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Statistical Science Issues in HIV Vaccine Trials: Part I
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1. Which Population? - Ethics and Statistics

• Ethical issues

– informed consent

– dealing with potential HIV positive status

– discrimination against participants in employment, housing,

insurance, and travel

– social stigma

– effect of participation on risk behavior
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• Statistical issues

– need population with high infection incidence

– need population with high retention rate
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2. Criteria for Selecting a Vaccine for Efficacy Testing

• Which Vaccine? - Basic Science

General Criteria

– safe in diverse populations

– effective in preventing, eradicating, or suppressing multiple HIV

strains

∗ match the vaccine to local HIV strains

– protective against systemic (needle) and mucosal (heterosexual

sex) exposure

– practical: easy to administer, affordable, heat stable
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• Protects animals against infection and/or disease in challenge

studies with multiple strains of HIV, SIV, or SHIV

• Phase I/II surrogate markers

– elicits strong, broad, prolonged neutralizing antibodies

– elicits strong, broad, prolonged T cell responses
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2. Current Problems

• Extensive genetic and antigenic variation of HIV- current

results show limited cross-strain protection

• Stimulating humoral (antibodies) and cellular (CTLs and CD4

help) immune responses

• What are the correlates of immunity?

• No ideal animal model
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3. Potential Effects of Vaccination

• Risk of HIV infection depends on behavioral and biological

parameters:

– Behavioral

∗ number unsafe contacts

∗ fraction unsafe contacts with infected individuals

– Biological

∗ susceptibility probability

∗ infectivity probability
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3. Potential Effects of Vaccination

• Measurement objectives

– program effectiveness: the effect the vaccine would have on

the spread of HIV if used in a vaccination program

∗ need a non-traditional design to assess program effectiveness

– biological potency: the effect the vaccine would have on

reducing the susceptibility and infectivity probability



10

3. Classical Preventive Trial Design

• Classical randomized, double-blind trial aims at assessing biological

potency

• Three biological vaccine efficacy (VE) measures

– V ES : VE at reducing susceptibility to infection

– V EI : VE at reducing infectiousness of infected persons

– V EP : VE at slowing HIV disease progression
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3. Measuring VE-susceptibility (V ES)

• Estimate V ES by comparing the rates or hazards of infection in

the vaccine and placebo group

– V ES = 1 − RR

• Key assumption for validity: equal exposure in vaccine and

placebo groups

• Randomization and blinding justify this assumption

• Useful to collect data on HIV exposure
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3. Measuring VE-susceptibility (V ES)

• Binary endpoint

– ̂V ESBin = 1 − ARv

ARu
= 1 − nIv/Nv

nIu/Nu

– V̂ar
(
log

{
nIv

Nv
/nIu

Nu

})
= Nv−nIv

nIvNv
+ Nu−nIu

nIuNu

– Test the hypothesis of no vaccine efficacy with the statistic

Z =
log

{
nIv

Nv
/nIu

Nu

}

√(
V̂ar

(
log

{
nIv

Nv
/nIu

Nu

}))

– adjusting for covariates:

∗ fit a logistic regression model with HIV infection (Yes/No) as

the response, and vaccination status and other covariates as

predictor variables
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• Poisson-based estimate

V ES = 1 −
incidence rate in vaccinated

incidence rate in unvaccinated
= 1 −

IRv

IRu

• estimate V ES by V̂ ESPoiss = 1 − ÎRv

ÎRu

= 1 − nIv/PYv

nIu/PYu

with PYV = person-years at-risk in group V, V ∈ {v, u}

– eβ̂ = ÎRv

IRu
can be obtained by fitting a generalized linear model

(Poisson regression)

• adjusting for covariates

– fit a log-linear Poisson regression model including covariates,

estimate V̂ ESPoiss = 1 − eβ̂Adj
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• Failure time endpoint

– under a proportional hazards assumption,

V ES = 1 −
hazard of infection in vaccinated

hazard of infection in unvaccinated
= 1 −

λv

λu

– estimate V ES by V̂ ESph = 1 − eβ̂

∗ eβ̂ = λ̂v

λu
is an estimate of the hazard ratio obtained from fitting

the proportional hazards model

– test the hypothesis of no vaccine effect (hazard ratio equals 1)

with the log rank statistic

– adjusting for covariates:

∗ fit a proportional hazards model including covariates, estimate

V̂ ESph = 1 − eβ̂Adj



15

3. Measuring VE-susceptibility (V ES)

• If failure times are available, recommend use of the proportional

hazards model for estimating V ES

• Need to check the assumption of proportional hazards between

vaccine and placebo groups

• vaccine efficacy may change over time, which violates the

proportional hazards assumption

• What to do if the proportional hazards assumption is violated?
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3. Measuring VE-susceptibility (V ES)

• Estimating time-varying vaccine efficacy

• One Approach: Construct a nonparametric smoothed estimate

V̂ ES(t) = 1 − R̂R(t) = 1 − exp{λ̂1(t)/λ̂2(t)}, and calculate its

standard error

• Procedure:

1. Estimate λ1(t) and λ2(t) by nonparametric kernel smoothing:

λ̂i(t) =
1

b i

∫ t2

t1

K

(
t − s

bi

)
dΛ̂i(s),

where Λ̂i(t) =
∫ t

0
(1/Yi(s))dNi(s) is the Nelson-Aalen estimator of

the cumulative hazard function Λi(t) =
∫ t

0
λi(s)ds, with

Ni(t) =
∑ni

j=1 Nij(t) =
∑ni

j=1 I(Xij ≤ t, ∆ij = 1),

Yi(t) =
∑ni

j=1 Yij(t) =
∑ni

j=1 I(Xij ≥ t)

2. It can be shown that n
2/5
i (λ̂i(t) − λi(t)) ≈ N(0, σ2(t)), i = 1, 2
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3. A 95% confidence interval for V ES(t) is given by

1 − exp
{

(λ̂1(t)/λ̂2(t)) ± 1.96 ∗ V̂ar(λ̂1(t)/λ̂2(t))
1/2

}

where V̂ar(λ̂1(t)/λ̂2(t)) = 1

λ̂2(t)4

[
λ̂2(t)

2 σ̂1(t)
2

n
4/5

1

+ λ̂1(t)
2 σ̂2(t)

2

n
4/5

2

]

(using the delta method)

4. Simultaneous confidence intervals can also be computed
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3. Measuring VE-susceptibility (V ES)

• Estimating time-varying vaccine efficacy

• Another Approach: Parametrically model vaccine efficacy effects

– the nonparametric smoothing method may suggest parametric

forms for V ES(t)

– Fit a proportional hazards model

λ(t|V ) = λ0(t)e
β(t)V

with a specific parametric function for β(t),

e.g., eβ(t) linear, quadratic, or a step function
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- for a preventive vaccine trial with follow-up period [0, τ ],

suppose vaccine injections are given during [0, τ1]. Then one

might expect vaccine efficacy increasing from 0 to τ1, and then

decreasing from τ1 to τ. This suggests a parametric form like:

eβ(t) = [1 + β1t]I{0 ≤ t < τ1} + [1 + β1τ1 + β2(t)]I{τ1 ≤ t ≤ τ1},

or, more generally, like

eβ(t) = [1+g1(β1, t)]I{0 ≤ t < τ1}+[1+β1τ1 +g2(β2, t)]I{τ1 ≤ t ≤ τ1}

- advantages of parametric approach: increase efficiency of

vaccine efficacy estimators, increase power of statistical tests,

and give a clearly interpretable picture of time-varying vaccine

effects



21

3. Measuring VE-infectiousness (V EI)

• Cannot estimate V EI from a classical trial design

• Can get indirect surrogate information on V EI by measuring a

biological marker of infectiousness

– e.g., plasma or genital secretion viral load

∗ suppressed viral load may indicate reduced infectiousness
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3. Statistical Power for Comparing Initial Viral Load

• Suppose a viral load measurement is taken from each infected

subject shortly after infection is discovered

• Suppose 50% vaccine efficacy (V ES)

80% power to detect the mean difference in log viral load

total number mean group difference in

infected log viral load

30 1 log10

50 3/4 log10

100 1/2 log10

• Beware: Potential selection bias in the viral load comparison

– be careful interpreting the results!
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3. Selection Bias in Comparing Viral Load Distributions

• a major challenge posed to conducting unbiased inference of the

vaccine’s effect on viral load is that the comparison groups are

selected by the post-randomization event HIV infection

• as a consequence, the comparison of viral load between infected

groups is prone to many of the selection biases which can occur in

observational studies

– one of the most relevant sources of potential selection bias:

partial efficacy of the vaccine at preventing infections
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3. Selection Bias in Comparing Viral Load Distributions

• If in truth the vaccine has no impact on viral load, a standard

two-sample test comparing viral load distributions between infected

groups could draw the false conclusion that vaccination enhances or

suppresses viral burden

• Or, if in truth the vaccine has a suppressive impact on viral load,

the standard test may fail to detect it

• An erroneous inference that the vaccine enhances infection could be

particularly destructive to continued expedient development of a

safe and partially efficacious vaccine

– e.g., at an interim look stop a trial prematurely
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3. Measuring VE-infectiousness (V EI)

• Can estimate V EI directly by monitoring persons who are exposed

to infected vaccine trial participants

– e.g., through Partner Designs

– e.g., through Community Randomized Designs
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3. Measuring VE-infectiousness (V EI)

• Partner designs as formulated by Longini, Datta, and Halloran

(1996)

– Suppose the design of a classic randomized, Phase III,

double-blind, vaccine versus placebo preventive HIV vaccine

efficacy trial

∗ To estimate V EI , augment the design with sexual partners

– Augmented Design 1 (non-randomized): Add mu and mv

steady sexual partners of unvaccinated and vaccinated primary

participants, respectively, and monitor them for HIV infection

∗ for mu partnerships, if either partner is infected during the

trial, then his or her partner will be directly exposed to an

unvaccinated partner during his or her primary infection

∗ for mv partnerships, if either partner is infected during the

trial, then his or her partner will be directly exposed to a

vaccinated partner during his or her primary infection

– Augmented Design 2 (randomized): Randomize steady
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sexual partners of primary participants to vaccine or placebo.

Then, about one-quarter of partnerships will have both partners

vaccinated, one-quarter will have both partners unvaccinated,

and half will have one partner vaccinated and one partner

unvaccinated.

∗ let β be the probability that an infected, unvaccinated trial

participant will infect his or her unvaccinated steady sexual

partner during the follow-up period of the trial

∗ define V EI = 1 − φ, where φ is the fractionate reduction in β

for an infected vaccinated trial participant

• Goal of augmented partner designs:

– estimate V ES and V EI

– test 1. H0S : V ES = 0

2. H0I : V EI = 0

3. H0C : V ES = 0 and V EI = 0
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Hypothesis tests:

H0 : V ES = 0 1 df test with Wald statistic

Z = V̂ ES/

√
V̂ar(V̂ ES)

H0 : V EI = 0 1 df test with Wald statistic

Z = V̂ EI/

√
V̂ar(V̂ EI)

H0 : V ES = 0 and V EI = 0 2 df likelihood ratio test with

approximate Chi-square test statistic

χ2 ≈ −2[lnL(γ̂, β̂, 1, 1) − lnL(γ̂, β̂, θ̂, φ̂)]
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3. Measuring VE-infectiousness (V EI)

• Statistical power to detect V EI from an augmented partners design

depends on:

– V ES

– number primary participants with steady partners

– secondary attack rate

– quality of HIV exposure data
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3. Measuring VE-infectiousness (V EI)

• Example

– 4000 primary trial participants

– 1000 monogamous partners enrolled

– secondary attack rate = 50%

– V ES = 20%

−→ Nonrandomized partners design: 57% power to detect

V EI = 60%

−→ Randomized partners design: 87% power to detect

V EI = 60%

– A secondary attack rate of 50% may be unrealistically high

∗ if it is lower, then sensitivity to detect V EI is lost

– Other references: Longini et al. 1998, Statistics in Medicine

17:1121-36, Rida 1996, Statistics in Medicine 15:2393-2404
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3. Measuring VE-infectiousness (V EI)

• Limitation of partner designs: their feasibility is in question

– in order to estimate the potential reduction in infectiousness,

couples must continue to engage in risky behaviors when one

partner is known to be infected. Furthermore, the uninfected

partner must avoid risk outside the partnership before and after

his/her partner becomes infected. Such behaviors must occur

despite counseling interventions which will be implemented as

part of the trial. At present it is unknown how couples would

behave in a trial designed to reduce infectiousness.



33

3. Measuring VE-infectiousness (V EI)

• Alternative: Cluster randomization trials

– definition: experiments in which intact social units (e.g.,

families, villages, clinics, brothels) rather than independent

individuals are randomly allocated to intervention groups

• General advantages of design:

– administrative convenience

– increase compliance

– avoid ethical considerations which might otherwise arise

– out of necessity
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• General disadvantages of design:

Presence of between-cluster variation implies:

– reduction in effective sample size

∗ extent depends on degree of within-cluster correlation and on

average cluster size

– standard approaches for sample size estimation and statistical

analysis do not apply

∗ application of standard sample size approaches leads to an

underpowered study

∗ application of standard statistical methods generally tends to

bias p-values downwards, i.e. could lead to spurious statistical

significance
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3. Measuring VE-infectiousness (V EI)

• How is the dependence between responses of cluster members

measured?

– intracluster correlation coefficient

ρ =
σ2

B

σ2
B + σ2

W

σ2
B = variability between clusters

σ2
W = variability within clusters

ρ = 1 when the responses of cluster members are identical (i.e.

when σ2
W = 0)

ρ gets closer to zero the less correlation there is among subjects

in the same cluster

• Variance inflation factor: when all clusters have exactly m subjects

the variance of the estimated effect of intervention is inflated by

1 + (m − 1) ∗ ρ
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3. Measuring VE-infectiousness (V EI)

• Sample size adjustment, completely randomized design

– compute number of subjects required per treatment group using

standard sample size formulas

– multiply result by the variance inflation factor 1 + (m̄ − 1)ρ,

where

m̄ = average cluster size

ρ = prior estimate of intraclass correlation
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3. Measuring VE-infectiousness (V EI)

• There are three designs which are commonly used when intact

clusters are assigned to interventions:

– completely randomized (involving no pre-stratification or

matching)

– matched pair (in which one of two clusters in a stratum are

randomly assigned to each intervention)

– stratified (involving the assignment of two or more clusters to

each combination of intervention and stratum)
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3. Measuring VE-infectiousness (V EI)

• Examples of potential HIV vaccine trials:

– randomize n IDU clinics to vaccine or placebo (e.g., in Bangkok)

– randomize n STD clinics to vaccine or placebo (e.g., in Southern

Africa)

– randomize n factories to vaccine or placebo (all employees

within a factory receive the same preparation)

∗ potential stratification factors:

- country, city, or village

- predominant mode of risk and/or level of risk

- predominant virus type
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3. Measuring VE-disease progression (V EP )

• Follow infected trial participants 5-10 years to assess if HIV disease

progresses differently in vaccinated individuals compared to

unvaccinated individuals

– takes too long!

• Measure a biological marker of disease progression

– e.g., viral load or CD4 cell count over time

∗ compare vaccinated and unvaccinated groups by a summary

measure of marker change over time, such as

the slope coefficient fit by a simple linear regression model
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• Use of a biological marker to measure V EP may be misleading

– to validate a surrogate marker, it must be a correlate of

the clinical outcome (easy to check) and fully capture the net

effect of vaccination on the clinical outcome (difficult or

impossible to check)

– Long-term follow-up is necessary to validate a surrogate marker



41

4. Sample size considerations

• Vaccine efficacy trials are typically powered to test the null

hypothesis

H0 : V ES = δ versus H1 : V ES > δ

with δ = 0 or δ > 0 (e.g., δ = 0.10 or 0.30)

• Factors determining sample size

– rate of infection in population of interest

– lowest acceptable vaccine efficacy (e.g., 30%)

– desired type I error and power to detect the effect size of interest

– rate of enrollment of eligible subjects

– minimum length of follow-up required

– anticipated rate of loss to follow-up
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Assume 3 years of follow-up. The solid, dotted, and dashed lines are for

5%, 3%, and 1% annual incidence in the placebo arm.
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4. Sample size considerations

• Specal challenges in HIV vaccine trials:

– Loss to follow-up rate may be higher in high-risk cohorts

– immunization period makes up substantial part of observation

period

– counseling may have large impact on event rate

∗ counseling ⇒ reduced risk ⇒ reduced power

∗ participation ⇒ perceived immunity ⇒ higher risk behavior

(?)

• Vaccine preparedness studies

– assess effects of counseling

– estimate HIV incidence rates
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5. Impact of Treating Infecteds with

Antiretrovirals on Estimation of V ES , V EI , V EP

• V ES

– ARVs will not interfere

• V EI

– augmented partners design

∗ ARVs will likely reduce the secondary attack rate, thus

necessitating a larger sample size

– viral load a marker for infectiousness

∗ only 1-3 measures of viral load can be taken on infected trial

participants before initiation of ARV therapy. Thus, do not

observe the long-term longitudinal viral load profile.

• V EP

– ARVs will make estimation difficult or impossible

• Antiretrovirals will make validation of biological markers of

infectiousness or disease progression difficult
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6. Assessing HIV Strain-specific Protection

• Measure characteristics of HIV isolates taken from

infected trial participants

– HIV genetic sequence

– HIV serotype

– other HIV phenotypes; e.g. synchtium inducing capacity,

cellular tropism, tissue tropism, replicative capacity, co-receptor

usage, etc.

• “Sieve Analysis”: assess how V ES depends on characteristics of the

exposing HIV [More on sieve analysis later]
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7. Behavioral Issues

• Infection preventable by changes in unsafe sexual and drug

injection practices

• Question: does participation lower or raise risk behavior?

• Question: does vaccination lower or raise risk behavior?

• Blinding versus unblinding

• to assess these questions, need an unblinded trial (or add a third

observational arm)

• Evaluate program effectiveness



47

7. Behavioral Issues

• Assessing risk behavior

• Five reasons to assess behavior (Chesney et al., 1995):

1. Enroll a cohort at sufficient risk for HIV infection

2. Assess trends in subject risk behavior

3. Estimate the extent and consequences of unblinding

4. Permit tailoring of counseling to individual subject

behaviors

5. Allow investigation of vaccine efficacy in behavioral subgroups
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8. Extrapolation of trial results

• Particular features of a vaccine trial

– population (men, women, children, infants, IDU, commercial

sex workers)

– route of transmission (heterosexual sex, homosexual sex,

needles, mother-to-child)

– strain of HIV virus

• e.g., can results from a trial in the Bangkok IDU setting (subtypes

B and E, intravenous and sexual transmission) be extrapolated to

Southern Africa (subtypes A, C, and D, predominantly

heterosexual transmission)?
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8. Extrapolation of trial results

• Example: male-to-female heterosexual transmission

– p ≡ probability that uninfected female becomes infected from 1

sexual contact with HIV+ male

• We know:

– p is highly variable in individuals (due to variability in

susceptibility and/or infectiousness)

– knowledge of p, how and how often people interact, and HIV

prevalence determine # of infections seen in a vaccine trial

• Knowledge of p can, in theory, enable us to predict the

consequences of a vaccination program in a population with

different kinds/type of exposure than in the vaccine trial

• To estimate p, need to know number, type, and frequency of sexual

contacts among trial subjects. Also need information on who

interacts with who.

• Estimation of p complicated by several factors (heterogenetiy in
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susceptibility, infectiousness, mixing patterns, vaccine mechanism

of efficacy)

• Under strong assumptions, p is estimated by V̂ ESPoiss and V̂ ESph

=⇒ in general, considerable uncertainty in estimate of p
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Implications of Uncertainty about p

• Except for vaccines with very high efficacy (e.g., > 90%),

extrapolation of vaccine efficacy results to different populations can

be very imprecise

=⇒ in designing a vaccine trial, it may be wise to choose a study

population similar to the population that would be given the

vaccine if the trial result is positive
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Summary

• Extra studies of effects of infectiousness and consequences of

vaccine failure can be built onto classic susceptibility designs

• Extensive laboratory analysis of immune responses and genetic,

antigenic, and phenotypic properties of infected participants’

viruses can provide insights into the correlates of protective

immunity and mechanisms of protection

– fuels hypothesis driven iterative process of HIV vaccine

development


