

Inferring Dependency of HIV Vaccine Efficacy on HIV Divergence

Biostat 578A Lecture 8

Collaborators:

Ian McKeague Columbia University

Yanqing Sun University of North Carolina at Charlotte

HIV-1C pairwise amino acid diversity (n=73 sequences)

Protein	Mean (%)	Range (%)
Pol	6.4	0.2-10.2
Vif	11.6	0.5-22.1
Vpr	11.9	1.0-24.5
Rev	17.4	2.7-46.8
Tat	18.3	4.2-39.1
Nef	18.6	5.1-30.6
Env	20.0	7.4-26.4
Vpu	25.2	2.4-50.0

- **Primary objective:** Assess vaccine efficacy (VE) to prevent HIV infection
- Secondary objective: Assess if and how VE varies with genotypic/phenotypic characteristics of HIV
 - For each infected subject, measure the **distance** *V* between the infecting virus and the virus(es) represented in the vaccine
- Available data:
 - Vaccine group: $(X_{1i}, \delta_{1i}, \delta_{1i}V_{1i}), \quad i = 1, \cdots, n_1$
 - Placebo group: $(X_{2i}, \delta_{2i}, \delta_{2i}V_{2i}), \quad i = 1, \cdots, n_2$

- Case 1: V a small number of ordered categories
 - E.g.: V ∈ {0,1,2,3+} substitutions/deletions in the HIV V3 loop tip sequence GPGRAF
 - For each strain category *j*, can study *VE*(*t*, *j*) using cause-specific hazard functions or cumulative incidence functions:

$$VE(t,j) = 1 - \frac{\lambda_{1j}(t)}{\lambda_{2j}(t)}$$
 or $VE(t,j) = 1 - \frac{F_{1j}(t)}{F_{2j}(t)}$

 $\lambda_{kj}(t) = \lim_{h_1 \to 0} P\{T_k \in [t, t+h_1), V_k = j | T_k \ge t\} / h_1$ $F_{kj}(t) = P\{T_k \le t, V_k = j\} = \int_0^t S_k(s-) d\Lambda_{kj}(s)$

- Prentice et al. (1978, Biometrics)
- Gray (1988, Ann Stat)
- Aly, Kochar, and McKeague (1994, JASA)
- Lunn and McNeil (1995, Biometrics)
- Lam (1998, Biometrika)
- Hu and Tsai (1999, Statistica Sinica)
- Luo and Turnbull (1999, Statistica Sinica)
- Sun (2001, J Nonpar Stat)
- McKeague, Gilbert, and Kanki (2001, Biometrics)
- Fine (2001, JASA)

• Case 2: V a large number of ordered categories

• E.g.: V = percent amino acid mismatch \Rightarrow Treat V as continuous, $V \in [0, 1]$

Gag fragment alignment

- Semiparametric modeling approach developed by Gilbert et al. (1999, Biometrika; 2000, Ann Stat)
- Limitations of method:
 - Interpretation conditional on infection
 - Functional form relating VE and v specified parametrically
 - Does not account for time to HIV infection

- **Objective:** Develop methods for testing and estimation of VE(t,v) defined based on continuous mark-specific hazard and cumulative incidence functions
 - Mark-specific hazard functions:

$$\lambda_k(t,v) = \lim_{h_1,h_2 \to 0} P\{T_k \in [t,t+h_1), V_k \in [v,v+h_2) | T_k \ge t\} / h_1 h_2$$

• Mark-specific cumulative incidence functions:

$$F_k(t,v) = \lim_{h_2 \to 0} P\{T_k \le t, V_k \in [v, v+h_2)\}/h_2$$

Overall vaccine efficacy definitions:

•
$$VE(t) = 1 - \frac{\lambda_1(t)}{\lambda_2(t)}$$

•
$$VE^{c}(t) = 1 - \frac{F_{1}(t)}{F_{2}(t)}$$

Mark-specific vaccine efficacy definitions:

•
$$VE(t,v) = 1 - \frac{\lambda_1(t,v)}{\lambda_2(t,v)}$$

•
$$VE^{c}(t,v) = 1 - \frac{F_{1}(t,v)}{F_{2}(t,v)}$$

•
$$VE^{dc}(t,v) = 1 - \frac{P\{T_1 \le t, V_1 \le v\}}{P\{T_2 \le t, V_2 \le v\}}$$

•
$$VE^{int}(t,v) = \int_0^v VE^c(t,u) du$$

- Interpretation of $\lambda_k(t, v)$ restricted to actual study conditions (*crude* hazard)
- Would like to study the *net* hazard: rate of failure by mark *v* in the absence of any competing viral strains
 - Unidentifiable

• Factorization:

$$\lambda_k(t,v) = \lambda_{Ek}(t,v) \times \lambda_{Tk}(t,v)$$

• $\lambda_{Ek}(t,v) =$ **Exposure hazard**

Markov intensity of exposures to strains with divergence *v*

• $\lambda_{Tk}(t,v) =$ **Transmission probability** conditional on exposure to a strain with divergence v at time t

$$\lambda_{Tk}(t,v) = \lim_{h_1,h_2 \to 0} \Pr(T_k \in [t,t+h_1), V_k \in [v,v+h_2) | T_k \ge t,$$

exposed in $[t, t+h_1)$ to HIV w/ $V_k \in [v, v+h_1))/h_1h_2$

- *VE*(*t*,*v*) measures a *mixture* of vaccine/placebo-group differences in:
 - mark-specific exposure rates
 - per-mark-specific exposure transmission probabilities
- Interest in vaccine efficacy parameter based on transmission probabilities: $VE^{T}(t,v) =$

 $lim_{h_1,h_2\to 0} \frac{\mathsf{Pr}(T_1 \in [t,t+h_1), V_1 \in [v,v+h_2) | T_1 \ge t, \exp w/V_1 \in [v,v+h_2))}{\mathsf{Pr}(T_2 \in [t,t+h_1), V_2 \in [v,v+h_2) | T_2 \ge t_2, \exp w/V_2 \in [v,v+h_2))}$

• **Approach**: Assume $\lambda_{E1}(t,v)/\lambda_{E2}(t,v) = 1$, so that the identifiable parameter VE(t,v) equals $VE^T(t,v)$

Ignoring the Mark Variable Can Mislead in Assessing Vaccine Efficacy

• Consider a mark-specific PH model:

$$\lambda(t, v | z = 0) = \lambda_0(v) = e^{\gamma v}$$

$$\lambda(t, v|z=1) = \lambda_0(v)e^{\alpha + \beta v}$$

• Marginal PH model (ignoring the mark):

$$\lambda_T(t|z) = \int_0^1 \lambda(t, v|z) \, dv = \left(\frac{e^{\gamma} - 1}{\gamma}\right) e^{\beta^* z}$$

$$\beta^* = \alpha + \log\left(\frac{e^{\gamma+\beta}-1}{\gamma+\beta}\right) - \log\left(\frac{e^{\gamma}-1}{\gamma}\right)$$

Ignoring the Mark Variable Can Mislead in Assessing Vaccine Efficacy

In the mark-specific PH model

$$VE(v) = 1 - e^{\alpha + \beta v}$$

• In the marginal PH model

$$VE^* = 1 - \exp(\beta^*) = 1 - e^{\alpha} \left(\frac{e^{\gamma+\beta} - 1}{\gamma+\beta}\right) \left(\frac{\gamma}{e^{\gamma} - 1}\right)$$

- By varying γ over the real line, VE* varies over all possible values of VE(v) (0 < v < 1)
 - *VE*^{*} depends on the *baseline* mark-specific hazard
 - \Rightarrow The marginal estimand VE^* is affected by a model feature irrelevant for assessing vaccine efficacy

Ignoring the Mark Variable Can Mislead in Assessing Vaccine Efficacy

• When the baseline does not involve the mark ($\gamma = 0$): $VE^* = \int_0^1 VE(v) dv$

Example of VE(v) and VE* for alpha=-1, beta=1, gamma=0

Hypothesis Testing 1: Any Efficacy Against Any Virus?

• Consider $VE(t,v) = 1 - \frac{\lambda_1(t,v)}{\lambda_2(t,v)}$

Test

 $\begin{array}{rcl} H_0^0: VE(t,v) &=& 0 \text{ for all } v \in [0,1], t \in [0,\tau] \\ & \text{versus} \\ H_1^0: VE(t,v) &\geq& 1 \text{ for all } (t,v) \in [0,\tau] \times [0,1]; \\ H_2^0: VE(t,v) &\neq& 1 \text{ for some } (t,v) \in [0,\tau] \times [0,1] \end{array}$

with strict inequality for some $(t, v) \in [0, \tau] \times [0, 1]$ in H_1^0

•
$$H_0^0 \Leftrightarrow \frac{\lambda_1(t,v)}{\lambda_2(t,v)} = 0$$
 for all $v \in [0,1], t \in [0,\tau]$

Doubly cumulative mark-specific hazard functions

$$\Lambda_k(t,v) = \int_0^v \int_0^t \lambda_k(s,u) \, ds \, du, \qquad k = 1,2$$

- Idea of testing procedures: Compare a nonparametric estimate of $\Lambda_1(t,v)$ with a nonparametric estimate of $\Lambda_2(t,v)$
- Large differences for some v indicate departures from H_0^0

• Likelihood:

$$\prod_{o} f_{k}(X_{ki}, V_{ki}) \prod_{c} S_{k}(X_{ki}) = \prod_{o} \lambda_{k}(X_{ki}, V_{ki}) \prod_{i=1}^{n_{k}} \exp\left\{-\int_{0}^{1} \int_{0}^{X_{ki}} \lambda_{k}(s, v) \, ds \, dv\right\}$$

• Log-likelihood:

$$\int_0^1 \int_0^\tau \log \lambda_k(s,v) N(ds,dv) - \int_0^1 \int_0^\tau Y_k(s) \lambda_k(s,v) \, ds \, dv$$

 \Rightarrow Nonparametric MLE given by:

$$\widehat{\Lambda}_k(t,v) = \int_0^t \frac{N_k(ds,v)}{Y_k(s)}, \ t \ge 0, \ v \in [0,1]$$

$$Y_k(t) = \sum_{i=1}^{n_k} I(X_{ki} \ge t)$$

$$N_k(t, v) = \sum_{i=1}^{n_k} I(X_{ki} \le t, \delta_{ki} = 1, V_{ki} \le v)$$

• Huang and Louis (1998, Biometrika)

Test Process and Test Statistics for Evaluating H_0^0

• Test process:

$$L_n^1(t,v) = \sqrt{\frac{n_1 n_2}{n}} \int_a^t H_n(s) \left[\widehat{\Lambda}_1(ds,v) - \widehat{\Lambda}_2(ds,v)\right]$$

where a is a constant > 0

• Idea: Use a functional of $L_n^1(\cdot, \cdot)$ that summarizes departures from H_0^0

Test Process and Test Statistics for Evaluating H_0^0

- Let $w_V(v)$ be a known nonnegative weight function
- Test statistics for detecting H_0^1

 $\widehat{U}_1^1 = L_n^1(\tau, 1)$

$$\widehat{U}_{2}^{1} = \int_{0}^{1} w_{V}(v) L_{n}^{1}(\tau, v) dv$$

• Test statistics for detecting H_0^2

 $\widehat{U}_3^1 = |L_n^1(\tau, 1)|$

$$\widehat{U}_{4}^{1} = \int_{0}^{1} w_{V}(v) (L_{n}^{1}(\tau, v))^{2} dv$$

• If H_0^0 is rejected, then sensible to test

 $H_0: VE(t,v) = VE(t)$ for all $v \in [0,1], t \in [0,\tau]$ versus

 $H_1: VE(t, v_1) \ge VE(t, v_2)$ for all $v_1 \le v_2, t \in [0, \tau]$

 $H_2: VE(t, v_1) \neq VE(t, v_2)$ for some $v_1 \leq v_2, t \in [0, \tau]$

with strict inequality for some t, v_1, v_2 in H_1

•
$$H_0 \Leftrightarrow \frac{\lambda_1(t,v)}{\lambda_2(t,v)}$$
 does not depend on v

- Idea of testing procedures: Compare a nonparametric estimate of $\Lambda_1(t,v) \Lambda_2(t,v)$ with an estimate under H_0
- H_0 holds \Leftrightarrow

$$\Lambda_1(t,v) = \int_0^t \frac{\lambda_1(s)}{\lambda_2(s)} \Lambda_2(ds,v)$$

• Under H_0 , estimate $\Lambda_1(t,v) - \Lambda_2(t,v)$ by

$$\int_0^t \left[\frac{\widehat{\lambda}_1(s)}{\widehat{\lambda}_2(s)} - 1 \right] \widehat{\Lambda}_2(ds, v)$$

• Here

$$\widehat{\lambda}_k(t) = \frac{1}{b_k} \int_{u_1}^{u_2} K\left(\frac{t-s}{b_k}\right) d\widehat{\Lambda}_k(s)$$

 This is a standard kernel smoothing method to estimate the hazard functions, as described in Andersen, Borgan, Gill, and Keiding (1993)

Nonparametric Test Process for

Evaluating *H*₀

• Test process:

$$L_n^{np}(t,v) = \sqrt{\frac{n_1 n_2}{n}} \int_a^t H_n(s) \left[\widehat{\Lambda}_1(ds,v) - \frac{\widehat{\lambda}_1(s)}{\widehat{\lambda}_2(s)} \widehat{\Lambda}_2(ds,v) \right]$$

• Let

$$\Delta_n^{np}(t, v_1, v_2) = L_n^{np}(t, v_1) + L_n^{np}(t, v_2) - 2L_n^{np}(t, (v_1 + v_2)/2)$$

Nonparametric Test Statistics for Evaluating H₀

- Idea: Use a functional of $L_n^{np}(\cdot, \cdot)$ that summarizes departures from H_0
- Nonparametric test statistics:

$$\begin{aligned} \widehat{U}_{1}^{np} &= \\ \sup_{v_{1} < v_{2}} \sup_{0 \le t_{1} < t_{2} < \tau} \left[\Delta_{n}^{np}(t_{2}, v_{1}, v_{2}) - \Delta_{n}^{np}(t_{1}, v_{1}, v_{2}) \right] \\ \widehat{U}_{2}^{np} &= \sup_{v_{1} < v_{2}} \sup_{0 \le t_{1} < t_{2} < \tau} \left| \Delta_{n}^{np}(t_{2}, v_{1}, v_{2}) - \Delta_{n}^{np}(t_{1}, v_{1}, v_{2}) \right| \end{aligned}$$

Alternative Semiparametric Test Process for Evaluating H₀

• Replace the nonparametric kernel estimates $\frac{\lambda_1(s)}{\lambda_2(s)}$ with an estimate from a standard Cox model of the hazard ratio:

$$\frac{\widehat{\lambda}_1(s)}{\widehat{\lambda}_2(s)} = exp(\widehat{\beta})$$

where β is the maximum partial likelihood estimator

Semiparametric test process:

$$L_n^{sp}(t,v) = \sqrt{\frac{n_1 n_2}{n}} \int_a^t H_n(s) \left[\widehat{\Lambda}_1(ds,v) - exp(\widehat{\beta})\widehat{\Lambda}_2(ds,v)\right]$$

Semiparametric Test Statistics for Evaluating H₀

- Use the same functionals as for the nonparametric test statistics
- Semiparametric test statistics:

$$\widehat{U}_{1}^{sp} = \sup_{v_{1} < v_{2}} \sup_{0 \le t_{1} < t_{2} < \tau} \left[\Delta_{n}^{sp}(t_{2}, v_{1}, v_{2}) - \Delta_{n}^{sp}(t_{1}, v_{1}, v_{2}) \right]$$
$$\widehat{U}_{2}^{sp} = \sup_{v_{1} < v_{2}} \sup_{0 \le t_{1} < t_{2} < \tau} \left| \Delta_{n}^{sp}(t_{2}, v_{1}, v_{2}) - \Delta_{n}^{sp}(t_{1}, v_{1}, v_{2}) \right|$$

• General test process:

$$L_n^r(t,v) = \sqrt{\frac{n_1 n_2}{n}} \int_a^t H_n(s) \left[\widehat{\Lambda}_1(ds,v) - \widehat{r}(s)\widehat{\Lambda}_2(ds,v)\right]$$

- - Test H_0^0 (*r* as 1 implies $\hat{r}(s) = 1$)
 - Test H_0 nonparametrically (*r* as *np* implies $\widehat{r}(s) = \widehat{\lambda}_1(s) / \widehat{\lambda}_2(s)$)
 - Test H_0 semiparametrically (*r* as *sp* implies $\widehat{r}(s) = \exp(\widehat{\beta})$)

- For r = 1, $[\cdot]$ in $L_n^r(t, v)$ compares $\widehat{\Lambda}_1(ds, v)$ and $\widehat{\Lambda}_2(ds, v)$
- For r = np or r = sp, $[\cdot]$ in $L_n^r(t, v)$ compares $\widehat{\Lambda}_1(ds, v) - \widehat{\Lambda}_2(ds, v)$ to an estimate of $\Lambda_1(ds, v) - \Lambda_2(ds, v)$ under H_0

Why do the Statistics $\widehat{U}_{j}^{np}/\widehat{U}_{j}^{sp}$ Measure **Departures From** H_0 ?

• By the proof of Theorem 2 (stated later),

$$(n/n_1n_2)^{1/2}[\Delta_n^r(t_2,v_1,v_2) - \Delta_n^r(t_1,v_1,v_2)]$$

converges in probability to $\delta(t_1, t_2, v_1, v_2) =$

$$\int_{t_1}^{t_2} \int_{\frac{v_1+v_2}{2}}^{v_2} H(s)(\lambda_1(s,v) - r(s)\lambda_2(s,v)) dv ds - \int_{t_1}^{t_2} \int_{v_1}^{\frac{v_1+v_2}{2}} H(s)(\lambda_1(s,v) - r(s)\lambda_2(s,v)) dv ds,$$

where $r(s) = \lambda_1(s)/\lambda_2(s)$ or $\exp(\beta)$

- Under H_0 , $\delta(t_1, t_2, v_1, v_2) = 0$ for all $t_1, t_2 \in [0, \tau]$ and $v_1, v_2 \in [0, 1]$
- Under H_1 and some smoothness conditions, $\delta(t_1, t_2, v_1, v_2) > 0$ for some $t_1 < t_2 \in [0, \tau]$ and $v_1 < v_2 \in [0, 1]$
- Therefore a large value of \widehat{U}_1^r provides evidence against H_0 in the direction of H_1
- Similarly a large value of \widehat{U}_2^r provides evidence against H_0 in the direction of H_2

Summary of Asymptotic Properties of the Tests of H₀

- The following theoretical properties of all of the above tests are proved in Gilbert, McKeague, and Sun (2006)
 - Tests have asymptotically correct size

HIV VACCINE TRIALS NETWORK

- Tests are asymptotically consistent against H_1 and H_2 , respectively
- Critical values are unknown and are difficult to obtain

 \Rightarrow Critical values approximated by the *Gaussian multipliers technique* (useful trick in survival analysis)

 Idea stems from Lin et al. (1993, 1994, Biometrika)

Theorem 1: Suppose certain regularity conditions, including that $\lambda_k(t)$ is twice continuously differentiable over $[0, \tau + \delta], k = 1, 2, \lambda_2(t)$ is bounded away from zero on $[a/2, \tau + \delta], \lambda_2(t, v) > 0$ and $\partial^2 \Lambda_2(t, v) / \partial t^2$ is continuous on $[0, \tau + \delta] \times [0, 1]$. Also assume the kernel function $K(\cdot)$ has bounded variation. Suppose $nb_k^2 \to \infty$ and $nb_k^6 \to 0$ for k = 1, 2. Then, under H_0

$$L_n^{np}(t,v) \xrightarrow{\mathscr{D}} L^{np}(t,v)$$
 in $D([a,\tau] \times [0,1])$ as $n \to \infty$.

(The limit process $L^{np}(t, v)$ is defined in Gilbert, McKeague, and Sun (2006))

- Let U_j^{np} be defined the same as \widehat{U}_j^{np} , with $L_n^{np}(t,v)$ replaced with $L^{np}(t,v)$
- By the continuous mapping theorem, $\widehat{U}_{j}^{np} \xrightarrow{\mathscr{D}} U_{j}^{np}$ under H_{0} , so $P(\widehat{U}_{j}^{np} > c_{j\alpha}) \rightarrow \alpha$, where $c_{j\alpha}$ is the upper α -quantile of U_{j}^{np}
- However, the $c_{j\alpha}$ are unknown and very difficult to estimate due to the complicated nature of the limit process $L^{np}(t,v)$
 - \Rightarrow Use the Gaussian multipliers simulation procedure to approximate $c_{j\alpha}$

Implication of Theorem 2: Asymptotically Consistent

Theorem 2: In addition to the conditions given in Theorem 1, assume that $\lambda_1(t, v)$ and $\lambda_2(t, v)$ are continuous and that H(t, v) > 0 on $[0, \tau] \times [0, 1]$. Then,

$$P(\widehat{U}_1^{np} > c_{1lpha}) \to 1$$
 as $n \to \infty$ under H_1 ,

and

$$P(\widehat{U}_2^{np} > c_{2lpha})
ightarrow 1$$
 as $n
ightarrow \infty$ under H_2

• Theorems 1 and 2 also hold for L_n^{sp} and \widehat{U}_j^{sp} , j = 1, 2, under the same conditions except that the conditions on $\lambda_k(t)$ are replaced by the proportional marginal hazards assumption $\lambda_1(t)/\lambda_2(t) = \exp(\beta)$

- Heuristic summary of Gaussian Multipliers technique (details in Gilbert, McKeague, and Sun, 2006)
 - Formulate a null test process $L_n^{r*}(t,v)$, which is a function of the observed data sequence and of standard normal variables W_{ki} , $i = 1, ..., n_k$, k = 1, 2
 - Martingales M(ds, u) are replaced with $W_{ki}N_k(ds, u)$, where W_{ki} , $i = 1, ..., n_k$, k = 1, 2 are independent standard normal variables
 - The weak limit of the process $L_n^{r*}(t,v)$ given the observed data is the same as the weak limit of $L_n^r(t,v)$ under the null hypothesis H_0
 - That is, Theorem 3 states that

$$L_n^{r*}(t,v) \xrightarrow{\mathscr{D}} L^r(t,v)$$
 in $D([a,\tau] \times [0,1])$ under H_0 as

- Theorem 3 justifies the following (simple) simulation procedure for obtaining a p-value based on \hat{U}_i^r :
 - Compute \widehat{U}_j^r based on the test process $L_n^r(t,v)$
 - Compute $\widehat{U}_{j}^{r*1}, \cdots, U_{j}^{r*B}$ based on simulated null test processes $L_{n}^{r*}(t, v)$ (e.g., B = 1000)
 - Set the p-value as the fraction of the \widehat{U}_{j}^{r*} 's that are $\geq \widehat{U}_{j}^{r}$

Considerations in Choosing the Weight Process $H_n(s)$

$$L_n^r(t,v) = \sqrt{\frac{n_1 n_2}{n}} \int_a^t H_n(s) \left[\widehat{\Lambda}_1(ds,v) - \widehat{r}(s)\widehat{\Lambda}_2(ds,v)\right]$$

- Would like to choose $H_n(t)$ to make the testing procedure asymptotically distribution-free
 - Elusive
- Choose $H_n(t)$ to up-weight early or late differences
- Choose $H_n(t)$ to minimize variability in the test process; e.g., dampen instability in the right-tail

- Sample size too small to reliably estimate $VE(t,v) = 1 \frac{\lambda_1(t,v)}{\lambda_2(t,v)}$
- Focus on

$$\begin{split} VE^{c}(t,v) &= 1 - \frac{F_{1}(t,v)}{F_{2}(t,v)} \\ &= 1 - \lim_{h \to 0} \frac{P(T_{1} \leq t, V_{1} \in [v,v+h))}{P(T_{2} \leq t, V_{2} \in [v,v+h))} \end{split}$$

• Estimate $VE^{c}(t,v)$ by $1 - \frac{\widehat{F}_{1}(t,v)}{\widehat{F}_{2}(t,v)}$, where

$$\hat{F}_{k}(t,v) = \frac{1}{b_{k}} \int_{0}^{1} \int_{0}^{t} \frac{\hat{S}_{k}(s-)}{Y_{k}(s)} K\left(\frac{v-u}{b_{k}}\right) N_{k}(ds, du),$$

 $\widehat{S}_k(t) =$ Kaplan-Meier estimate of $S_k(t)$

• $\widehat{F}_k(t,v) = \text{continuous analog of } \widehat{F}_{kj}(t)$ for discrete mark (Prentice et al., 1978)

$$\left(\widehat{F}_{kj}(t) = \int_0^t \frac{\widehat{S}_k(s-)}{Y_k(s)} N_{kj}(ds)\right)$$

• Var $\{\widehat{F}_k(t,v)\}$ can be estimated by

$$\frac{1}{b_k^2} \int_0^1 \int_0^t \left[\frac{\hat{S}_k(s-)}{Y_k(s)} K\left(\frac{v-u}{b_k}\right) \right]^2 N_k(ds, du)$$

• 95% pointwise CIs for $VE^{c}(t,v) = 1 - F_{1}(t,v)/F_{2}(t,v)$:

$$1 - \left(1 - \widehat{VE}^c(t, v)\right) \exp\left(\pm z_{\alpha/2} \sqrt{\frac{\widehat{\operatorname{Var}}\{\widehat{F}_1(t, v)\}}{\widehat{F}_1(t, v)^2}} + \frac{\widehat{\operatorname{Var}}\{\widehat{F}_2(t, v)\}}{\widehat{F}_2(t, v)^2}\right)$$

Alternative Mark-Specific Vaccine Efficacy Parameter

Consider

$$VE^{dc}(t,v) = 1 - \frac{P\{T_1 \le t, V_1 \le v\}}{P\{T_2 \le t, V_2 \le v\}}$$

- Equivalent to discrete mark case
- Estimate each cumulative probability by nonparametric MLE (Huang and Louis, 1998, Biometrika)
- Can obtain empirical likelihood-based CIs for $VE^{dc}(t, v)$

- Nonparametric testing procedure requires bandwidths b_1, b_2 for $\widehat{\lambda}_1(t)$ and $\widehat{\lambda}_2(t)$
- Estimation procedure requires bandwidths b_{v1}, b_{v2} for $\widehat{F}_1(t,v)$ and $\widehat{F}_2(t,v)$
- Approach: Minimize an estimate of the mean integrated squared error (MISE); e.g., as in Andersen, Borgan, Gill, and Keiding (1993)

• e.g.,
$$\mathsf{MISE}(\widehat{\lambda}_k(\cdot)) = E \int \{\widehat{\lambda}_k(t) - \lambda_k(t)\}^2 dt$$

- Results presented for 8 experiments:
 - No. of HIV infections in placebo arm: 48, 95, 190

•
$$VE^{c}(36) = 1 - \frac{F_1(36)}{F_2(36)}$$
: 0.33 or 0.67

 Exponential failure times [20% random dropout], uniform marks in placebo arm, vaccine arm marks from density

$$f_V(v) = \frac{1}{\beta \left(1.5^{1/\beta} - 0.5^{1/\beta} \right)} \left(v + 0.5 \right)^{(1/\beta) - 1}$$

- $\beta = 1$ corresponds to H_0
- $\beta = 0.5, 0.25$ correspond to H_1 (monotone altern)
- Also consider a 2-sided alternative: $f_V(v) = \frac{16}{3}vI(v < \frac{1}{2}) + (\frac{8}{3} - \frac{8}{3}v)I(v \ge \frac{1}{2})$

February 21, 2005 - p.46/80

• Results for null case of VE(t, v) = 0

<i>Empirical Power</i> (\times 100%) <i>for Testing</i> H_1^0 <i>and</i> H_2^0				
		$n_k = 100$	$n_k = 200$	$n_k = 400$
Test	Altern.	$(48)^2$	(95)	(190)
Cox ¹		5.2	5.0	5.8
\widehat{U}_1^1	H_1^0	7.9	5.0	6.6
\widehat{U}_2^1	H_1^0	7.7	5.3	6.0
\widehat{U}_3^1	H_2^0	5.9	7.0	5.3
\widehat{U}_4^1	H_2^0	6.7	5.3	5.2

¹Wald Z-test from standard Cox model, ignoring the mark ²Average number of subjects infected in group 2 (placebo) February 21, 2005 - p.47/80

- The tests of H_0^0 have correct size (near 0.05)
- Next assess power of the tests
- In the following 2 plots, Alt 0, Alt 1, Alt 2 correspond to $\beta = 1, 0.5, 0.25$, respectively
- Power achieved with the test statistics \widehat{U}_1^1 and \widehat{U}_2^1 is compared to the power of the ordinary Cox model Wald test of VE(t) = 0 that ignores the mark variable

Simulation Experiment: Tests of H_0^0

February 21, 2005 - p.49/80

Simulation Experiment: Tests of H₀⁰

February 21, 2005 - p.50/80

- The tests of H_0^0 have appropriate sizes and high powers
- When VE(t,v) declines with v, they have greater power than the Cox model Wald test of VE = 0
 - Therefore accounting for the mark variable can substantially improve efficiency
 - For clinical trials with strong reasons to suspect that the mark-specific relative risk is monotone in the mark, consider accounting for the mark in a secondary analysis of the treatment effect

• Next consider simulation results for testing

 $H_0: VE(t, v) = VE(t)$

• In the following 4 plots, Null, Alt 1, Alt 2 correspond to $\beta = 1.0, 0.5, 0.25$, respectively

February 21, 2005 – p.54/80

February 21, 2005 – p.56/80

- Satisfactory performance at moderate sample sizes
- Somewhat surprisingly, for small/moderate samples the semiparametric tests did not provide greater power than the nonparametric tests in the case that the failure times had proportional hazards
 - Explanation: Test process involves contrasts

$$\widehat{\Lambda}_1(dt,v) - \widehat{r}(t)\widehat{\Lambda}_2(dt,v)$$

with
$$\widehat{r}(t) = \frac{widehat \lambda_1(t)}{\widehat{\lambda}_2(t)}$$
 or $\exp(\widehat{\beta})$

- Additional simulations were conducted to assess performance of tests when the proportional hazards assumption fails
- The empirical sizes of \widehat{U}_1^{sp} and \widehat{U}_2^{sp} frequently missed 0.05 by an amount more than 2 or 3 Monte Carlo standard deviations (results not shown)
- As predicted from theory, the semiparametric tests fail when the proportional hazards assumption fails
- Nonparametric tests recommended in practice

• Primary analysis: No vaccine efficacy to prevent HIV infection

	Number	Number	Percent
	Randomized	Infected	Infected
Vaccine	3598	241	6.7%
Placebo	1805	127	7.0%

 $\widehat{VE} = 5.7\%$, 95% Cl -17.0% to 24.0%, p = 0.59

Time to HIV Infection Similar in Vaccine and Placebo Arms

Estimated HIV-Free Curves

February 21, 2005 - p.60/80

- V_{MN} = percent as mismatch in a region of gp120 of the infecting strain relative to the MN vaccine strain
- V_{GNE8} defined similarly for the reference strain GNE8
- $V = min(V_{MN}, V_{GNE8})$ "distance to the nearest immunogen"
- Regions for distances:
 - Neutralizing face core (\sim 30 amino acids)
 - Neutralizing face core + V2/V3 loop regions $(\sim 110 \text{ amino acids})$
 - V3 loop region (\sim 33 amino acids)

Distributions of Genetic Distances V

• 337/368 (92%) infected subjects have sequence data

• Weight process within test process:

$$H_n(t) = \sqrt{\frac{\bar{Y}_1(t)}{n_1} \frac{\bar{Y}_2(t)}{n_2}}$$

- Epanechnikov kernel $K(x) = 0.75(1 x^2)I(|x| \le 1)$; Gasser and Müller (1979) tail correction
- Bandwidths for $\widehat{\lambda}_k(t)$:
 - Optimal bandwidths $b_1 = 1.83, b_2 = 2.10$
- Bandwidths for $\widehat{F}_k(36, v)$:
 - b_{v1} and b_{v2} = separately optimized using 2-fold cross-validation

- Time-span $t \in [2, 36]$ months
- P-values obtained using 10000 simulations

Distance	Test Stat.	p-value
Neut face	\widehat{U}_1^1	p = 0.15
	\widehat{U}_2^1	p = 0.05
	\widehat{U}_3^1	p = 0.32
	\widehat{U}_4^1	p = 0.14
Neut face + V2/V3	\widehat{U}_1^1	p = 0.18
	\widehat{U}_2^1	p = 0.26
	\widehat{U}_3^1	p = 0.36
	\widehat{U}_4^1	p = 0.59
V3 loop	\widehat{U}_1^1	p = 0.15
	\widehat{U}_2^1	p = 0.61
	\widehat{U}_3^1	p = 0.30
	\widehat{U}_4^1	p = 0.72

- Time-span $t \in [2, 36]$ months
- P-values obtained using 10000 simulations

Distance	Test Stat.	p-value
Neut face	$\widehat{U}_1^{np}/\widehat{U}_1^{sp}$	p = 0.041/0.095
	$\widehat{U}_2^{np}/\widehat{U}_2^{sp}$	p = 0.24/0.11
Neut face + V2/V3	$\widehat{U}_1^{np}/\widehat{U}_1^{sp}$	p = 0.62/0.60
	$\widehat{U}_2^{np}/\widehat{U}_2^{sp}$	p = 0.84/0.26
V3 loop	$\widehat{U}_1^{np}/\widehat{U}_1^{sp}$	p = 0.96/0.95
	$\widehat{U}_2^{np}/\widehat{U}_2^{sp}$	p = 0.94/0.73

 $L_n^{np}(t,v)$ and 8 $L_n^{np*}(t,v)$: Neut face

Test process and 8 simulated test processes for neutralizing face core distance

 $L_{n}^{np}(t,v)$ and 8 $L_{n}^{np*}(t,v)$: Neut face + V2/V3

Test process and 8 simulated test processes for neutralizing face core + V2/V3 distance

 $L_{n}^{np}(t,v)$ and 8 $L_{n}^{np*}(t,v)$: V3 loop

Test process and 8 simulated test processes for V3 loop distance

VE^c(36,v) as a function of neutralizing face core distance v

strain distance v

$VE^{c}(36, v)$ versus v: Neut face + V2/V3

VE^c(36,v) as a function of neutralizing face core + V2/V3 distance v

strain distance v

strain distance v

0

0.05

0.1

0.15

0.2

V **?**

- The approach is inter-collaborative: virologists/immunologists/structural biologists/statisticians seek to identify an immunologically relevant HIV sequence metric V
 - Problem complicated for antibody vaccines (need knowledge of 3-D structure)
 - Simpler for T cell vaccines (linear epitopes)
 - E.g., weighted potential T cell epitope (WPTE) distance: one minus the fraction of 9-mers in the infecting virus also in the vaccine

• Conditional mark-specific hazard: $\lambda(t, v|z(t)) =$

 $\lim_{h_1,h_2\to 0} P\{T \in [t,t+h_1), V \in [v,v+h_2) | T \ge t, Z(t) = z(t)\}/h_1h_2$

• Mark-specific proportional hazards model:

$$\lambda(t, v | z(t)) = \lambda_0(t, v) \exp\left\{\beta(v)^T z(t)\right\}$$

$$\boldsymbol{\beta}(v) = (\boldsymbol{\beta}_1(v), \boldsymbol{\beta}_2(v)^T)^T$$

 $\beta_1(v)$ corresponds to vaccine/placebo status (parametric or unspecified)

 $\beta_2(v)$ corresponds to other covariates (parametric)

- Test for vaccine efficacy varying with the mark: $H_0: VE(v) = VE$
 - Model-based alternative to the nonparametric tests
- Test for vaccine efficacy at any mark value: $H_0: VE(v) = 0$ for all v
- Estimate VE(v) both for $\beta_1(v)$ unspecified and specified parametrically

- Include covariates
 - Control for confounders, estimate covariate-adjusted *VE*(*v*)
 - Assess possible differences in VE(v) at different covariate levels [interactions]
 - Does a genetic trait affect whether the vaccine selectively protects?
 - Does the level of immune response to vaccination affect whether the vaccine selectively protects?

Example of VE(v) **Depending on Immune Reponse**

Complimentary Approach: Antigen Scanning (Addressed in Lecture 9)

Sliding window for

- Scan all peptide regions of length 9
- Goal: Identify regions where peptide sequences from infected vaccinees are more divergent from the immunogen peptide than peptide sequences from infected placebo recipients [Topic of Lecture 9]

