TGDR: An Introduction

Julian Wolfson

Vaccine Efficacy

March 7, 2006

- Why TGDR?
- 2 Towards TGDR
- Nuts and Bolts
- 4 Applying TGDR
- 5 Final Remarks

A motivating example

- In class, we discussed and analysed the VaxGen data
- Data not provided includes sequences of gp120 envelope protein of infecting virus for each infected subject
- Would like to link these sequences (mutations, insertions, deletions)
 with outcomes (eg. survival, viral load, etc.)
- Could also imagine having a panel of immunological assay outcomes (or some other high-dimensional covariate) for each subject

High dimensionality

gp120 protein sequence has 581 sites, 21 possible AAs per site = 12,201 covariates under typical coding:

So what's the problem?

- Most regression approaches break down with this many covariates, particularly Cox regression, which typically fails with even modestly large numbers of covariates
- This is bad, since we have time-to-event data available and would like to use it

The Challenge

How do we find the small number of relevant needles in the covariate haystack?

So what's the problem?

- Most regression approaches break down with this many covariates, particularly Cox regression, which typically fails with even modestly large numbers of covariates
- This is bad, since we have time-to-event data available and would like to use it

The Challenge

How do we find the small number of relevant needles in the covariate haystack?

So what's the problem?

- Most regression approaches break down with this many covariates, particularly Cox regression, which typically fails with even modestly large numbers of covariates
- This is bad, since we have time-to-event data available and would like to use it

The Challenge

How do we find the small number of relevant needles in the covariate haystack?

- When we have a number of covariates much larger than the sample size, we need to regularize (i.e. put restrictions on) our coefficient estimates
- One way to do this is to introduce a **penalty function** $P(\vec{\beta})$ and new parameter λ to the expression we minimise to obtain our coefficient estimates
- For linear regression, we have

$$\hat{\beta}(\lambda) = \min_{\vec{\beta}} \frac{1}{N} \sum_{i} (y_i - X_i \beta)^2 + \lambda P(\vec{\beta})$$

- When we have a number of covariates much larger than the sample size, we need to **regularize** (i.e. put restrictions on) our coefficient estimates
- One way to do this is to introduce a **penalty function** $P(\vec{\beta})$ and new parameter λ to the expression we minimise to obtain our coefficient estimates
- For linear regression, we have

$$\hat{\beta}(\lambda) = \min_{\vec{\beta}} \frac{1}{N} \sum_{i} (y_i - X_i \beta)^2 + \lambda P(\vec{\beta})$$

- When we have a number of covariates much larger than the sample size, we need to regularize (i.e. put restrictions on) our coefficient estimates
- One way to do this is to introduce a **penalty function** $P(\vec{\beta})$ and new parameter λ to the expression we minimise to obtain our coefficient estimates
- For linear regression, we have

$$\hat{\beta}(\lambda) = \min_{\vec{\beta}} \frac{1}{N} \sum (y_i - X_i \beta)^2 + \lambda P(\vec{\beta})$$

- When we have a number of covariates much larger than the sample size, we need to regularize (i.e. put restrictions on) our coefficient estimates
- One way to do this is to introduce a **penalty function** $P(\vec{\beta})$ and new parameter λ to the expression we minimise to obtain our coefficient estimates
- For linear regression, we have

$$\hat{\beta}(\lambda) = \min_{\vec{\beta}} \frac{1}{N} \sum_{i} (y_i - X_i \beta)^2 + \lambda P(\vec{\beta})$$

- When we have a number of covariates much larger than the sample size, we need to regularize (i.e. put restrictions on) our coefficient estimates
- One way to do this is to introduce a **penalty function** $P(\vec{\beta})$ and new parameter λ to the expression we minimise to obtain our coefficient estimates
- For linear regression, we have

$$\hat{\beta}(\lambda) = \min_{\vec{\beta}} \frac{1}{N} \sum_{i} (y_i - X_i \beta)^2 + \lambda P(\vec{\beta})$$

$$\hat{\beta}(\lambda) = \min_{\vec{\beta}} \frac{1}{N} \sum (y_i - X_i \beta)^2 + \lambda P(\vec{\beta})$$

- ullet The parameter λ controls how much the estimates are penalized
- It also indexes a one-dimensional path through the parameter space, and our goal is to find λ^* such that $\hat{\beta}(\lambda^*)$ is "closest" (often in terms of expected loss) to the true parameter vector $\vec{\beta}$.

So, we want to Regularize our coefficient estimates using the Threshold $\lambda...$ two letters down, two to go.

In a 2004 paper, Friedman and Popescu propose a ${f G}$ radient ${f D}$ escent method for defining a parameter path:

- Set $\nu = 0$
- ② Start at a point in the parameter space $\hat{\beta}(\nu)$
- "Descend" to the next point on the path via the update rule

$$\hat{\beta}(\nu + \Delta \nu) = \hat{\beta}(\nu) + \Delta \nu g(\nu)$$

where $\Delta\nu$ is an increment and $g(\nu)$ is the gradient of the empirical risk (i.e. average loss). In the case of linear regression, we have

$$g(\nu) = -\frac{d}{d\vec{\beta}} \frac{1}{N} \sum_{i} (y_i - X_i \beta)^2$$

evaluated at $ec{eta}=\hat{eta}(
u)$

In a 2004 paper, Friedman and Popescu propose a **G**radient **D**escent method for defining a parameter path:

- **9** Set $\nu = 0$
- ② Start at a point in the parameter space $\hat{\beta}(\nu)$
- O "Descend" to the next point on the path via the update rule

$$\hat{\beta}(\nu + \Delta \nu) = \hat{\beta}(\nu) + \Delta \nu g(\nu)$$

where $\Delta \nu$ is an increment and $g(\nu)$ is the gradient of the empirical risk (i.e. average loss). In the case of linear regression, we have

$$g(\nu) = -\frac{d}{d\vec{\beta}} \frac{1}{N} \sum (y_i - X_i \beta)^2$$

evaluated at $ec{eta}=\hat{eta}(
u)$

In a 2004 paper, Friedman and Popescu propose a **G**radient **D**escent method for defining a parameter path:

- **9** Set $\nu = 0$
- **②** Start at a point in the parameter space $\hat{eta}(
 u)$
- Oescend to the next point on the path via the update rule

$$\hat{\beta}(\nu + \Delta \nu) = \hat{\beta}(\nu) + \Delta \nu g(\nu)$$

where $\Delta \nu$ is an increment and $g(\nu)$ is the gradient of the empirical risk (i.e. average loss). In the case of linear regression, we have

$$g(\nu) = -\frac{d}{d\vec{\beta}} \frac{1}{N} \sum_{i} (y_i - X_i \beta)^2$$

evaluated at $ec{eta}=\hat{eta}(
u)$

In a 2004 paper, Friedman and Popescu propose a **G**radient **D**escent method for defining a parameter path:

- ② Start at a point in the parameter space $\hat{eta}(
 u)$
- Oescend to the next point on the path via the update rule

$$\hat{\beta}(\nu + \Delta \nu) = \hat{\beta}(\nu) + \Delta \nu g(\nu)$$

where $\Delta \nu$ is an increment and $g(\nu)$ is the gradient of the empirical risk (i.e. average loss). In the case of linear regression, we have

$$g(\nu) = -\frac{d}{d\vec{\beta}} \frac{1}{N} \sum_{i} (y_i - X_i \beta)^2$$

evaluated at $\vec{\beta} = \hat{\beta}(\nu)$.

In a 2004 paper, Friedman and Popescu propose a **G**radient **D**escent method for defining a parameter path:

- ② Start at a point in the parameter space $\hat{eta}(
 u)$
- Oescend to the next point on the path via the update rule

$$\hat{\beta}(\nu + \Delta \nu) = \hat{\beta}(\nu) + \Delta \nu g(\nu)$$

where $\Delta \nu$ is an increment and $g(\nu)$ is the gradient of the empirical risk (i.e. average loss). In the case of linear regression, we have

$$g(\nu) = -\frac{d}{d\vec{\beta}} \frac{1}{N} \sum_{i} (y_i - X_i \beta)^2$$

evaluated at $\vec{\beta} = \hat{\beta}(\nu)$.

- Ma & Huang (2005) and Gui & Li (2005) extended this technique to Accelerated Failure Times and Proportional Hazards (Cox regression) models
- Algorithm sketch (for a given step length $\Delta \nu$ and threshold parameter $0 < \tau < 1$):
 - Start with an estimate $\hat{\beta}_k$
 - ② Compute the gradient g_k of the likelihood (or partial likelihood) w.r.t. $\vec{\beta}$ evaluated at $\hat{\beta}_k$
 - ① Let $\hat{\beta}_{k+1} = \hat{\beta}_k + \Delta \nu f_k g_k$, where $f_k = 1[abs(g_k) >= \tau \max(abs(g_k))]$
 - Repeat

- ullet This algorithm creates a parameter path $\hat{eta}_0,\hat{eta}_1,\ldots$
- Perform **cross-validation** to choose our "best guess" at $\hat{\beta}$ on the path (details omitted due to time constraints)
- Look at individual coefficients with largest values to get an idea of where the "needles" are

Application: VaxGen Data

Relevant Data

- Complete gp120 sequences of the infecting virus for each infected subject (we consider infected vaccinees only)
- Viral load at follow-up visits up to two years post-infection

Endpoint of Interest

(T,C), where

- T is the time until viral load surpasses 10,000 copies
- C is the censoring indicator

Question

Which positions/AAs (mutations, insertions, deletions) are associated with time until loss of immune control of viral replication (i.e. > 10,000 copies)?

Application: VaxGen Data

Relevant Data

- Complete gp120 sequences of the infecting virus for each infected subject (we consider infected vaccinees only)
- Viral load at follow-up visits up to two years post-infection

Endpoint of Interest

(T, C), where

- T is the time until viral load surpasses 10,000 copies
- *C* is the censoring indicator

Question

Which positions/AAs (mutations, insertions, deletions) are associated with time until loss of immune control of viral replication (i.e. > 10,000 copies)?

Application: VaxGen Data

Relevant Data

- Complete gp120 sequences of the infecting virus for each infected subject (we consider infected vaccinees only)
- Viral load at follow-up visits up to two years post-infection

Endpoint of Interest

(T,C), where

- T is the time until viral load surpasses 10,000 copies
- C is the censoring indicator

Question

Which positions/AAs (mutations, insertions, deletions) are associated with time until loss of immune control of viral replication (i.e. > 10,000 copies)?

- Pre-process the sequences (in a somewhat ad-hoc way):
 - Eliminate all positions (covariates) which do not vary across individuals
- $ext{ @ Run TGDR to obtain a parameter path } \hat{eta}$
- Perform cross-validation to choose our optimal \(\begin{aligned} \limins \]
- ① Look for "needles", i.e. potentially interesting patterns in \hat{eta}

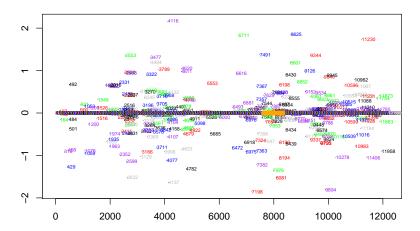
- Define (T, C) and format the sequences
- Pre-process the sequences (in a somewhat ad-hoc way):
 - Eliminate all positions (covariates) which do not vary across individuals
- Run TGDR to obtain a parameter path \(\beta \)
- Perform cross-validation to choose our optimal
- Look for "needles", i.e. potentially interesting patterns in /

- Define (T, C) and format the sequences
- Pre-process the sequences (in a somewhat ad-hoc way):
 - Eliminate all positions (covariates) which do not vary across individuals
- **1** Run TGDR to obtain a parameter path \hat{eta}
- Operform cross-validation to choose our optimal $\hat{\beta}$
- **1** Look for "needles", i.e. potentially interesting patterns in \hat{k}

- Define (T, C) and format the sequences
- Pre-process the sequences (in a somewhat ad-hoc way):
 - Eliminate all positions (covariates) which do not vary across individuals
- lacktriangle Run TGDR to obtain a parameter path $ec{eta}$
- lacktriangle Perform cross-validation to choose our optimal \hat{eta}
- Solution (a) Look for "needles", i.e. potentially interesting patterns in \(\hat{\ell} \)

- Define (T, C) and format the sequences
- Pre-process the sequences (in a somewhat ad-hoc way):
 - Eliminate all positions (covariates) which do not vary across individuals
- **1** Run TGDR to obtain a parameter path $\vec{\hat{\beta}}$
- **Output** Perform cross-validation to choose our optimal \hat{eta}
- **5** Look for "needles", i.e. potentially interesting patterns in $\hat{\beta}$

Looking for needles



Some interesting needles...

... which may or may not be relevant:

- Position 320: Approx. half N (Asparagine), half D (Aspartic Acid). Coefficient for D = 0.05, for N = 1.83
- Position 411: Predominantly Q (Glutamine). Coefficient for $\mathsf{Q}=0$, for mutation $\mathsf{R}=1.85$
- Position 472: Predominantly N (Asparagine). Coefficient for N = 0.17, for mutation D = -1.81

- Allowing for time-varying covariates
 - Code is written, but not debugged
- Incorporating missing data, interval censoring, time-varying coefficients (?)
- "Optimal" pre-processing of high-dimensional covariates
- And many others

- Allowing for time-varying covariates
 - · Code is written, but not debugged
- Incorporating missing data, interval censoring, time-varying coefficients (?)
- "Optimal" pre-processing of high-dimensional covariates
- And many others

- Allowing for time-varying covariates
 - Code is written, but not debugged
- Incorporating missing data, interval censoring, time-varying coefficients (?)
- "Optimal" pre-processing of high-dimensional covariates
- And many others

- Allowing for time-varying covariates
 - Code is written, but not debugged
- Incorporating missing data, interval censoring, time-varying coefficients (?)
- "Optimal" pre-processing of high-dimensional covariates
- And many others

- Allowing for time-varying covariates
 - Code is written, but not debugged
- Incorporating missing data, interval censoring, time-varying coefficients (?)
- "Optimal" pre-processing of high-dimensional covariates
- And many others

A word about LATEX and presentations

This presentation is a PDF file generated from a LATEX (text) document, with the help of a package called beamer. More info available at

 $\verb|http://latex-beamer.sourceforge.net/|$

Ask me if you have any questions... but no guarantees.

Thanks! Questions?