Sieve Analysis: Statistical methods for
assessing differential vaccine protection
against HIV types

Biostat 578A Lecture 7

Research Goal: Develop statistical
methods for assessing from vaccine
efficacy trial data how vaccine protection
may depend on characteristics of the
various circulating HIV-1 strains



Outline

|. Introduction to Sieve Analysis

[1. Models for Sieve Analysis, Binary Endpoint
(HIV infection, Yes or No)

A. Discrete HIV types
B. Continuous HIV distance

[11. Models for Sieve Analysis, Failure Time
Endpoint (Time to HIV infection Diagnosis)

A. Discrete HIV types
B. Continuous HIV distance: Lecture 8



Introduction to “Sieve” Analysis

e HIV-1 extremely diverse

e How broadly does a
candidate vaccine protect?

e \accine protection depends on which
characteristics of challenge virus? How so?
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Introduction

e Human trials of preventive vaccines against
heterogeneous pathogens
- hepatitis Szmuness et al. 1981
- cholera  Clemens et al. 1991
van Loon et al. 1993
- rotavirus Lanata et al. 1989
Ward et al. 1992
Ukae et al. 1994
Jin et al. 1996
Rennels et al. 1996
- pneumococcus Amman etal. 1977
Smit et al. 1977
John et al. 1984
- Influenza Govaert 1994
- malaria Alonso et al. 1994

e Some of these data summarized in
Gilbert et al. (2001, J Clin Epidem)



Introduction

e Often no quantitative statistical assessment of
type-specific vaccine efficacy

e When there is, the interpretation and validity
of the analysis Is often unclear



Data

e Randomized vaccine trial

e Data collection

- Measure virus characteristics of
Isolated virus from breakthrough
Infections

- E.g., VaxGen trials obtained 3 sequences
from each infected participant, from
a blood sample drawn at infection diagnosis



V3 loop amino acid sequence
of reference GNES strain

Vaccine group V3 loop sequences
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Viral Variation Structure

0 = vaccine prototype strain

1. Nominal categorical:

K+1 distinct strains in circulation
0,--- K

2. Ordered categorical:

K+1 distinct strains in circulation
0,---.K
- ordered from prototype strain 0

3. Continuous:

Each strain 1s a continuous distance from
prototype strain 0

e A vast number of meaningful ways to
structure pathogen variation



The Problem with Sieve Analysis

Each viral isolate is genetically unique (under close exami-
nation) so that 2 x K + 1 table is too sparse and unstructured
for meaningful analysis.

Solution: Add structure to the table

a) Categorize infecting strains into nominal groups
putatively related to strain-specific VE

E.g., categorize by
- subtype/clade
- phenotype (e.g., R5 vs X4)
b) Order infecting strains by putative
correlate of strain-specific VE

E.g., Order by some measure of similarity
to strain used in vaccine construction

- nucleotide or amino acid sequence
- protein character

c) Multidimensional viral feature



Categorical Model for Sieve Analysis

e Counts data

Infecting strains
12 ..0 ... K

Placebo
Vaccine

e Assume K + 1 viral strains
In circulation

e Nominal or ordinal response



Multinomial Logistic Regression Model

(Cox, 1970; Anderson, 1972)

exp{as+ B¢ x}
1+ ZIK:lexp{on + B x}

s=0,---,K; UQZ,BQEO

Pr(Y =slx) =

e Generalized linear logit model

e Interpretation of regression parameters:

Pr(Y=slVacc) ,Pr(y=sjplac)
Bs = IOg{Pr Y= O\VaCC)/ rY:O|p|aC)}

= 10g{OR(s)}



Model Properties

e Minimal assumptions

e Estimation by maximum likelihood

e Exact methods an option

Hirji (1992, JASA, 87)

Computing Exact Distributions for
Polytomous Response Data



Strain-Specific Vaccine Efficacy

e Define “per strain-specific contact”
vaccine efficacy by VEP¢(s) = 1 — RRP(s)

where

Pr (Inf|Expos. to strain s. \Vaccine
RRpC(S) . ( ’ p y )

~ Pr (Inf|[Expos. to strain s, Placebo)

e RRPE(s) has an interpretation in
terms of biological vaccine efficacy



Prospective Interpetation of Regression
Model Parameters

Assumptions

1. Infection is possible from at most
one strain during follow-up

2. The relative prevalence of strains is
constant over time

3. Equal exposure of vaccine and control groups

4. Pr(Infection|Exp to strain s ,V) = exp{ados+ YV }

— | Bs=V¥s
(Proof in Gilbert, Self, and Ashby, 1998, Biometrics)

RRPC(s
e OR(S) = fros(o)

o s =l0g { Feiet |

o Bs— B =log { Fwis) |



Alternative Ordinal Categorical Model

e Cumulative strain categories model
(McCullagh 1980)

Pr(Y>slv)/Pr(Y>su)
eXp{BS} Pr(Y<s|v)/Pr(Y<slu)

= OR(> s3), =1,.--- K-1
e Scored ordinal models

- replace (B with s x beta

- Scored models have increased precision, but
stronger modeling assumptions



Nonparametric Tests for Differential VE

Null hypothesis: all OR(s) =1

e Nominal categorical: Likelihood ratio
Chi-squared test (Armitage 1971)

e Ordinal categorical: test for trend in strain-
specific odds ratios (Breslow and Day 1980)

e Multiple vaccine dose groups

- Kruskal-Wallis test
- Linear-by-linear association test

e EXxact tests: StatXact software



Parametric Tests for Differential VE

e MLR or cumulative categories

Null hypothesis: all =0

- likelihood ratio Chi-squared test
- Zelen’s test (1991)

Finer null hypothesis: a subset of Bs =0

e Categorical scored models
Null hypothesis: 8 =0

e Continuous model
Null hypothesis: 8 =0

- likelihood ratio, Wald, and score test



Example

e Hepatitis B vaccine trial in New York
(Szmuness et al., 1981)

Hepatitis
B A non-AB
Placebo|63 (27| 11 |101
Vaccine| 7 |21| 16 44

- Likelihood ratio statistic: x5 = 30.2, p < 0.0001
pc
Fom =70 (2.7,18.4) 95% ClI

RRP¢(non—A,B
g =131 (4.3,39.3) 95% Cl




Example

e Ordered categorical viral feature:

Number sub/del to the prototype
hexapeptide tip sequence of V3 loop

E.g., VaxGen’s MN/GNES rgp120 vaccine:
GPGRAF

Estimate

RRPC(1 sub/del
RRPC(GPGRAF

( )

( )

RRPS(2 sub/del)

RRPC(GPGRAF)
(

RRPC(3+ sub/del)
RRPC(GPGRAF)




Generalized Logistic Regression Model
(Gilbert et al., 1999, 2000)

e Continuous analog of MLR model
- parameterized MLR model: Bs=g(s)6

g a deterministic function

e Generalized Logistic Regression (GLR) model:

. o\ f
Pr(Y = y|vaccine) = fgoexgx{g{ggz)}e}(dyé(z)

f(y) =Pr(Y =y|placebo)
e Parametric component:
regression relationship

e Nonparametric component:
baseline strain distribution F



Interpretation of GLR Model

e g(y)6 =1log{OR(y)}

assumptions

pc
— log { Rﬁpc<y§}
o [9(y1) — 9(y2)]6 = log { Fwd |

eeg.g(y)=Yy:

RRP(y 4-1) = exp {6} RR™(y)



Summary of Sieve Model Parameters

1. MLR
eP2 = 0OR(2),--- ,efx = OR(K)

2. Scored MLR
e’ = OR(2),---,eXP = OR(K)

3. Cumulative categories
eP2=0OR(>1),---,ePk =OR(> K —1)

4. Scored cumulative categories
eP =OR(>1),---,eP =OR(> K —1)

5. GLR
e9(Y)B — OR(y)

e In all cases assumptions as in Gilbert et al. (1998)
Imply the ORs equal ratios of strain-spec. RRP®’s



Multidimensional Pathogen Variation

e The MLR and GLR models can accomodate
pathogen variation described by
multiple features

e Examples

1. cholera: biotype, serotype, disease
severity

2. rotavirus: serotype, disease severity

3. HIV-1: vast possibilities



Multivariate GLR Model

e £.0. K=2:
Pr (Y — (y17y2)|VaCCi ne> =

e {01(y1) 61+ Ua(Y2) B> + 91(y1) 2 (Y2) 65}
/ , / Oexp{gl(u1)91+92(u2)92‘|‘gl(ul)gz(U,z)Gg}dF(ul,u2)

e Can investigate dependency of VE on marginal
distance, adjusting for other distances

RRPC(y1)

- €.9. estimate  zeee 7y
1

adjusted for Y5

e Can Investigate interactions

-does VE(Y1,Yz) =VE(Y1)VE(Y5)?



Example

e Merck’s Adenovirus-5 vaccine
vector

- Includes core proteins coded by
gag, pol, and nef

oY = (YgagaYpolaYnef)

Ygag 4@ metr_ic based on gag
Yoo @ metric based on pol
Ynet @ Metric based on nef

e Investigate how vaccine protection depends on
heterogeneity in gag, pol, and nef



Example

e Question: What are the roles of CD4+
cellular responses and CD8+ cellular responses

In conferring homologous and heterologous
protection?

o Y = (Ycpayt, Ycpsyt)

Ycpas = strength of CD4+ T helper response
against the vaccine strain- a T help metric

Ycpss = strength of CD8+ T cell response
against the vaccine strain- a CTL metric



Example

e Six-variate GLR model: Investigate
correlation of Merck’s Ad 5 vaccine protection
with MHC Class | and Class 11 T cell
responses against gag, pol, and nef

(gag, pol,nef) x (CD4+,CD8+)

Y = (YCD4+,gaga YCD4+,poIa YCD4+,nefa
Ycps+.gag, YeDs+.pols YCD8+ nef)



s-sample GLR Model

e s distinct covariate groups

X1, 5 Xs

: ik(Y)6kp f
ey — gy P Za8 0 1)

/O exp {Zi:lgik(u)ek} dF(u)

e multiple vaccine dose groups
e stratify by covariates

e adjust for low-dimensional covariates



Estimation in GLR Model

e Maximum likelihood estimation

e s—sample GLR model is a
semiparametric biased sampling model:

Pr(Y =y|i) = —= =1,

/Owi(u,e)dF(u)

-e.g. two-sample GLR model:

wi(y,0) =1,  wo(y,0) =exp{g(y)6}

.S



Partial Likelihood Estimation

e Partial likelihood

AniWi (Yij, )V

L1 (60,V)
nl I_l rl ZizlAnka(ykj, G)Vk_

Maximization Algorithm

1. Maximize L,yover8andV, V >0

2. Compute Vardi’s (1985) NPMLE F,

N

using ‘known’ weight functions w;(-, 6,)




Properties of MLE in GLR Model

e Described in Gilbert et al. (1999,
Biometrika; 2000, Ann Stat)

e GLR model identifiable

e GLR model uniquely estimable- log profile
partial likelihood strictly concave

o(én, Ifn) uniformly consistent, asymptotically
normal, and asymptotically efficient

e Confidence Intervals and variance estimation

1. sample estimator of generalized Fisher
Information
2. bootstrap

e Satisfactory finite-sample properties

e Comparable to MLE in Cox model



Simulation Study of Gilbert et al. (1999)

e Study performance of (6,, &)

e Investigate bias and estimation of variance
via observed inverse generalised Fisher
Information and via the bootstrap

e Investigate power of likelihood ratio,
Wald and score tests of Hy: 6 =0
(no differential vaccine protection), and
coverage accuracy of corresponding ClIs



Simulation Study of Gilbert et al. (1999)

e Y = percent amino acid difference
between an infecting virus and the
global subtype B consensus in the V3 loop

e Specify true log RR ratio as

log {RR™(y)/RR™(0)} = -6
-Set6=0,2,and 4
6 = 0 : RRP%(35) = 1.0RRP(0)
6 = 2 : RRP%(35) = 7.39RRP(0)

(
6 = 4 : RRP*(35) = 54.6RRP(0)



Simulation Study of Gilbert et al. (1999)

e Consider 4 baseline distribution functions F

- Unif(0,35)

- Normal(0.1157,0.7102)

- Expon(0.1157/2)

- Thai empirical (based on 94 sequences)

- 0.1157 and 0.710 based on 159 subtype B V3
loop sequences in the LANL database

e 4 sample sizes (numbers of infections):
(np,ny) = (100,100), (100,50), (50,50), (50, 25)

e Simulations based on 1000 trials



(a) U.S. distance distribution (b) Thai distance distribution
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Fig. 1(a) shows the distribution of the V3 loop amino acid distance between 159 U.S.
subtype B sequences and the global subtype B consensus sequence. (b) shows the
distribution of 94 V3 loop amino acid distances of infecting strains in Thailand.
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Table 1. Bias and variance of the mazimum likelihood estimator 0; finite-sample variance
s2, observed generalised Fisher information variance estimate varg, bootstrap variance
etimate varp

F Uniform F Normal
Ny n, 60 bias 52 varg varpg bias 52 varg varpg
100 100 0 -0-01 0-24 0-24 0-20 -0-03 047 0-50 0-33
50 25 0 -0-00 0-71 0-76 0-52 024 1.21 1.56 0-96
100 100 2 0-02 0-30 0-29 0-30 -0-01 0-52 0-54 0-57
50 25 2 008 097 0-95 1.01 020 1-63 1.71 1.78
100 100 4 0-08 0-49 0-46 0-48 0-01 0-66 0-67 0-72
50 25 4 027 1-87 1-67 1.77 029 228 214 267

F Exponential F Thai
np ny, 6 bias 52 Varg varp bias 52 vVarg varp
100 100 O 0-07 0-67 0-79 0-47 0-01 0-49 0-52 0-38
50 25 0 038 148 2-49 1-66 021 1-26 1-63 0-97
100 100 2 005 0-64 0-64 0-67 0-04 0-54 0-53 0-54
50 25 2 010 1-68 1-91 1-92 0-12 1-80 1-65 1-55
100 100 4 006 0-64 0-65 0-67 0-09 0-67 0-62 0-66
50 25 4 023 194 1.87 2-27 0-25 2-19 1-96 2:23
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Table 2. Power of likelihood ratio, Wald and score tests of Hy : § = 0 with o = 0-05

F Uniform Normal Exponential Thai
np ny, 6 LRatio LRatio LRatio Wald Score LRatio
100 100 O 0-05 0-05 0-02 0-02 0-04 0-05
50 25 0 0-04 0-03 0-02 0-02 0-04 0-03
100 100 2 0-97 0-81 0-79 0-77 0-86 0-84
50 25 2 0-61 0-40 0-37 0-33 0-51 0-41
100 100 4 1-00 1-00 1-00 1-00 1-00 1-00
50 25 4 0-99 0-93 0-99 0-97 0-99 0-92
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Tp
100
50
100
50
100
50

Table 3. Score statistic confidence intervals about 6, = 0-05

Ty
100
25
100
25
100
25

F
0
0
0
2
2
4
4

Uniform

-1.16,1-12
-1-68,2-14
0-93,3-03
0-28,4-01
2-77,5-50
1-81,6-60

Normal

-1-55,1-58
-1.81,3-35
0-66,3-49
-0-15,4-42
2-58,5-53
1-67,7-26
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Exponential

-1-38,1-84
-1-71,3-17
0-52,3-59
0-18,4-92
3-01,4-78
2-33,6-41

Thai

-1-63,1-88
-1-60,3-07
0-62,3-58
-0-12,4-68
2-53,6-11
1-59,6-78
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Fig. 2. shows the log profile partial likelihood versus 6 for a spectrum of generated data
sets. The obtained 6 is written above each plot. The first two columns are plots for the
two-sample problem representing sample size n, = 100, n, = 50, and the second two
columns are plots for the three-sample problem representing sample size
np = 100,11 = 50, 1y = 25.
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(a) F uniform, asymptotic Cls (b) F uniform, bootstrap Cls (c) F normal, asymptotic Cls  (d) F normal, bootstrap Cls
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Fig. 3. portrays data sets generated from n, = 100,n, = 50,6 = 2. (a),(c),(e) and (g) show
the mean of F across the 1000 replications, with 95% symmetric asymptotic normal
approximation confidence bands. The true distribution is depicted by a solid line.
(b),(d),(f) and (h) include 95% bootstrap confidence bands.

26



Pseudo-Example from Gilbert et al. (1999)

e Generated a single dataset using
the empirical Thai strain distribution
and assuming that:
VEP(y <0.10) = 50%

VEP(0.11 <y < 0.20) = 40%

VEPS(0.21 <y < 0.30) = 30%
— 20%
VEPS(0.41 <y < 0.50) = 10%

(

( ) =
VEP®(0.31 < < 0.40)

( ) =

(

VEP(0.51 <y) =0%
e Number of infections n, = 100, n, = 69

e Fit the same GLR model studied in simulations

e LR, Wald and score tests: p=0.10,0.10,0.09



(a) Vaccine protection versus strain distance

RR(distance)/RR(0)

strain distance

(b) NPMLE Fhat and F versus strain distance

cumulative probability
o O O O Bk
N D (@)) Q0 (@]

o

10 20 30 40 50 60
strain distance

Fig. 4. (a) shows the estimated ratio of relative risks RR(y) / RR(0) versus strain distance y
as a solid line. The broken lines are profile likelihood-based confidence intervals, and the
dotted line step function is the true relative risk ratio. (b) shows F as solid lines, with 95%
asymptotic normal approximation confidence bands as short dashed lines and 95%
bootstrap confidence bands as long dashed lines. The true F' is portrayed as dotted lines.
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[11. Incorporating Time to Infection Diagnosis

e Cause-specific hazards approach
Prentice et al. (1978, Biometrics);
foundational paper

- Suppose K circulating strains

- Let Yy, -, Yk be conceptual or latent
Infection Dx times corresponding to the K strains

- Classic competing risks data: Data are
lid observations (T;, &, Si, )

T = min(Yl, I ,YK)

o = failure indicator (1 if infected)

S; = Infecting strain (NA If not infected)
Zi — covariate vector



Cause-specific Hazards

e Prentice et al. (1978) emphasized that all
functions of cause-specific hazards Ag are
estimable from the data (T;, &, Si, z)

limap oPr(t < T <t+At,S=5s|T >1,2)

M(tlz) = -



Cause-Specific Proportional Hazards Model

e Prentice et al. (1978) proposed a cause-specific
proportional hazards model:

Ad(tlz) = exp { BTz} At]0)

- arbitrary baseline hazard A4(t|0)
- when z Is vaccination status,

Bs = log{ Ag(t|vaccine) /Ag(t|placebo) }

- Bs = log-relative hazard (vaccine vs placebo)
of infection by strain s

-VE(s) =1 —exp{Bs} measures strain-specific
vaccine efficacy

e [3; can be estimated by the standard maximum
partial likelihood estimator (MPLE), treating
Infection by all non-s strains as censoring



Interpretation of [

e Ag has a “crude” interpretation,
which is restricted to the particular vaccine
trial conditions

e Additional assumptions needed for the strain
s-specific vaccine efficacy estimate

VE(s) = 1 —exp{Bs}
to have a meaningful biological interpretation

e Would like VE(s) =V EP*(s), where
V EP¢(s) is one minus the relative conditional
probability (vaccine vs placebo) of a specified
amount of exposure to strain s causing
HIV infection



Interpretation of [

e Assumptions:
Al: For each strains € {1,--- ,K},
the probability of infection with strain s
resulting from a specified amount of exposure
IS homogeneous and constant over time among
vaccinated and placebo subjects, so that
vaccination reduces the transmission probability
by the same fraction exp{ ys}
for all vaccinees (i.e., “leaky” protection against
each strain; Halloran, Haber, and Longini, 1992)



A2: The pattern of risk behavior and exposure
to each strains € {1,--- ,K} during the
follow-up period |0, T] for a trial participant is
the same whether vaccine or placebo was
assigned (justified by randomization and
blinding)



Interpretation of [

e Under Al and A2, the crude hazard ratio

~ Ag(t|vaccine)
eXPiR} = As(t|placebo)

equals the biologically interpretable parameter
exp{ys} =1—-VEP(s)

e Therefore, under Al and A2 the MPLE ,ES In the
strain s-specific proportional hazards model
estimates s (and VE (s) estimates VEP(s))

¢ Based on Rhodes, Halloran, and Longini
(1992, JRSS B), under randomization and
blinding, (s should be ~ unbiased
If the strain s infection rate is low



Sketch of Proof (from Gilbert, 2000, Stat Med)

As(t]z) = Aes(t]2) %
Prit <T <t+At,S=5s|T >1t,z,
exposed to strainsin [t,t + At)),

-Ags(t]2) is the Markov intensity of the counting
process counting exposures to strain s for
participants with covariate z

-The second term conditions on a specified
exposure during [t,t + At),

e.g., on a sexual or needle contact with a
strain s-infected individual



Sketch of Proof (from Gilbert, 2000, Stat Med)

e Al implies a constant strain-specific
transmission probability over time in each group

e A2 implies Agg(t|vacc) = Ags(t|plac) for all t
e Together these results imply Bs = ys

e Therefore the MPLE ,ES In the strain s-specific
proportional hazards model estimates Vs



Assessing Differential Protection

e Since each Vs Is estimated from a separate model
fit, the strain-specific proportional hazards
models do not permit direct comparisons of
vaccine efficacy across strains

e Lunn and McNeil (1995, Biometrics) showed
how to reparametrize the strain s Cox model
so that exp{Bs} (s > 2) equals

A(tlV) As(tv)
Ac(tlu) At

- Bs measures relative vaccine efficacy against
strain s compared to the reference strain 1

e Therefore standard Cox model software (e.g.,
In Splus/R) can be used to estimate B with
a confidence interval



Tests for Vaccine Efficacy Against Strain s

e Standard Cox model software provides tests of

Hohaz - As(t|vaccine) = Ag(t|placebo)

- Through creative coding also provides tests of
Ho:VE(1) =VE(2)

e An alternative to a hazards-based approach

would apply Gray’s (1988, Ann Stat) method
to test different cumulative incidence functions,

Fis(t) = Pr(T <t,S = s|vaccine)
Fos(t) = Pr(T <t,S = s|placebo)



Example: Oral Cholera Vaccine Trial

e A randomized double-blind field trial was
conducted in rural Bangladesh among children
over 2 years and adult women (1985-1992)

e Assessed the efficacy of B subunit killed whole
cell (BSWC) and killed whole-cell-only (WC)
oral cholera vaccines

e Case endpoint: First diarrheal episode in which
Vibrio cholerae 01 was isolated

e 2 cholera biotypes (classical, EI Tor) and
2 cholera serotypes (Inaba, Ogawa)
circulated during the trial

- The causal infecting biotype and serotype
was measured for each case



Example: Oral Cholera Vaccine Trial

e Analysis of the study population of 62,285
children and women who received three doses
the BSWC vaccine (20,705), the WC vaccine
(20,743), or the Escherichia coli
K12 strain placebo (20,837)

e Overall the two vaccines performed similarly

- Each vaccine had about 50% efficacy sustained
for 2 or 3 years, waning to nill at 5 years



Cum. Inc. of

Strain-Specific Cholera Cases

cholera cases

cholera cases

Placebo

I classical,n=157
8 Bl e Torn=108
o
8 |
E
o |
3
o |
r T T 1
May'85 May'86 May'87 May'88
Placebo
I classical Ogawa,n=135
8 B  El Tor Ogawa,n=94
B classical Inaba,n=22
I c© Tor Inaban=14
o
g |
2
07
3
ol
r

May‘85 May‘86 May‘87 May‘88

cholera cases

cholera cases

WC Vaccine

BSWC Vaccine

=) =}
B - 2 -
B B
I classical,n=62 0 classical,n=66
Il = Torn=65 Il ElTorn=65
o o
S A 8 4
i e
@
@
o]
<
8
«©
kl
S
2
S
o o |
) 3
o d o
r T T 1 r T T 1
May'85 May'86 May'87 May'88 May'85 May'86 May'87 May'88
WC Vaccine BSWC Vaccine
2 =}
B - 3
E] B
classical Ogawa,n=50 0 classical Ogawa,n=62
El Tor Ogawa,n=53 B  El Tor Ogawa,n=52
classical Inaba,n=12 classical Inaba,n=4
El Tor Inaba,n=12 El Tor Inaba,n=13
o 1=}
S A S 4
B el
@
@
o)
<
8
«©
ksl
S
2
S
o o |
) 3
o 4 o
r T T 1 r T T 1
May‘85 May'86 May'87 May'88 May‘85 May'86 May‘87 May'88



Biotype-specific 1-Cum. Inc. Curves
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Biotype/Serotype-specific 1-Cum. Inc. Curves
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Sieve Analyses to Assess Differential Protection

e Conducted sieve analysis to compare VE (1) and
VE(2) (where 1 and 2 indicate different
biotypes or serotypes) using 4 methods:

1. MLR model

2. MLR model stratified by the 3 years of
follow-up (account for temporal trends In
shifting biotype/serotype prevalence)

3. Cause-specific Cox model with Lunn and
McNeil recoding

4. Cause-specific Cox model with Lunn and
McNeil recoding and with a proportional
baseline risks assumption A;(t|0) = Ax(t|0)

e For cause-specific Cox model, results obtained
using standard coxph function in Splus/R



Fit of Sieve Models to Cholera Data

e Compare VE for El Tor vs Classical

— -~ ~

e

Vaccine  Model B2  SE(B) RobustSE(B) exp{B}= E.XEKE: }} 95%CIP  P-value
wC MLR 0421 0.217 1524 (0.946,2.332) 0.052
wC Stratified MLR  0.389  0.219 1.475 (0.961,2.265) 0.076
wC PHC 0433 0.217 0.218 1541 (1.006,2.360) 0.047
wC PH, PBRY 0.428 0.217 0.217 1534 (1.002,2.347)  0.049
BSWC MLR 0.359 0.215 1432 (0.940,2.181)  0.095
BSWC Stratified MLR 0.318 0.221 1.375 (0.891,2.122) 0.150
BSWC PH 0.369 0.215 0.212 1.446 (0.949,2.204)  0.085
BSWC PH, PBR 0.365 0.215 0.212 1.440 (0.946,2.194)  0.089

“ B = YEI Tor — Yclassical _ _
95% Cls derived from a normality approxima-

tion and the information matrix

“PH model fit by duplication Method B of Lunn
and McNell

9PH model fit under the proportional baseline risks
assumption by duplication Method A of Lunn and
McNeil



Summary of Results

e For each vaccine, the 4 methods perform
similarly

- Result explained by the very low failure rate

¢ Results suggest that both vaccines protect
~ 50% better against classical than
El Tor cholera

e A possible explanation is that the
vaccine contains 3 times as many Classical
as El Tor antigens



Summary of Utility of Sieve Analysis Methods

1. Statistical inference of differential vaccine
protection according to a pathogen variation
structure chosen a priori

2. Exploratory tools for identifying which
pathogen features are potentially correlated
with vaccine protection





