

### Case-Cohort Approach to Assessing Immunological Correlates of Risk, With Application to Vax004

Biostat 578A: Lecture 11

A manuscript pertinent to this talk is posted on the course webpage (JIDimmune.article.2005.pdf)



- Design of Vax004 for assessing immunological correlates of risk
- Methods: Case-cohort sampling design Cox proportional hazards model
- Application to Vax004



### Assessing Antibodies as Correlates of Risk in Vax004

- Secondary objective: Assess if various in vitro measurements of antibody levels in vaccinees correlate with HIV infection rate
- 8 antibody assays that measure binding/neutralization of the MN or GNE8 HIV strains
  - ELISAs to measure antibody binding: gp120, V2, V3, CD4 blocking
  - Functional assay: Neutralization of MN HIV-1



### Assessing Antibodies as Correlates of Risk in Vax004

- Sampling design
  - Specimens collected:
    - Month 0, 1, 6, 12, 18, 24, 30, 36 (troughs)
    - Month 0.5, 1.5, 6.5, 12.5, 18.5, 24.5, 30.5 (peaks)
  - Specimens assayed:
    - Random "subcohort" of 5% of all vaccinees (n=174, all time points)
      - n=163/11 in subcohort uninfected/infected
    - All infected vaccinees (n=239, last sample prior to infection)



### The Cox Model with The Case-Cohort Sampling Design

Cox proportional hazards model

$$\lambda(t|Z) = \lambda_0(t) exp \left\{ \beta_0^T Z(t) \right\}$$

- $\lambda(t|Z) =$  conditional failure hazard given covariate history until time t
- $\beta_0$  = unknown vector-valued parameter
- $\lambda_0(t) = \lambda(t|0) =$  unspecified baseline hazard function
  - Z are "expensive" covariates only measured on failures and subjects in the subcohort



## Notation and Set-Up (Matches Kulich and Lin, 2004, JASA)

- T = failure time (e.g., time to HIV infection diagnosis)
- C = censoring time
- $X = min(T, C), \Delta = I(T \le C)$
- $N(t) = I(X \le t, \Delta = 1)$
- $Y(t) = I(X \ge t)$
- Cases are subjects with  $\Delta = 1$
- Controls are subjects with  $\Delta = 0$



### Notation and Set-Up (Matches Kulich and Lin, 2004, JASA)

- Consider a cohort of n subjects, who are stratified by a variable V with K categories
- $\varepsilon =$  indicator of whether a subject is selected into the subcohort
  - $\alpha_k = Pr(\varepsilon = 1 | V = k)$ , where  $\alpha_k > 0$
- $(X_{ki}, \Delta_{ki}, Z_{ki}(t), 0 \le t \le \tau, V_{ki}, \varepsilon_{ki} \equiv 1)$  observed for all subcohort subjects
- At least  $(X_{ki}, \Delta_{ki} \equiv 1, Z_{ki}(X_{ki}))$  observed for all cases



• With full data,  $\beta_0$  would be estimated by the MPLE, defined as the root of the score function

$$U_F(\beta) = \sum_{i=1}^n \int_0^{\tau} \{Z_i(t) - \bar{Z}_F(t,\beta)\} dN_i(t),$$
 (1)

where

$$\bar{Z}_F(t,\beta) = S_F^{(1)}(t,\beta)/S_F^{(0)}(t,\beta);$$

$$S_F^{(1)}(t,\beta) = n^{-1} \sum_{i=1}^n Z_i(t) exp \{\beta^T Z_i(t)\} Y_i(t)$$

$$S_F^{(0)}(t,\beta) = n^{-1} \sum_{i=1}^n exp \{\beta^T Z_i(t)\} Y_i(t)$$



- Due to missing data (1) cannot be calculated under the case-cohort design
- Many modified estimators have been proposed, all of which replace  $\bar{Z}_F(t,\beta)$  with an approximation  $\bar{Z}_C(t,\beta)$ , so are roots of

$$U_C(\beta) = \sum_{k=1}^{K} \sum_{i=1}^{n_k} \int_0^{\tau} \{Z_{ki}(t) - \bar{Z}_C(t,\beta)\} dN_{ki}(t)$$

• The double indices k, i reflect the stratification



The case-cohort at-risk average is defined as

$$\bar{Z}_C(t,\beta) \equiv S_C^{(1)}(t,\beta)/S_C^{(0)}(t,\beta),$$

where

$$S_C^{(1)}(t,\beta) = n^{-1} \sum_{k=1}^K \sum_{i=1}^{n_k} \rho_{ki}(t) Z_{ki}(t) exp \left\{ \beta^T Z_{ki}(t) \right\} Y_{ki}(t)$$

$$S_C^{(0)}(t,\beta) = n^{-1} \sum_{k=1}^K \sum_{i=1}^{n_k} \rho_{ki}(t) exp \left\{ \beta^T Z_{ki}(t) \right\} Y_{ki}(t)$$



- The potentially time-varying weight  $\rho_{ki}(t)$  is set to zero for subjects with incomplete data, eliminating them from the estimation
- Cases and subjects in the subcohort have  $\rho_{ki}(t) > 0$ 
  - Usually  $\rho_{ki}(t)$  is set as the inverse estimated sampling probability (Using the same idea as the Weighted GEE methods of Robins, Rotnitzky, and Zhao, 1994, 1995)
- Different case-cohort estimators are formed by different choices of weights  $\rho_{ki}(t)$
- Two classess of estimators (N and D), described next



- The subcohort is considered a sample from all study subjects regardless of failure status
  - The whole covariate history Z(t) is used for all subcohort subjects
  - For cases not in the subcohort, only  $Z(T_i)$  (the covariate at the failure time) is used
- Prentice (1986, Biometrika):  $\rho_i(t) = \varepsilon_i/\alpha$  for  $t < T_i$  and  $\rho_i(T_i) = 1/\alpha$
- Self and Prentice (1988, Ann Stat):  $\rho_i(t) = \varepsilon_i/\alpha$  for all t



- General stratified N-estimator
  - $\rho_{ki}(t) = \varepsilon_i/\widehat{\alpha}_k(t)$  for  $t < T_{ki}$  and  $\rho_{ki}(T_{ki}) = 1$ 
    - $\widehat{\alpha}_k(t)$  is a possibly time-varying estimator of  $\alpha_k$
    - $\alpha_k$  is known by design, but nonetheless estimating  $\alpha_k$  provides greater efficiency for estimating  $\beta_0$  (Robins, Rotnitzky, Zhao,1994)
    - A time-varying weight can be obtained by calculating the fraction of the sampled subjects among those at risk at a given time point (Barlow, 1994; Borgan et al., 2000, Estimator I)



- Weight cases by 1 throughout their entire at-risk period
- D-estimators treat cases and controls completely separately
  - $\alpha_k$  apply to controls only, so that  $\alpha_k$  should be estimated using data only from controls
- Conditional on failure status, the D-estimator case-cohort design is similar to that of the case-control design whether or not the subcohort sampling is done retrospectively



General D-estimator

$$\rho_{ki}(t) = \Delta_{ki} + (1 - \Delta_{ki}) \varepsilon_{ki} / \widehat{\alpha}_k(t)$$

 Borgan et al. (2000, Estimator II) obtained by setting

$$\widehat{\alpha}_k(t) = \sum_{i}^{n} \varepsilon_{ki} (1 - \Delta_{ki}) Y_{ki}(t) / \sum_{i}^{n} (1 - \Delta_{ki}) Y_{ki}(t),$$

i.e., the proportion of the sampled controls among those who remain at risk at time *t* 

 Under "Computing", the course webpage includes R code for Borgan's Estimator II with a time-independent expensive covariate of interest (contributed by Michal Kulich)



### Main Distinctions between N- and D-Estimators

- D-estimators require data on the complete covariate histories of cases
- N-estimators only require data at the failure time for cases
  - For Vax004, the immune response in cases was only measured at the visit prior to infection, so N-estimators are valid while D-estimators are not valid



### Main Distinctions between N- and D-Estimators

- For N-estimators, the sampling design is specified in advance, whereas for D-estimators, it can be specified after the trial (retrospectively)
  - D-estimators more flexible



#### Example: Application to Vax004

Randomly selected subject-specific antibody profiles



Months Since Entry

Case-Cohort Designs for HIV Vaccine Trials - p.18/22



# Peak Antibody Levels of Vaccinees (Solid/dotted = Uninfected/infected)





### Tests for Different Antibody Levels, Uninfected vs Infected Vaccinees

- Wei-Johnson (1985, Biometrika) tests linearly combine Wilcoxon statistics across the 7 time-points
- Overall/aggregate tests of whether peak antibody levels differ between infected (n=239) and uninfected (n=163) vaccinees

| Antibody          | Wei-Johnson |
|-------------------|-------------|
| Variable          | p-value     |
| MN CD4            | 0.074       |
| GNE8 CD4          | 0.0045      |
| MN V2             | 0.13        |
| GNE8 V2           | 0.18        |
| MN V3             | 0.21        |
| GNE8 V3           | 0.031       |
| MN/GNE8 gp120     | 0.39        |
| MN Neutralization | 0.60        |



# Results of Case-Cohort Cox Model Analysis

• Fit Prentice (1986) case-cohort Cox model, using  $\widehat{\alpha} = 174/3598 = 0.0484$ 

| Antibody          | HR of HIV infection by Ab Quartile |      |      | y Ab Quartile | P-value for | P-value for |
|-------------------|------------------------------------|------|------|---------------|-------------|-------------|
| variable          | Q1                                 | Q2   | Q3   | Q4            | difference  | trend       |
| MN CD4            | 1.0                                | 0.45 | 0.39 | 0.33          | 0.008       | 0.009       |
| GNE8 CD4 Binding  | 1.0                                | 0.46 | 0.37 | 0.30          | 0.026       | 0.013       |
| MN V2             | 1.0                                | 1.56 | 0.95 | 0.88          | 0.044       | 0.17        |
| GNE8 V2           | 1.0                                | 0.72 | 0.66 | 0.49          | 0.052       | 0.009       |
| MN V3             | 1.0                                | 0.88 | 0.59 | 0.84          | 0.22        | 0.39        |
| GNE8 V3           | 1.0                                | 0.45 | 0.53 | 0.40          | 0.011       | 0.030       |
| MN/GNE8 gp120     | 1.0                                | 0.96 | 0.69 | 0.68          | 0.30        | 0.096       |
| MN Neutralization | 1.0                                | 0.52 | 0.42 | 0.46          | 0.080       | 0.088       |



#### Interpretation of Vax004 Results

- MN CD4 blocking, GNE8 CD4 blocking, GNE8 V2, GNE8 V3, MN Neutralization responses inversely correlated with HIV infection rate
- Estimated  $VE_S$  negative for low responses,  $\approx$  zero for medium responses, positive for high responses
- Two possible explanations
  - High antibody levels cause protection and low antibody levels cause increased susceptibility [Causation Hypothesis]
  - Antibody levels mark individuals by their intrinsic risk of infection [Association Hypothesis]
- New methods needed to discriminate these
  - Addressed by Dean Follmann, covered in Lecture
     12