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Data Collected in Phase IIb/III Vaccine
Trial

• Longitudinal data from all randomized subjects:
• HIV tests
• Vaccine-induced immune responses to a panel of

HIV isolates
• Covariates (e.g., risk behavior)

• Longitudinal data from infected subjects:
1. Viral loads/CD4 cell counts
2. ART initiation
3. Clinical events
4. Immune responses to the infecting HIV strain and

to a panel of HIV isolates
5. Genetic sequences (and phenotypes) of (multiple

clones of) infecting HIVs
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Approach to Post-infection Endpoints for
Assessing V EP/V EI

• Assess vaccine effects both in the randomized cohort
and in the infected subcohort
• Clinical endpoints (HIV-related conditions, WHO

stage 2/3, etc.)
• Surrogate endpoints for AIDS and secondary

transmission (viral load, CD4, etc.)
• Analytic challenges of surrogate endpoints:

• Surrogate effects may not predict clinical effects
• ART use obscures direct assessment of mid/late

vaccine effects on viral load/CD4 count
• Post-randomization selection bias

Gilbert PB, DeGruttola V, Hudgens M, Self S, Hammer S, Corey
L. (2003). JID 21:2933-2947.
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Time-to-Event Late Endpoints

• ART initiation
• HIV-related clinical events
• Composite endpoints

• ART initiation or viral failure > 100,000 copies/ml
• ART initiation or CD4 failure < 200 copies/ml

• E.g., surrogate efficacy parameter

V EC = Percent reduction (vaccine vs placebo)
in composite endpoint rate by 2 years
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Conduct Both Intent-to-Treat (ITT) and
Infected Subcohort Analyses

• Pros randomized cohort analysis:
• Intent-to-treat (ITT) [unbiased]
• Interpretation
• Risks/benefits determined for all vaccinees

• Cons:
• Cannot separate vaccine effects on infection and

post infection
• Follow-up period for counting endpoints restricted

to infection monitoring period
• Difficult to follow randomized cohort long-term
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Why Must Restrict Follow-up to the
Infection Monitoring Period

• Suppose all subjects followed for 3 years for infection,
and all infected subjects are followed 5 more years for
a disease endpoint

• Ideal design would follow all subjects 8 years from
entry
• Too expensive to follow 3000-10,000 subjects for 8

years
• Kaplan-Meier analysis that censors those uninfected

at 3 years would underestimate the survival probability
• Alternatively, assuming that all subjects uninfected at

3 years would not experience the disease endpoint
would overestimate the survival probability

• Kaplan-Meier analysis following everyone for 3 years
only is unbiased
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Conduct Both ITT and Infected
Subcohort Analyses

• Pros infected subcohort analysis:
• Interest to infer vaccine effects on HIV progression

in HIV infected persons
• Feasible to follow the infected subcohort long-term

[∼10% of randomized cohort]
• Cons infected subcohort analysis:

• Post-randomization selection bias: Infected
vaccine and infected placebo groups may differ in
other ways besides vaccine/placebo assignment

• Conduct sensitivity analyses (causal inference
methods)
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Analysis of Longitudinal Viral Loads and
CD4 Cell Counts

• Notation: T scheduled fixed visit times post-infection
Dx

• Yt = log10 viral load at visit t
• Xt = all covariates measured up to time t
• Rt = indicator of whether the subject attends visit t

and is ART-naive at visit t

• Estimands of interest:

E[Yt |Vaccine]−E[Yt |Placebo]

E[Yt |Vaccine,Xother
t ]−E[Yt |Placebo,Xother

t ]

for a hypothetical situation where no one starts ART
during follow-up
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Analysis of Longitudinal Viral Loads and
CD4 Cell Counts

• Consider analyses that count all Yt ’s missing that are
measured after ART initiation

• Types of missing data
• Missing Completely at Random (MCAR): The

probability of missing Y does not depend on Y (it
may depend on X)

• Missing at Random (MAR): The probability of
missing Y depends on observed Y ’s, but not on
unobserved Y ’s

• Not Missing at Random (NMAR): The probability
of missing Y depends on unobserved Y ’s
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Analysis of Longitudinal Viral Loads and
CD4 Cell Counts

• Two ways that Y ’s may be missing: ART initiation and
study drop-out

• Study drop-out may be MCAR

• In Vax004, viral load over time did not predict the
rate of study drop-out: RR = 1.23 per 1log10 higher
viral load, 95% CI 0.88-1.72, p = 0.23

• Starting ART is not MCAR

• In Vax004, viral load predicted the rate of starting
ART:
• Viral load at 1 month: RR = 1.57 per 1log10

higher viral load, 95% CI 1.22-2.01, p = 0.0003
• Viral load over time: RR = 1.88 per 1log10 higher

viral load, 95% CI 1.51-2.34, p < 0.0001
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Methods for Addressing the MAR Data

• Weighted Generalized Estimating Equations (GEE)
methods

• Likelihood based linear mixed effects (LME) models
• Other Approaches

Analysis of Vaccine Effects on Post-Infection Endpoints – p.11/40



Notation for Complete Data

• T visit times common to all n subjects
• Yi = (Yi1, · · · ,YiT )′: Complete data response vector

• Xi = (Xi1, · · · ,XiT )′: Covariate matrix

• Xit a p×1 covariate vector at visit time t
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Notation for Observed Data

• Subject i has data at visits 1, · · · ,Ti,1 ≤ Ti ≤ T

• Y o
i = (Y o

i1, · · · ,Y
o
iTi

)′: Observed response vector

• Xo
i = (Xo

i1, · · · ,X
o
iTi

)′: Observed covariate matrix

• Xo
it a p×1 covariate vector at time t
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Weighted GEE Approach

• Estimand of interest: E(Yit |Xit) = µit

• Generalized Linear Model (GLM): g(µit) = X ′
itβ

• g a known link function

• For Y continuous, e.g., log10 viral load, g(x) = x, so
that the GLM is

E(Yit |Xit) = X ′
itβ
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Weighted GEE Approach

• Example models, with Vi = 1 if vaccine and Vi = 0 if
placebo; ti a fixed visit time among 1, · · · ,Ti

• Xit = (1, ti,Vi) : E(Yit |Xit) = β0 +β1ti +β2Vi

⇒ β2 = E[Yit |Vi = 1, ti]−E[Yit |Vi = 0, ti]

[Constant vaccine effect over time]
• Xit = (1, ti,Vi, tiVi) : E(Yit |Xit) = β0 +β1ti +β2Vi +β3tiVi

⇒ β2 +β3ti = E[Yit |Vi = 1, ti]−E[Yit |Vi = 0, ti]

[Vaccine effect changing linearly over time]
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Weighted GEE Methods for Addressing
MAR Data

• Standard GEE of Liang and Zeger (Biometrika, 1986):

n

∑
i=1

Do′
i (Xo

i ,β )(V o
i )−1 [Y o

i −µo
i (β )] = 0

where Do′
i (Xo

i ,β ) = ∂ µo
i /∂ β is a Ti × p matrix and V o

i is
a working covariance matrix for Y o

i

• V o
i = diag(var(Y 1/2

it ))Co
i (ρ)diag(var(Y 1/2

it ))
[Ti ×Ti matrix]

• Co
i (ρ) is a working correlation matrix depending

on an unknown vector parameter ρ, which is
estimated
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Weighted GEE Methods for Addressing
MAR Data

• Examples
• Independent working correlation: Co

i = identity
matrix

• Exchangeable working correlation: Co
i = 1’s on the

diagonal and common correlation ρ for all
off-diagonal elements

• Auto-regressive-1: Co
i = 1’s on the diagonal and

ρk for k steps off the diagonal (logical choice for
repeated measures data)
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Weighted GEE Methods for Addressing
MAR Data

• Solution β̂ obtained by iteratively reweighted
estimation of β (McCullogh and Nelder, 1989,
Generalized Linear Models)

• Variance of β̂ estimated by “sandwich variance
estimator"
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Weighted GEE Methods for Addressing
MAR Data

• Standard GEE provides unbiased estimation of β
under MCAR, but not under MAR

• GEE not valid for vaccine trials

• Weighted GEE valid for MAR data (Robins, Rotnitzky,
Zhao (RRZ), 1995, JASA)
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Weighted GEE Methods for Addressing
MAR Data

• Weighted GEE (RRZ):

n

∑
i=1

D′
i(Xi,β )(Vi)

−1Wi [Yi −µi(β )] = 0

where D′
i(Xi,β ) = ∂ µi/∂ β and Vi = AiCiAi is a working

covariance matrix for Yi

• Wi is a T ×T diagonal matrix of time-specific
weights:

Wi = diag(Ri1wi1, · · · ,RiT wiT )

Rit = I(Yit observed) = indicator of whether ith
subject has a pre-ART value at visit t

wit > 0 for observed pre-ART visits; = 0 o/w
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Weighted GEE Methods for Addressing
MAR Data

• wit = reciprocal of the probability the ith subject is
observed (pre-ART) at the tth visit

• If observed with probability 1, assign weight 1
• If observed with probability 1/2, assign weight 2
• If observed with probability 1/10, assign weight 10

• Heuristically, reconstruct the complete dataset by
weighting the observed data

Analysis of Vaccine Effects on Post-Infection Endpoints – p.21/40



Weighted GEE Methods for Addressing
MAR Data

• wit is estimated using a missing data model
• Let λit = Pr(Rit = 1|Ri(t−1) = 1,Xi,Yi,α)

• For the first time point, assume Ri1 = 1 and set
λi1 = 1

• Second and later time-points: The MAR
assumption implies

λit = Pr(Rit = 1|Ri(t−1) = 1,Xi,(Yi1, · · · ,Yi(t−1)),α)

i.e., Missingness depends only on observed data
and a parametric model with unknown parameter
α
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Weighted GEE Methods for Addressing
MAR Data

• Example missingness model:

logit{λit(α)} = Z′
itα

where Zit may include anything (covariates and/or
responses) observed prior to time t

• The MLE of α is computed, and λit is estimated by

λ̂it = Z′
it α̂
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Weighted GEE Methods for Addressing
MAR Data

• wit is then estimated as the reciprocal of the product
of conditional probabilities:

ŵit =
[
λ̂i1 ×·· ·× λ̂it

]−1

• β̂ and Var(β̂ ) computed similarly as in standard GEE
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Comments on Weighted GEE Approach
for MAR Data

• If the marginal mean model is correctly specified, and
the parametric model for missingness is correctly
specified, then weighted GEE provides unbiased
estimation of β , and the sandwich variance estimator
is consistent, even if the working correlation matrix is
misspecified

• If the missingness model is correctly specified,
weighted GEE peforms better than standard GEE

• If the missingness model is misspecified, weighted
GEE can perform poorly, and standard GEE
sometimes does better
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Comments on Weighted GEE Approach
for MAR Data

• Weighted GEE can have problems (biased estimation
and huge variance estimates) if the ŵit ’s are large (i.e.,
estimated probability of being observed is near zero)
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Comments on Weighted GEE Approach
for MAR Data

• In vaccine trials, the estimated probability of having
pre-ART viral loads might be near zero!

• This is due to standardized treatment guidelines

• Current HVTN policy: Provide ARTs to all infected
participants when they meet pre-specified criteria

• E.g., CD4 < 300 cells/mm3, viral load > 100,000
copies/ml, or HIV-related clinical symptoms

• Zit may predict perfectly whether a participant will
start ART!

• wit = ∞ if and only if
Pr(subject i drops out by t or starts ART by t) = 1
• If everybody receives ART when they should,

then wit = ∞ for some subjects and weighted
GEE breaks down
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Comments on Weighted GEE Approach
for MAR Data

• Irony with weighted GEE: Want to predict missingness
to handle MAR missingness, but if predict
missingness too well then the method fails

• Weighted GEE does not handle well the censoring of
responses

• Can use ad hoc approaches, such as assigning all
left-censored viral loads a value equal to half the
detection limit

• Can study the marginal mean conditional on
non-censored response (truncated mean)
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Linear Mixed Effects (LME) Models
Approach

• LME models provide unbiased inferences under
assumptions:

1. Multivariate normality of viral loads
2. All predictors of ART initiation are captured in

observables

• The LME models can accommodate censored
viral values (Jim Hughes, 1999, Biometrics)

Analysis of Vaccine Effects on Post-Infection Endpoints – p.29/40



Standard LME Model

• Yi = X ′
i β +Z′

iγi + ei

β a vector of fixed effects
γ a vector of random effects for subject i
ei a vector of random errors

• Assume γi and ei are independent with

γi ∼ N(0,Σ)

ei ∼ N(0,σ 2I)
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Standard LME Model

• Hughes (1999, Biometrics) developed an EM
algorithm to obtain the MLEs of β , Σ, and σ 2, allowing
for any number of subjects to have left-censored or
right-censored viral loads

• Louis’ (1982, JRSS B) method used to estimate

Var(β̂ )
• This method adjusts the variances of the esimated

fixed effects for the information lost due to
censoring
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Standard LME Model
• Viral load assay used in the VaxGen trials:

quantification range 400-750,000 copies/ml

• Left-censoring: Yit ≤ 400 copies/ml
• Right-censoring: Yit ≥ 750,000 copies/ml

• In Vax004, 259 values ≤ 400 and 43 values
≥ 750,000 (18.2% of all values censored)

• In simulations Hughes (1999) showed that his method
does much better (less bias in estimating β , Σ, and
σ2) than typically applied hoc methods that assign an
arbitrary value for censored values (e.g., the detection
limit or one-half the detection limit)
• Efficiency gain derived from the parametric

distributional assumption
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Comparison of Weighted GEE and LME
Models

• LMEs handle MAR data without needing a
missingness model, and performance improves the
extent to which the variables included in the model
predict missingness

• LMEs can handle left-censoring and right-censoring
of viral loads

• LMEs preferred if ART initiation is predicted very
well, if a credible missingness model cannot be
built, or if left/right censoring is heavy
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Comparison of Weighted GEE and LME
Models

• Weighted GEE avoids the assumption of multivariate
normal viral loads, and is more robust to specification
of the correlation structure of measurements over time

• Weighted GEE preferred if its assumptions are
credible, ART is not predicted very well, and
left/right censoring is light
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Example: Analysis of VAX004 Data

• Marginal mean model of Y = log10 viral load with
covariates:
• vaccination status
• white/nonwhite
• baseline risk score (0-7)
• time after infection diagnosis in years
• education (4 levels)
• region (6 regions)
• calendar time of infection diagnosis (4 intervals)
• age (5 levels)
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Methods to be Compared

• Weighted GEE of RRZ
• Multiple imputation for GEE (Paik, JASA, 1997)
• Robust efficient score (Annie Qu, 2006, unpublished

manuscript)

• Analyze 319 subjects with pre-ART viral load data
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Results

WGEE Mult. Imp. Rob. Effic. Score

Variable β̂ j s.e. Z β̂ j s.e. Z β̂ j s.e. Z

Intercept 4.084 0.342 11.928∗ 4.277 0.326 13.086∗ 4.420 0.344 12.849∗

Vaccine -0.013 0.097 -0.138 -0.030 0.092 -0.334 0.016 0.080 0.199

White 0.058 0.164 0.354 0.208 0.131 1.586 0.198 0.114 1.735

Risk score 0.035 0.038 0.920 0.0196 0.033 0.587 0.015 0.025 0.602

Time (years) 0.025 0.058 0.441 -0.048 0.057 -0.844 0.062 0.036 1.723

Educ.2 0.362 0.172 2.097∗ 0.048 0.162 0.298 0.177 0.136 1.302

Educ.3 0.131 0.154 0.851 -0.033 0.159 -0.207 0.110 0.131 0.840

Educ.4 0.076 0.200 0.380 -0.133 0.185 -0.721 -0.021 0.159 -0.134

Region.1 -0.164 0.228 0.113 -0.252 0.251 -1.006 -0.399 0.289 -1.376

Region.2 0.034 0.236 0.147 0.036 0.266 0.138 -0.307 0.302 -1.016

Region.3 0.197 0.228 0.863 0.064 0.251 0.254 -0.212 0.287 -0.739

Region.4 0.098 0.229 0.431 -0.091 0.252 -0.362 -0.315 0.289 -1.090

Region.5 0.144 0.245 0.588 -0.030 0.268 -0.114 -0.263 0.293 -0.890

∗P < 0.05
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Results, Continued

WGEE Mult. Imp. Rob. Effic. Score

Variable β̂ j s.e. Z β̂ j s.e. Z β̂ j s.e. Z

CaltimeD.2 -0.383 0.218 -1.756 -0.188 0.173 -1.084 -0.228 0.160 -1.426

CaltimeD.3 -0.591 0.199 -2.970∗ -0.309 0.174 -1.769 -0.406 0.156 -2.600∗

CaltimeD.4 -0.164 0.185 -0.886 0.050 0.158 0.320 0.001 0.144 0.007

CaltimeD.5 -0.445 0.208 -2.139∗ -0.292 0.180 -1.623 -0.390 0.163 -2.393∗

age.2 0.184 0.174 1.053 -0.017 0.138 -0.129 0.011 0.130 0.082

age.3 0.171 0.184 0.930 -0.068 0.140 -0.488 -0.001 0.125 -0.006

age.4 0.389 0.188 2.066∗ 0.168 0.160 1.050 0.130 0.148 0.881

age.5 -0.333 0.221 -1.509 -0.196 0.243 -0.805 -0.147 0.236 -0.624

∗P < 0.05
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Notes on Results

• The 3 methods are all stable (standard errors
reasonably small) and perform fairly similarly
• Estimates differ for region and time

• The assumption that 1/wit > 0 is evidently reasonable
• Robust efficient score approach provides lower

standard errors except for intercept and region
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• Other Approaches to Analyzing the MAR
Data

• If fewer than < 50% of infected subjects start ART by
the late time-point t, can minimize dependent
censoring problem by estimating the median
difference (vaccine vs placebo) in pre-ART viral load

• “Utility" ITT approach: Analyze ranks of outcomes for
all randomized participants
• E.g., ranks from best to worst:

1. Not infected
2. Infected and did not start ART within 2 years

-Rank by level of viral loads
3. Infected and started ART within 2 years

Analysis of Vaccine Effects on Post-Infection Endpoints – p.40/40


	
	Data Collected in Phase IIb/III Vaccine Trial
	Approach to Post-infection Endpoints for Assessing $VE_P$/$VE_I$
	Time-to-Event Late Endpoints
	Conduct Both Intent-to-Treat (ITT)
and Infected Subcohort Analyses
	Why Must Restrict Follow-up to the Infection Monitoring Period
	Conduct Both ITT and Infected Subcohort Analyses
	Analysis of Longitudinal Viral Loads and CD4 Cell Counts
	Analysis of Longitudinal Viral Loads and CD4 Cell Counts
	Analysis of Longitudinal Viral Loads and CD4 Cell Counts
	Methods for Addressing the MAR Data
	Notation for Complete Data
	Notation for Observed Data
	Weighted GEE Approach
	Weighted GEE Approach
	Weighted GEE Methods for Addressing MAR Data
	Weighted GEE Methods for Addressing MAR Data
	Weighted GEE Methods for Addressing MAR Data
	Weighted GEE Methods for Addressing MAR Data
	Weighted GEE Methods for Addressing MAR Data
	Weighted GEE Methods for Addressing MAR Data
	Weighted GEE Methods for Addressing MAR Data
	Weighted GEE Methods for Addressing MAR Data
	Weighted GEE Methods for Addressing MAR Data
	Comments on Weighted GEE Approach for MAR Data
	Comments on Weighted GEE Approach for MAR Data
	Comments on Weighted GEE Approach for MAR Data
	Comments on Weighted GEE Approach for MAR Data
	Linear Mixed Effects (LME)
Models Approach
	Standard LME Model
	Standard LME Model
	Standard LME Model
	Comparison of Weighted GEE and LME Models
	Comparison of Weighted GEE and LME Models
	Example: Analysis of VAX004 Data
	Methods to be Compared
	Results
	Results, Continued
	Notes on Results
	Other Approaches to Analyzing the MAR Data

