0
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Nonparametric MLE of Λk(t,v)

• Likelihood:

∏
o

fk(Xki,Vki)∏
c

Sk(Xki)=∏
o

λk(Xki,Vki)
nk

∏
i=1

exp

{
−
∫ 1

0

∫ Xki

0
λk(s,v)dsdv

}

• Log-likelihood:

∫ 1

0

∫ τ

0
logλk(s,v)N(ds,dv)−

∫ 1

0

∫ τ

0
Yk(s)λk(s,v)dsdv
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Nonparametric MLE of Λk(t,v)

⇒ Nonparametric MLE given by:

Λ̂k(t,v) =
∫ t

0

Nk(ds,v)
Yk(s)

, t ≥ 0, v ∈ [0,1]

Yk(t) =
nk

∑
i=1

I(Xki ≥ t)

Nk(t,v) =
nk

∑
i=1

I(Xki ≤ t,δki = 1,Vki ≤ v)

• Huang and Louis (1998, Biometrika)
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Test Process and Test Statistics for
Evaluating H0

0

• Test process:

L1
n(t,v) =

√
n1n2

n

∫ t

a
Hn(s)

[
Λ̂1(ds,v)− Λ̂2(ds,v)

]

where a is a constant > 0

• Idea: Use a functional of L1
n(·, ·) that summarizes

departures from H0
0
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Test Process and Test Statistics for
Evaluating H0

0

• Let wV (v) be a known nonnegative weight function

• Test statistics for detecting H1
0

Û1
1 = L1

n(τ,1)

Û1
2 =

∫ 1
0 wV (v)L1

n(τ,v)dv

• Test statistics for detecting H2
0

Û1
3 = |L1

n(τ,1)|

Û1
4 =

∫ 1
0 wV (v)(L1

n(τ,v))2dv
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Hypothesis Testing 2: Differential
Efficacy by Viral Divergence?

• If H0
0 is rejected, then sensible to test

H0 : V E(t,v) = V E(t) for all v ∈ [0,1], t ∈ [0,τ]

versus
H1 : V E(t,v1) ≥ V E(t,v2) for all v1 ≤ v2, t ∈ [0,τ]

H2 : V E(t,v1) 6= V E(t,v2) for some v1 ≤ v2, t ∈ [0,τ]

with strict inequality for some t,v1,v2 in H1

• H0 ⇔
λ1(t,v)
λ2(t,v)

does not depend on v
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Hypothesis Testing 2

• Idea of testing procedures: Compare a nonparametric
estimate of Λ1(t,v)−Λ2(t,v) with an estimate under H0

• H0 holds ⇔

Λ1(t,v) =
∫ t

0

λ1(s)
λ2(s)

Λ2(ds,v)

• Under H0, estimate Λ1(t,v)−Λ2(t,v) by

∫ t

0

[
λ̂1(s)

λ̂2(s)
−1

]
Λ̂2(ds,v)
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Hypothesis Testing 2

• Here

λ̂k(t) =
1
bk

∫ u2

u1

K

(
t − s
bk

)
dΛ̂k(s)

• This is a standard kernel smoothing method to
estimate the hazard functions, as described in
Andersen, Borgan, Gill, and Keiding (1993)
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Nonparametric Test Process for
Evaluating H0

• Test process:

Lnp
n (t,v) =

√
n1n2

n

∫ t

a
Hn(s)

[
Λ̂1(ds,v)−

λ̂1(s)

λ̂2(s)
Λ̂2(ds,v)

]

• Let

∆np
n (t,v1,v2) = Lnp

n (t,v1)+Lnp
n (t,v2)−2Lnp

n (t,(v1 + v2)/2)
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Nonparametric Test Statistics for
Evaluating H0

• Idea: Use a functional of Lnp
n (·, ·) that summarizes

departures from H0

• Nonparametric test statistics:

Ûnp
1 =

supv1<v2
sup0≤t1<t2<τ

[
∆np

n (t2,v1,v2)−∆np
n (t1,v1,v2)

]

Ûnp
2 = supv1<v2

sup0≤t1<t2<τ
∣∣∆np

n (t2,v1,v2)−∆np
n (t1,v1,v2)

∣∣
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Alternative Semiparametric Test Process
for Evaluating H0

• Replace the nonparametric kernel estimates λ̂1(s)

λ̂2(s)
with

an estimate from a standard Cox model of the hazard
ratio:

λ̂1(s)

λ̂2(s)
= exp(β̂ )

where β is the maximum partial likelihood estimator
• Semiparametric test process:

Lsp
n (t,v) =

√
n1n2

n

∫ t

a
Hn(s)

[
Λ̂1(ds,v)− exp(β̂ )Λ̂2(ds,v)

]
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Semiparametric Test Statistics for
Evaluating H0

• Use the same functionals as for the nonparametric
test statistics

• Semiparametric test statistics:

Û sp
1 = supv1<v2

sup0≤t1<t2<τ
[
∆sp

n (t2,v1,v2)−∆sp
n (t1,v1,v2)

]

Û sp
2 = supv1<v2

sup0≤t1<t2<τ
∣∣∆sp

n (t2,v1,v2)−∆sp
n (t1,v1,v2)

∣∣
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Common Framework for the Test Process

• General test process:

Lr
n(t,v) =

√
n1n2

n

∫ t

a
Hn(s)

[
Λ̂1(ds,v)− r̂(s)Λ̂2(ds,v)

]

• The superscript r reflects the choice of function r̂(s) in
the test process and indicates whether it is used to:

• Test H0
0 (r as 1 implies r̂(s) = 1)

• Test H0 nonparametrically (r as np implies

r̂(s) = λ̂1(s)/λ̂2(s))
• Test H0 semiparametrically (r as sp implies

r̂(s) = exp(β̂ ))
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Common Framework for the Test Process

• For r = 1, [·] in Lr
n(t,v) compares Λ̂1(ds,v) and Λ̂2(ds,v)

• For r = np or r = sp, [·] in Lr
n(t,v) compares

Λ̂1(ds,v)− Λ̂2(ds,v) to an estimate of
Λ1(ds,v)−Λ2(ds,v) under H0
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Why do the Statistics Ûnp
j /Û sp

j Measure
Departures From H0?

• By the proof of Theorem 2 (stated later),

(n/n1n2)
1/2[∆r

n(t2,v1,v2)−∆r
n(t1,v1,v2)]

converges in probability to δ (t1, t2,v1,v2) =

∫ t2

t1

∫ v2

v1+v2
2

H(s)(λ1(s,v)− r(s)λ2(s,v))dvds

−

∫ t2

t1

∫ v1+v2
2

v1

H(s)(λ1(s,v)− r(s)λ2(s,v))dvds,

where r(s) = λ1(s)/λ2(s) or exp(β )
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Why do the Statistics Unp
j /U sp

j Measure
Departures From H0?

• Under H0, δ (t1, t2,v1,v2) = 0 for all t1, t2 ∈ [0,τ] and
v1,v2 ∈ [0,1]

• Under H1 and some smoothness conditions,
δ (t1, t2,v1,v2) > 0 for some t1 < t2 ∈ [0,τ] and
v1 < v2 ∈ [0,1]

• Therefore a large value of Û r
1 provides evidence

against H0 in the direction of H1

• Similarly a large value of Û r
2 provides evidence

against H0 in the direction of H2
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Summary of Asymptotic Properties of the
Tests of H0

• The following theoretical properties of all of the above
tests are proved in Gilbert, McKeague, and Sun
(2006)

• Tests have asymptotically correct size
• Tests are asymptotically consistent against H1 and

H2, respectively
• Critical values are unknown and are difficult to

obtain
⇒ Critical values approximated by the Gaussian
multipliers technique (useful trick in survival
analysis)
• Idea stems from Lin et al. (1993, 1994,

Biometrika)
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Theorems Stating Asymptotic Properties

Theorem 1: Suppose certain regularity conditions,
including that λk(t) is twice continuously differentiable over
[0,τ +δ ],k = 1,2, λ2(t) is bounded away from zero on
[a/2,τ +δ ], λ2(t,v) > 0 and ∂ 2Λ2(t,v)/∂ t2 is continuous on
[0,τ +δ ]× [0,1]. Also assume the kernel function K(·) has
bounded variation. Suppose nb2

k → ∞ and nb6
k → 0 for

k = 1,2. Then, under H0

Lnp
n (t,v)

D
−→Lnp(t,v) in D([a,τ]× [0,1]) as n → ∞.

(The limit process Lnp(t,v) is defined in Gilbert, McKeague,
and Sun (2006))

February 21, 2005 – p.35/80



Implication of Theorem 1: Asymptotically
Correct Size

• Let Unp
j be defined the same as Ûnp

j , with Lnp
n (t,v)

replaced with Lnp(t,v)

• By the continuous mapping theorem, Ûnp
j

D
−→Unp

j

under H0, so P(Ûnp
j > c jα) → α, where c jα is the upper

α-quantile of Unp
j

• However, the c jα are unknown and very difficult to
estimate due to the complicated nature of the limit
process Lnp(t,v)

• ⇒ Use the Gaussian multipliers simulation
procedure to approximate c jα
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Implication of Theorem 2: Asymptotically
Consistent

Theorem 2: In addition to the conditions given in Theorem
1, assume that λ1(t,v) and λ2(t,v) are continuous and that
H(t,v) > 0 on [0,τ]× [0,1]. Then,

P(Ûnp
1 > c1α) → 1 as n → ∞ under H1,

and
P(Ûnp

2 > c2α) → 1 as n → ∞ under H2

• Theorems 1 and 2 also hold for Lsp
n and Û sp

j , j = 1,2,

under the same conditions except that the conditions
on λk(t) are replaced by the proportional marginal
hazards assumption λ1(t)/λ2(t) = exp(β )
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Implication of Theorem 3: The Gaussian
Multipliers Technique is Justified

Asymptotically

• Heuristic summary of Gaussian Multipliers technique
(details in Gilbert, McKeague, and Sun, 2006)

• Formulate a null test process Lr∗
n (t,v), which is a

function of the observed data sequence and of
standard normal variables Wki, i = 1, . . . ,nk,k = 1,2
• Martingales M(ds,u) are replaced with

WkiNk(ds,u), where Wki, i = 1, . . . ,nk,k = 1,2 are
independent standard normal variables

• The weak limit of the process Lr∗
n (t,v) given the

observed data is the same as the weak limit of
Lr

n(t,v) under the null hypothesis H0

• That is, Theorem 3 states that

Lr∗
n (t,v)

D
−→Lr(t,v) in D([a,τ]×[0,1]) under H0 as n→∞
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Implication of Theorem 3: The Gaussian
Multipliers Technique is Justified

Asymptotically

• Theorem 3 justifies the following (simple) simulation
procedure for obtaining a p-value based on Û r

j :

• Compute Û r
j based on the test process Lr

n(t,v)

• Compute Û r∗1
j , · · · ,U r∗B

j based on simulated null
test processes Lr∗

n (t,v) (e.g., B = 1000)
• Set the p− value as the fraction of the Û r∗

j ’s that

are ≥ Û r
j
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Considerations in Choosing the Weight
Process Hn(s)

Lr
n(t,v) =

√
n1n2

n

∫ t

a
Hn(s)

[
Λ̂1(ds,v)− r̂(s)Λ̂2(ds,v)

]

• Would like to choose Hn(t) to make the testing
procedure asymptotically distribution-free
• Elusive

• Choose Hn(t) to up-weight early or late differences

• Choose Hn(t) to minimize variability in the test
process; e.g., dampen instability in the right-tail
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Estimation of V E(t,v)

• Sample size too small to reliably estimate

V E(t,v) = 1− λ1(t,v)
λ2(t,v)

• Focus on

V Ec(t,v) = 1−
F1(t,v)
F2(t,v)

= 1− limh→0
P(T1 ≤ t,V1 ∈ [v,v+h))

P(T2 ≤ t,V2 ∈ [v,v+h))
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Estimation of V Ec(t,v)

• Estimate V Ec(t,v) by 1− F̂1(t,v)
F̂2(t,v)

, where

F̂k(t,v) =
1
bk

∫ 1

0

∫ t

0

Ŝk(s−)

Yk(s)
K

(
v−u

bk

)
Nk(ds,du),

Ŝk(t) = Kaplan-Meier estimate of Sk(t)

• F̂k(t,v) = continuous analog of F̂k j(t) for discrete mark
(Prentice et al., 1978)

(
F̂k j(t) =

∫ t

0

Ŝk(s−)

Yk(s)
Nk j(ds)

)
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Variance and Confidence Interval
Estimation

• Var{F̂k(t,v)} can be estimated by

1

b2
k

∫ 1

0

∫ t

0

[
Ŝk(s−)

Yk(s)
K

(
v−u

bk

)]2

Nk(ds,du)

• 95% pointwise CIs for V Ec(t,v) = 1−F1(t,v)/F2(t,v):

1−
(

1− V̂E
c
(t,v)

)
exp


±zα/2

√
V̂ar{F̂1(t,v)}

F̂1(t,v)2
+

V̂ar{F̂2(t,v)}

F̂2(t,v)2



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Alternative Mark-Specific Vaccine
Efficacy Parameter

• Consider

V Edc(t,v) = 1−
P{T1 ≤ t,V1 ≤ v}
P{T2 ≤ t,V2 ≤ v}

• Equivalent to discrete mark case
• Estimate each cumulative probability by

nonparametric MLE
(Huang and Louis, 1998, Biometrika)

• Can obtain empirical likelihood-based CIs for
V Edc(t,v)
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Bandwidth Selection

• Nonparametric testing procedure requires bandwidths
b1,b2 for
λ̂1(t) and λ̂2(t)

• Estimation procedure requires bandwidths bv1,bv2 for
F̂1(t,v) and F̂2(t,v)

• Approach: Minimize an estimate of the mean
integrated squared error (MISE); e.g., as in Andersen,
Borgan, Gill, and Keiding (1993)

• e.g., MISE(λ̂k(·)) = E
∫
{λ̂k(t)−λk(t)}2dt
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Simulation Experiment

• Results presented for 8 experiments:
• No. of HIV infections in placebo arm: 48, 95, 190

• V Ec(36) = 1− F1(36)
F2(36) : 0.33 or 0.67

• Exponential failure times [20% random dropout],
uniform marks in placebo arm, vaccine arm marks
from density

fV (v) =
1

β
(
1.51/β −0.51/β

) (v+0.5)(1/β )−1

• β = 1 corresponds to H0

• β = 0.5,0.25 correspond to H1 (monotone altern)
• Also consider a 2-sided alternative:

fV (v) = 16
3 vI(v < 1

2)+(8
3 −

8
3v)I(v ≥ 1

2)
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Size of Tests of H0
0

• Results for null case of V E(t,v) = 0

Empirical Power (× 100%) for Testing H0
1 and H0

2

nk = 100 nk = 200 nk = 400

Test Altern. (48)2 (95) (190)

Cox1 5.2 5.0 5.8

Û1
1 H0

1 7.9 5.0 6.6

Û1
2 H0

1 7.7 5.3 6.0

Û1
3 H0

2 5.9 7.0 5.3

Û1
4 H0

2 6.7 5.3 5.2
1Wald Z-test from standard Cox model, ignoring the mark
2Average number of subjects infected in group 2 (placebo)
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Power of Û1
1 and Û1

2 for Testing H0
0

• The tests of H0
0 have correct size (near 0.05)

• Next assess power of the tests
• In the following 2 plots, Alt 0, Alt 1, Alt 2 correspond to

β = 1,0.5,0.25, respectively

• Power achieved with the test statistics Û1
1 and Û1

2 is
compared to the power of the ordinary Cox model
Wald test of V E(t) = 0 that ignores the mark variable
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Simulation Experiment: Tests of H0
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Simulation Experiment: Tests of H0
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Summary of Results for Tests of H0
0

• The tests of H0
0 have appropriate sizes and high

powers
• When V E(t,v) declines with v, they have greater

power than the Cox model Wald test of V E = 0

• Therefore accounting for the mark variable can
substantially improve efficiency

• For clinical trials with strong reasons to suspect
that the mark-specific relative risk is monotone in
the mark, consider accounting for the mark in a
secondary analysis of the treatment effect
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Simulation Results for Tests of H0

• Next consider simulation results for testing

H0 : V E(t,v) = V E(t)

• In the following 4 plots, Null, Alt 1, Alt 2 correspond to
β = 1.0,0.5,0.25, respectively
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Simulation Results for Tests of H0
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Simulation Results for Tests of H0
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Simulation Results for Tests of H0
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Simulation Results for Tests of H0
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Summary of Results for Testing H0

• Satisfactory performance at moderate sample sizes
• Somewhat surprisingly, for small/moderate samples

the semiparametric tests did not provide greater
power than the nonparametric tests in the case that
the failure times had proportional hazards

• Explanation: Test process involves contrasts

Λ̂1(dt,v)− r̂(t)Λ̂2(dt,v)

with r̂(t) = widehatλ1(t)

λ̂2(t)
or exp(β̂ )
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Summary of Results for Testing H0

• Additional simulations were conducted to assess
performance of tests when the proportional hazards
assumption fails

• The empirical sizes of Û sp
1 and Û sp

2 frequently missed
0.05 by an amount more than 2 or 3 Monte Carlo
standard deviations (results not shown)

• As predicted from theory, the semiparametric tests fail
when the proportional hazards assumption fails

• Nonparametric tests recommended in practice
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Example: Vax004 Efficacy Trial

• Primary analysis: No vaccine efficacy to prevent HIV
infection

Number Number Percent
Randomized Infected Infected

Vaccine 3598 241 6.7%
Placebo 1805 127 7.0%

V̂ E = 5.7%, 95% CI −17.0% to 24.0%, p = 0.59
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Time to HIV Infection Similar in Vaccine
and Placebo Arms

months since entry
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Log-rank p = 0.59

Estimated HIV-Free Curves
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Evaluating V E(t,v) for Pre-specified
Marks V = v

• VMN = percent aa mismatch in a region of gp120 of
the infecting strain relative to the MN vaccine strain

• VGNE8 defined similarly for the reference strain GNE8
• V = min(VMN ,VGNE8)

“distance to the nearest immunogen"
• Regions for distances:

• Neutralizing face core (∼ 30 amino acids)
• Neutralizing face core + V2/V3 loop regions

(∼ 110 amino acids)
• V3 loop region (∼ 33 amino acids)
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binding portion of HIV and that of murine leukaemia virus23,
another retrovirus. Mechanisms for receptor-mediated triggering
of fusion may also be virus-specific.

Because of the important role of the gp120 glycoprotein in
receptor binding and interactions with neutralizing antibodies,
information about the gp120 structure is important for under-
standing HIV infection and for the design of therapeutic and
prophylactic strategies. Here we report the crystal structure at 2.5 Å
resolution of a partially deglycosylated HIV-1 gp120 core bound to a
two-domain fragment of the CD4 cellular receptor and to the
antigen-binding fragment (Fab) of an antibody, 17b, that is directed
against a CD4i epitope. The accompanying Letter relates this
structure to the antigenic properties of gp120 envelope proteins24.

Structure determination
Because of the extensive glycosylation and conformational hetero-
geneity associated with the HIV gp120 glycoprotein, we devised a
crystallization strategy aimed at radical modification of the protein
surface. We made truncations at termini and variable loops in
various combinations with gp120 from various strains, extensively
deglycosylated these gp120 variants, and produced complexes with
various ligands. A theoretical analysis indicated that the probability
of crystal formation is greatly increased by such reduction of surface

heterogeneity and trials with multiple variants25. After screening
almost twenty combinations of gp120 variants and ligands, we
obtained crystals25 of a ternary complex composed of a truncated
form of gp120, the N-terminal two domains (DID2) of CD4, and
a Fab from the human neutralizing monoclonal antibody 17b
(ref. 18).

The gp120 crystallized was from the HXBc2 strain of HIV-1. It
has deletions of 52 and 19 residues from the N and C termini,
respectively; Gly-Ala-Gly tripeptide substitutions for 67 V1/V2 loop
residues and 32 V3 loop residues; and the removal of all sugar
groups beyond the linkages between the two core N-acetyl-
glucosamine residues. This deglycosylated core gp120 is stripped
of over 90% of the carbohydrate but it retains over 80% of the non-
variable-loop protein. Its capacity to interact with CD4 and relevant
antibodies is preserved at or near wild-type levels26. The crystals are
of space group P2221 (a ¼ 71:6, b ¼ 88:1, c ¼ 196:7 Å), with one
ternary complex and 58% solvent in the crystallographic asym-
metric unit.

The ternary structure was solved by a combination of molecular
replacement, isomorphous replacement and density modification
techniques. It has been refined to an R-value of 21.0%
(5–2:5 Å data . 2j, R-free ¼ 30:3%). The final model, composed
of 7,877 atoms, comprises residues 90–396 and 410–492 of gp120
(except loop substitutions), residues 1–181 of CD4, and residues 1–
213 of the light chain and 1–229 of the heavy chain of the 17b
monoclonal antibody. In addition, 11 N-acetylglucosamine and 4
fucose residues, and 602 water molecules have been placed. The
overall structure of the complex of gp120 with D1D2 of CD4 and
Fab 17b is as shown in Fig. 1.

Structure of gp120
The deglycosylated core of gp120 as dissected from the ternary
complex approximates a prolate ellipsoid with dimensions of
50 3 50 3 25 Å, although its overall profile is more heart-shaped
than circular. Its backbone structure is shown in Fig. 2a, c in an
orientation precisely perpendicular to that in Fig. 1 (Fig. 4e shows a
mutually perpendicular view). This core gp120 comprises 25 b-
strands, 5 a-helices and 10 defined loop segments, all organized
with the topology shown in Fig. 2b. Specific spans of structural
elements are given in Fig. 2d. The structure confirms the chemically
determined disulphide-bridge assignments6 (Fig. 2c). The polypep-
tide chain of gp120 is folded into two major domains, plus certain
excursions that emanate from this body. The inner domain (inner
with respect to the N and C termini) features a two-helix, two-
strand bundle with a small five-stranded b-sandwich at its termini-
proximal end and a projection at the distal end from which the V1/
V2 stem emanates. The outer domain is a stacked double barrel that
lies alongside the inner domain so that the outer barrel and inner
bundle axes are approximately parallel.

The proximal barrel of the outer-domain stack is composed from
a six-stranded, mixed-directional b-sheet that is twisted to embrace
helix a2 as a seventh barrel stave. The distal barrel of the stack is a
seven-stranded antiparallel b-barrel. The two barrels share one
contiguous hydrophobic core, and the staves also continue from
one barrel to the next except at the domain interface. This inter-
ruption is centred at a side between barrels where the chain enters
the outer domain, with loop LB insinuated as a tongue between
strands b16 and b23. The extended segment just preceding LB is like
an eighth stave of the distal barrel, but is slightly out of reach for
hydrogen bonding with its b16 and b19 neighbours. The chain
returns to complete the inner domain after b24.

The proximal end of the outer domain includes variable loops V4
and V5 and loops LD and LE, which are variable in sequence as well.
Loop LC is also at this end, close in space to loop LA of the inner
domain, although by topology it is at the other end of this domain.
The distal end does include the base of the excised variable loop V3
and also an excursion via loop LF into a b-hairpin, b20–b21, which

articles
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Figure 1Overall structure. The ribbon diagramshowsgp120 in red, the N-terminal

two domains of CD4 in yellow, and the Fab 17b in light blue (light chain) and purple

(heavy chain). The side chain of Phe 43 on CD4 is shown. The prominent CDR3

loop of the 17b heavy chain is evident in this orientation. Although the complete N

and C termini of gp120 are missing, the positions of the gp120 termini are

consistent with the proposal that gp41, and hence the viral membrane, is located

towards the top of the diagram. This would position the target membrane at the

diagram base. The vertical dimension of gp120 in this orientation is roughly 50 Å.

Perpendicular views of gp120 are shown in Figs 2 and 4. Drawn with RIBBONS49.
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tion by antibodies against V3 and CD4i epitopes23. The latter effect
is mediated primarily by the V2 loop21, suggesting that part of the
V2 loop folds back along the V1/V2 stem to mask the ‘bridging
sheet’ and adjacent V3 loop. The proximity of the V2 and V3 loops is
supported by the observation that, in monkeys infected with
simian–human immunodeficiency viruses (SHIVs), neutralizing
antibodies are raised against discontinuous epitopes with V2 and V3
components (B. Etemad-Moghadam et al., submitted). The CD4i
epitopes are probably masked by the flanking V2 and V3 loops,

requiring the evolution of antibodies with protruding (‘male’)
complementarity-determining regions (CDRs) to access these con-
served epitopes. It has been suggested that CD4 binding repositions
the V1/V2 loops, thus exposing the CD4i epitopes21. The presence of
contacts between the V1/V2 stem and CD4 in the crystal structure12

is consistent with this model.
CD4BS epitopes. CD4 makes several contacts within a recessed
pocket on the gp120 surface. The gp120–CD4 interface includes
two cavities, one water-filled and bounded equally by both proteins,

Figure 2 The spatial relationship of epitopes on the HIV-1 gp120 glycoprotein. a,

The molecular surface of the gp120 core is shown, using the same perspective as

in Fig. 1a. The modelled N-terminal gp120 core residues, V4 loop and

carbohydrate structures are included. The variability of the molecular surface is

indicated (colour scheme as in Fig.1b). The modelled carbohydrates are shown in

light blue (complex sugars) or dark blue (high-mannose sugars). The approximate

locations of the V2 and V3 variable loops are indicated. Note the well-conserved

surfaces near the ‘Phe43’ cavity and the chemokine-receptor-binding site (Fig.

1a). b, Ca tracing of the gp120 core, oriented as in Fig. 1a. The gp120 residues

within 4 Å of the 17b CD4i antibody are shown in green; those implicated in the

binding of CD4BS antibodies22 are in red. Changes in these residues significantly

affect the binding of at least 25% of the CD4BS antibodies listed in Table 1. The

residues implicated in 2G12 binding19 are shown in blue. The V4 variable loop,

which contributes to the 2G12 epitope19, is indicated by dotted lines. c, The

molecular surface of the gp120 core, oriented and coloured as in b. d, Approxi-

mate locations of the faces of the gp120 core, defined by the interaction of gp120

and antibodies. The molecular surface accessible to neutralizing ligands (CD4

and CD4BS, CD4i and 2G12 antibodies) is shown in white. The neutralizing face of

the complete gp120 glycoprotein includes the V2 and V3 loops, which are found

adjacent to the surface shown (a). The approximate location of the gp120 face

that is poorly accessible on the assembled envelope glycoprotein trimer and

therefore elicits only non-neutralizing antibodies5,6 is shown in magenta. The

approximate location of an immunologically ‘silent’ face of gp120, which roughly

corresponds to the highly glycosylated outer domain surface, is in blue.



Distributions of Genetic Distances V

• 337/368 (92%) infected subjects have sequence data
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Implementation of Inferential Procedures

• Weight process within test process:

Hn(t) =

√
Ȳ1(t)

n1

Ȳ2(t)
n2

• Epanechnikov kernel K(x) = 0.75(1− x2)I(|x| ≤ 1);
Gasser and Müller (1979) tail correction

• Bandwidths for λ̂k(t) :
• Optimal bandwidths b1 = 1.83,b2 = 2.10

• Bandwidths for F̂k(36,v) :
• bv1 and bv2 = separately optimized using 2-fold

cross-validation
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Results of Tests of H0
0 : V E(t,v) = 0

• Time-span t ∈ [2,36] months
• P-values obtained using 10000 simulations

Distance Test Stat. p-value

Neut face Û1
1 p = 0.15

Û1
2 p = 0.05

Û1
3 p = 0.32

Û1
4 p = 0.14

Neut face + V2/V3 Û1
1 p = 0.18

Û1
2 p = 0.26

Û1
3 p = 0.36

Û1
4 p = 0.59

V3 loop Û1
1 p = 0.15

Û1
2 p = 0.61

Û1
3 p = 0.30

Û1
4 p = 0.72
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Results of Tests of H0 : V E(t,v) = V E(t)

• Time-span t ∈ [2,36] months
• P-values obtained using 10000 simulations

Distance Test Stat. p-value

Neut face Ûnp
1 /Û sp

1 p = 0.041/0.095

Ûnp
2 /Û sp

2 p = 0.24/0.11

Neut face + V2/V3 Ûnp
1 /Û sp

1 p = 0.62/0.60

Ûnp
2 /Û sp

2 p = 0.84/0.26

V3 loop Ûnp
1 /Û sp

1 p = 0.96/0.95

Ûnp
2 /Û sp

2 p = 0.94/0.73
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Lnp
n (t,v) and 8 Lnp∗

n (t,v): Neut face
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Lnp
n (t,v) and 8 Lnp∗

n (t,v): Neut face + V2/V3
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Lnp
n (t,v) and 8 Lnp∗

n (t,v): V3 loop
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V Ec(36,v) versus v: Neut face

strain distance v
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V Ec(36,v) versus v: Neut face + V2/V3

strain distance v
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V Ec(36,v) versus v: V3 loop

strain distance v
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Key Question: How Define the HIV Metric
V?

• The approach is inter-collaborative:
virologists/immunologists/structural
biologists/statisticians seek to identify an
immunologically relevant HIV sequence metric V

• Problem complicated for antibody vaccines
(need knowledge of 3-D structure)

• Simpler for T cell vaccines (linear epitopes)
• E.g., weighted potential T cell epitope (WPTE)

distance: one minus the fraction of 9-mers in
the infecting virus also in the vaccine
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Current Research: Regression Modeling

• Conditional mark-specific hazard: λ (t,v|z(t)) =

limh1,h2→0 P{T ∈ [t, t +h1),V ∈ [v,v+h2)|T ≥ t,Z(t) = z(t)}/h1h2

• Mark-specific proportional hazards model:

λ (t,v|z(t)) = λ0(t,v)exp
{

β (v)T z(t)
}

β (v) = (β1(v),β2(v)T )T

β1(v) corresponds to vaccine/placebo status
(parametric or unspecified)

β2(v) corresponds to other covariates (parametric)
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Applications to Vaccine Efficacy Trials

• Test for vaccine efficacy varying with the mark:
H0 : V E(v) = V E
• Model-based alternative to the nonparametric

tests
• Test for vaccine efficacy at any mark value:

H0 : V E(v) = 0 for all v

• Estimate V E(v) both for β1(v) unspecified and
specified parametrically
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Applications to Vaccine Efficacy Trials

• Include covariates
• Control for confounders, estimate

covariate-adjusted V E(v)
• Assess possible differences in V E(v) at different

covariate levels [interactions]
• Does a genetic trait affect whether the vaccine

selectively protects?
• Does the level of immune response to

vaccination affect whether the vaccine
selectively protects?
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Example of V E(v) Depending on Immune
Reponse
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Complimentary Approach: Antigen
Scanning (Addressed in Lecture 9)

• Scan all peptide regions of length 9
• Goal: Identify regions where peptide sequences from

infected vaccinees are more divergent from the
immunogen peptide than peptide sequences from
infected placebo recipients [Topic of Lecture 9]
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