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SUMMARY. In many experiments researchers would like to compare between treatments
an outcome that only exists in a subset of participants selected after randomization. For
example, in preventive HIV vaccine efficacy trials it is of interest to determine whether
randomization to vaccine causes lower HIV viral load, a quantity that only exists in
participants who acquire HIV. To make a causal comparison and account for potential
selection bias we propose a sensitivity analysis following the principal stratification frame-
work set forth by Frangakis and Rubin (2002). Our goal is to assess the average causal
effect of treatment assignment on viral load at a given baseline covariate level in the al-
ways infected principal stratum (those who would have been infected whether they had
been assigned to vaccine or placebo). We assume stable unit treatment values (SUTVA),
randomization, and that subjects randomized to the vaccine arm who became infected
would also have become infected if randomized to the placebo arm (monotonicity). It is
not known which of those subjects infected in the placebo arm are in the always infected
principal stratum, but this can be modeled conditional on covariates, the observed viral
load, and a specified sensitivity parameter. Under parametric regression models for viral
load, we obtain maximum likelihood estimates of the average causal effect conditional on
covariates and the sensitivity parameter. We apply our methods to the world’s first Phase
IIT HIV vaccine trial.
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1. Introduction

Vaccines are being developed in an attempt to curb the spread of HIV: the first Phase
III preventive HIV vaccine trial was recently completed (VaxGen'’s trial of AIDSVAX B/B
reported in Flynn et al., 2005), other efficacy trials are in progress, and many more are
expected. Of primary interest in these trials is whether the vaccine protects against
HIV infection; a perfect vaccine would eliminate infection. However, a less than perfect
vaccine could also reduce morbidity and mortality by preventing infection for some and
ameliorating disease progression or decreasing infectiousness among those who acquire

HIV (Nabel, 2001; Graham, 2002).

To that end, investigators are usually interested in the effect of vaccine on HIV
viral load, a commonly used surrogate variable for measuring the extent of an infected
individual’s HIV disease and infectiousness (O’Brien et al., 1996; Quinn et al., 2000).
Two types of questions emerge from such investigations. Clinicians or epidemiologists are
ultimately interested in whether they should recommend vaccine to the general population
(or a targeted subgroup therein). Scientists, however, may want to know whether there
exists a mechanism through which the vaccine alters viral load in infected individuals,
perhaps leading to further scientific innovation and the elaboration of new vaccines. The
methods in this article are geared towards answering questions of the second type. They
only have secondary utility in answering questions of the first type. An intention to treat
analysis (ITT) with a loss function assigning appropriate weights to infection and viral
load after infection would be the correct primary analysis from which to draw inference
for policy recommendations (Robins and Greenland (2000); Gilbert,Bosch, and Hudgens
(2003) (GBH)). In this article, we will incorporate baseline covariate information into the
analysis in order to refine the scientist’s understanding of the mechanism by which the

vaccine acts, specifically of the modifiers of the vaccine effect after infection.



Naively comparing the distribution of viral loads between HIV infected individuals
in the vaccine and placebo arms of a randomized experiment within levels of the baseline
covariates, does not lead to unbiased estimates of the causal vaccine effect on viral load
after infection because it improperly conditions on a post-randomization variable, HIV
infection (Rosenbaum, 1984; Halloran and Struchiner, 1995). An alternative analytical
strategy would assign a viral load value of 0 (or best rank) to all uninfected participants
and perform an ITT analysis. This analysis addresses a causal question, but as verified
in simulations, will lack power because most of the vaccine effect is washed out by the
zeroes, which can occur in a large fraction of participants in an HIV vaccine trial (93%

for the VaxGen trial).

As pointed out by many authors (Kalbfleish and Prentice 1980; Robins 1995; Rubin
2000; Robins and Greenland 2000), a meaningful causal effect on viral load is defined in
the subset of the population which would become infected under either placebo or vaccine.
Specifically, each subject has a potential infection status if assigned vaccine and a potential
infection status if assigned placebo, only one of which is observed during the trial. In
addition, every subject that would be infected under a treatment (vaccine or placebo)
also has a potential viral load under that treatment. Every subject can be classified
into one of four possible combinations of the two potential infection status outcomes:
never infected (not infected if assigned vaccine or placebo), harmed (infected if assigned
vaccine but not infected if assigned placebo), protected (not infected if assigned vaccine
but infected if assigned placebo), and always infected (infected regardless of assignment).
This classification has been referred to as principal stratification by Frangakis and Rubin
(2002). Only in the always infected (ai) principal stratum do subjects have a potential
viral load under both treatments. Therefore, only in the ai principal stratum are causal

comparisons meaningful. Thus the type of questions addressed in this paper are whether



in individuals with given characteristics (i.e. young caucasian males with no history of
venereal disease who would become infected regardless of vaccine/placebo assignment),
the vaccine alters viral load. The vaccine trial cannot provide a definite answer to such
questions because an individual’s principal stratum membership can never be known
and thus the distribution of viral load in the ai stratum under each treatment is not
identified. One goal of this paper is to derive a set of reasonable and easily understandable
assumptions under which such distributions are identified by the clinical trial data. A
second goal is to indicate how to conduct inference about the treatment effect in the az

stratum under such assumptions.

Hudgens, Hoering, and Self (2003) (HHS) and GBH addressed the same question
in the absence of baseline covariates. These authors made the monotonicity assumption
which postulates that an individual who would get infected under vaccine would also
get infected under placebo. Monotonicity is possibly not an unrealistic assumption when
comparing vaccine to placebo. It implies that the vaccine effect on infection risk is either
beneficial or harmless, and that all individuals infected in the vaccine group belong to the
at principal stratum. Thus, monotonicity is sufficient to identify the viral load distribution
under vaccine in the ai stratum. However, monotonicity is not sufficient to identify
the viral load distribution under placebo in the a? stratum because infected individuals
randomized to placebo can belong to either the a: or the protected principal strata. To
identify this distribution, GBH assumed that the probability that a subject who becomes
infected under placebo is in the ai stratum depends on his/her viral load y under placebo
through the expit function w (y) = e*™#/ (1 + e**#¥) . GBH showed that the parameter
B is not identified by the clinical trial data but once it is specified, the distribution of
the viral load under placebo in the ai stratum and « are both identified. Thus, similar

to Scharfstein, Rotnitzky, and Robins (1999), GBH advocated carrying out a sensitivity



analysis in which ( is varied along a plausible range and inference about vaccine effects
in the a:¢ stratum is repeated for each value of 5 in the range. If results hold in one
direction for a plausible range of the sensitivity parameter 3, then a causal conclusion in

that direction may be drawn. Otherwise, the analysis remains inconclusive.

In this article, we extend the approach of GBH by describing sensitivity analysis
methods for estimating treatment effects conditional on baseline covariates. We first define
assumptions which identify the causal estimand of interest and then describe parametric
models under which their estimation is feasible. Next, we derive the likelihood under
the assumed parametric models and indicate how maximum likelihood estimates can be
obtained. Finally, we exhibit results from simulation studies of our estimators’ finite

sample properties, and apply our methods to data from the VaxGen HIV vaccine trial.

2. Notation, Causal Estimand, and Assumptions

Consider a study in which N subjects, independently and randomly selected from a
given population of interest, are randomized to either placebo or vaccine. Let Z; = 1 if
subject ¢, 7 = 1,..., N, is randomized to vaccine and Z; = 0 if randomized to placebo.
Trial participants are monitored for HIV infection for a predetermined period of time.
The recorded data on subject ¢ are a vector of baseline covariates X;, an indicator S; of
infection during the study follow-up period (S; = 1 if infected and S; = 0 if not), and, if

infected, the viral load Y; (on a log,, scale) shortly after diagnosis of infection.

To define the estimand of interest, we use potential outcomes/counterfactuals (Ney-
man 1923; Rubin 1978; Robins 1986). Specifically, define S; (0) to be the infection in-
dicator if, possibly contrary to fact, subject ¢ is assigned placebo. Define S; (1) to be
the infection indicator if subject ¢ is assigned vaccine. Similarly, define Y; (0) to be the

viral load if participant i is assigned placebo and Y; (1) the viral load if assigned vaccine,



where for a subject who does not become infected, i.e., S; (j) = 0, we define Y; (j) = x,
j = 0,1. The notation implicitly assumes that the potential outcomes of each trial par-
ticipant are not influenced by the treatments of other participants, known as the Stable

Unit Treatment Value Assumption (SUTVA) (Rubin, 1978, 1986). It implies consistency,

Assuming the study participants make up a random sample from a large population of
interest, then the outcomes W; = (5;(0),S;(1),Y;(0),Y;(1),7;, X;), i = 1,..., N, are
i.i.d. copies of a random vector W = (S (0),5(1),Y (0),Y (1), Z, X), and similarly the
observed data O; = (Z;,X;,S;,Y;), i« = 1,...,N, are i.i.d. copies of O = (Z,X,S,Y),

where we define Y = % if § = 0.
Randomization, possibly depending on the baseline covariates X, ensures that
(5(0),5(1),Y (0),Y (1)) T Z|X (2)

because (S (0),S5(1),Y (0),Y (1)) can, like genetic make-up, be considered an unobserved
baseline characteristic of each subject. Here, for random variables A, B and C, ATl B | C

indicates conditional independence of A and B given C.

The four principal strata described in the introduction can be defined in terms of the
counterfactual pair (S (0),.5 (1)): the never infected are those with S (0) = S (1) = 0, the
harmed are those with S (0) = 0 and S (1) = 1, the protected are those with S (0) = 1

and S (1) =0, and the always infected are those with S (0) = S (1) = 1.

For a subject ¢ who is in the ai principal stratum, a causal effect measure on his/her
viral load is some measure of discrepancy between Y;(0) and Y; (1), for example the
difference Y; (1) — ¥; (0). The average causal effect at covariate level X = z in the ai

stratum is defined as
ACE(z)=FEY (1))=Y (0)|S(0)=S(1)=1,X =x).
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Our goal is to propose methods for estimating the function ACE (-) based on the observed
data O;,i = 1,..., N. Since ACE(x) is a comparison of conditional means in the always
infected principal stratum and because randomization alone does not suffice to determine
membership to the az stratum, we must make additional assumptions on the distribution
of W in order to identify ACE(z). Arguing as in GBH, it can be shown that the following

assumptions, together with (1) and (2), do identify ACE (x).
A.1: Monotonicity: S;(1) < S;(0).

A.2: A model for the mixing probabilities of the always infected and protected in the

infected placebo group. Specifically,

P(S(1)=1[5(0) =1,Y(0),X) = w(X,Y (0); 5); (3)

where w (z,y; 8) = ®{m (z) + g (z,y; )}, B is fixed and known, & (-) is a known cdf,
m (-) is an unspecified function of X, and for each 3, g (-,-; ) is a known function of X

and Y.

The parameter § is not identified by the observed data. We propose regarding 8 (and
therefore, the function g (-, -; 3)) as fixed and known and, as a form of sensitivity analysis,
estimating ACE (z) under different values of 5. The range for § should be chosen inde-
pendent from the data. Choosing 3 such that g (X, Y (0); 8) = 0 is the same as assuming
that Y (0) IT S(1)|S(0) = 1, X (here referred to as assumption A.3), or equivalently that

the distribution of viral loads under placebo is the same in the ai and protected strata.

If X is discrete and can take a small number of values, we can estimate ACFE (z) by
applying the methods of GBH within each level z. However, if the distribution of X is
continuous or discrete with a large support this approach is unfeasible because the data
are too sparse to conduct cell-specific estimation. We address this problem by imposing

the following additional distributional assumptions on the law of W
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M.1: The probability of infection given covariates when assigned placebo is known up to a
finite dimensional parameter y; that is, P (S (0) = 1|/X) = 6, (X; 1), where p is unknown

and for each p, 0, (-; 1) is a known function.

M.2: The function m (z) in A.2 follows a parametric model m (X) = m (X; «), where «

is an unknown parameter vector and for each «, m (; ) is a known function.

M.3: The conditional distribution of viral load under vaccine given covariates X in the az
stratum is known up to a finite dimensional parameter 7;; that is, fy (1) s)=1,x (¥/S(1) =1,2) =

fo(ylz;m), where n; is unknown and for each n, f,(-|z;m) is a known density.
We also make one of the following two assumptions:

M.4a: The conditional distribution of viral load under placebo given covariates X in the
population comprised of both protected and always infected individuals, is known up to a
finite dimensional parameter 7§; that is, fy (o) s@)=1,x (¥|S (0) = 1,z) = fp(y|z;n§), where

74 is unknown and for each 7§, f,(-|z;n§) is a known density.

M.4b: The conditional distribution of viral load under placebo given covariates X in
the ai principal stratum is known up to a finite dimensional parameter 7%; that is,
Fro)s@=sm=1,x (¥[S(0)=5(1) =1,2) = fgi(y|3:; n3), where 7 is an unknown parame-

ter and for each 7§, f3*(-|z; nf) is a known density.

For ease of reference, we call the model defined by assumptions (1), (2), A.1, A.2,
M.1-M.3 and M.4a, model M,. We call M, the model defined like M, except that M.4a
is replaced by M.4b and in A.2 we demand that w (z, y; 8, ) > 0 for all (z,y, 8, ) . There

are advantages and disadvantages to both models, which we discuss in Section 4.

If in assumption A.2 the parameter § of model (3) is regarded as unknown, it is
not identified under (1), (2), and assumptions A.1 and A.2. However, § is identified if

the distributional forms imposed by M.1-M.3 and M.4b are also assumed. Consequently,



under M, rather than regarding S as fixed and known, one could estimate it. However,
since (3 is only identified because of models imposed to reduce the data dimensionality,
rather than estimating it we recommend continuing to regard 3 as fixed and known and

conducting sensitivity analyses over plausible values of £.

3. Maximum likelihood estimation of ACFE (x).

Under model M,, ACE(z) is a function of the unknown parameters (a,n,n) -

Specifically, ACE(z) = ACE,(x; o, m1, 1) where

_ Jyw (=, y;8,0) fp(y|lz;m6)dy
Jw (@, y; 8,0) fyplyla; ng)dy

ACE,(x;a,mi,m5) = /yfv(ylfv;m)dy

Similarly, under model M,, ACE(x) is a function of (771, 778) since it is equal to AC Ey(z;n1,m8) =
S yfo(ylz;m)dy— [ yf3(y|z; nf)dy. The maximum likelihood estimators of ACE(x) under
models M, and M, are therefore equal to the functions ACE,(z;-,-,-) and ACEy(z;-,-)

evaluated at the ML estimators of (a, n1,7¢) and (n1,75), respectively.

To derive the ML estimator we express the joint density of the observables O,
fo(0) = fx (X) Pz x (Z|X) Pszx (S|Z,X) fyis,zx (Y|S, Z, X),

in terms of the model parameters. Specifically, in the Appendix we show that

fo(ylz; m) under M,

riszx (yS=1,2=0,X =1x) = b v @wiBie) [ o)
Kz am) = peG s avepa  Wder Mo,
fyis,z,x WwS=1,2Z=1,X=x)= fu(ylz;m) under M, or M,,
Psz,.x S=1Z=0,X=2)=0,(z;p) under M, or M,,

O, (z; 1) [w (z,y; B, @) fo(ylz;ng)dy under M,

PS\Z,X (S: 1|Z: ]_,X = iL') =
Op (x; 1) [w (z,y; B, ) fr(yle; o, nb)dy  under M,.



It follows that the likelihoods £, (p®) and L, (p°) for p® = (u,c,m,n§) and p* =

(,u, a,n, 7)8) under models M, and M, respectively, with § known, are
N S
Lo(p") < [] !{fv (yilzi;m) O (:ri;u)/w(xi,y;ﬁ,a) fp(y|wi;778)dy}
i=1

1-5;,1%
x {1—01,, (ﬂci;u)/w(wi,y;ﬁ,a)fp(ymi;ng)dy} ]
1-27;

x [0 (@5 1) fy il )Y 11 = 6, (s )} =] (4)

and L, (p*) is defined like £, (p*) but with f(y|a; o, n}) replacing f,(ylz; ng).

In some datasets, including that from the VaxGen trial, the outcomes Y¥; may be
censored either above or below certain detection limits. The likelihood in such cases
can be easily extended to accommodate censored observations. In addition, when w(-)
depends on y, obtaining the MLEs of p® and p® may require maximizing over an integral
that is not in closed form. In Section 5 we discuss the numerical methods that we used

to maximize the likelihood in our simulations and example.

Provided the protected principal stratum is non-empty, then under sufficiently smooth
parameterizations, the ML estimators of the model parameters are asymptotically nor-
mally distributed. The variance of the normal limiting distribution can be consistently
estimated with either the observed or the (estimated) expected information. These, in
turn, can be used in conjunction with the delta method to obtain consistent variance esti-
mators of ACE(z) for each fixed z. In our simulation studies, variance estimates based on
the observed and expected information yielded nearly identical inferences. Alternatively,

variances may be estimated by bootstrapping.

It is interesting to note that in the absence of baseline covariates with M.3 and
M.4 left unspecified, models M, and M, are the same model and the ML estimator of

ACE = E(Y(1) - Y(0)|S(0) = S(1) = 1) coincides with the estimator of ACE derived
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by GBH (Shepherd, unpublished Ph.D. dissertation).

4. Specific Parameterizations

For our simulations and example, under both models M, and M, we have considered

exp(z” )
0,(x; 1) = 5
exp(xT o + By)
w(x,y; B, a) = 6
(z,4; 5, 0) 1+ exp(zTa+ By) ©)
where z = (1,21, -+ ,z,)" and p and « are parameter vectors of length ¢ + 1.

4.1. Parameterization for model M,

In order to ensure that the global null hypothesis, HZ'** : ACE (z) = 0 for all z, is

not a-priori excluded under model M,, f, (y|z;7:) in M.3 must have the functional form

oy = W@y By aw) fy(ylesm)
fv (y‘xanl) - fw(l“,y;ﬁv,au) f:(y|$,7}u)dy’ (7)

where 71 = (a, By, M) is an unknown parameter.

Model M, has two drawbacks. First, natural functional forms for ACE (z) when H,
fails cannot be expressed as simple restrictions on the parameters of the model. Second,
because of the many parameters in (7) there are identification problems. Specifically, at
the value of /3, that makes w (z,y; By, @) a function of = only, the parameter «, is not
identified. For example, under (6) the parameter , is not identified at 3, = 0. Also,
depending on the functional forms of w (z,y;-,-) and f,(y|z;-), there may be additional

identification problems. For example if, as we assume in our example and simulations,

Folz;mg) = (y; 2" A, 0?) (8)

where 78 = (A, 0), A = (Ao, A1, -+, Ag)T and ¢(y; 2T\, 0?) is a normal density with mean

z” )\ and variance o2, then with n, = (\,,0,), all values of 71 = (a, By, Ay, 0,) that satisfy
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ay — (=B dvo — B202/2, — By Av1s - -+, —BuAug) = 0 give the same function f,(y|z;n;). That
71 is not identifiable may not appear to be a problem because it does not rule out the iden-
tifiability of f,(y|x; ) and hence of E(Y(1)|S (1) = 1, X = z) which is the relevant term
needed to compute ACFE (z). However, the lack of identification of 7; does complicate
inference. Specifically, standard theory does not apply for the asymptotic distribution of
ML estimators of 7;. Consequently, using the delta method with the usual calculations
for the asymptotic variance of the ML estimator of n; to estimate the variance of the ML
estimator of ACFE (z) yields Wald confidence intervals whose coverage probability, even
with large samples, is not close to the nominal level. Even though standard asymptotic
calculations do not result in consistent variance estimators, we suspect that boostrap
estimators of the variance of the estimate of E(Y(1)|S(1) = 1,X = z) can be used to
compute valid confidence intervals. Our suspicion follows from the conjecture that the
ML estimators of E(Y(1)|S (1) = 1,X = z) may be regular and asymptotically normal
even when 7, is not identified. Our simulations support this conjecture, although this

warrants further study.
4.2. Parameterization for model M,

Under My, fy(o)s@)=s)=1,x (¥|S (0) =S (1) = 1,z) is modeled directly. A major ad-
vantage of this model is that, as opposed to model M,, the functional form for f,(y|z;n)
can be easily chosen so as to ensure both that the global null hypothesis can hold and

that 7, is identified and /n—estimable. In our example and simulations we use
Iy (ylwsmg) = é(y; 2"y, 0) and fo(ylzsm) = é(y; 2", 07), (9)

where 170 = (7,05) 1 = (Y0,00) ;% = (%p0> Y15+ > Vpa) "> #(y; 2" 1, 03) is a normal

density with mean z7+, and variance o2, and v,, 0, 7, and o, are unknown. Note that
under (9), ACFE (z) takes the simple and easily interpretable form z7 (v, —~,). Thus,

for example, a test of H{™" : ,; = v, is a test of no interaction between treatment and

12



the jth covariate, and a global test of the average causal effect of vaccine on viral load is
a test of HI'™ : ~, = ~,. Interestingly, under (6) and (9) a closed form expression for
the likelihood £, (p?) exists because [w (z,y; 8, a) f3(ylz; o, n)dy = [L+exp{—B(a",—
4602) — o}

One potential disadvantage of model M, is that it requires that w(z,y; 3, ) is
nonzero for all x and y. This rules out sharp bound analyses (HHS) and is tantamount
to assuming the vaccine is not 100% effective in any subpopulation. However, this is a
plausible assumption for most candidate HIV vaccines (see Graham, 2002), and even if
there were subpopulations where the vaccine was known to be 100% effective, participants

in these subpopulations would not belong to the ai principal stratum and could therefore

simply be removed before performing the analysis.

Note that by assuming a functional form for fy(g)s@)=s(1)=1,x (¥|S (0) =S (1) =1,z)
and another for P (S (1) =1/S(0) =1,Y (0),X =) we are indirectly imposing func-
tional form restrictions on the distribution fy(o)s0)=1,x (¥|S (0) = 1,2), which is identi-
fied by the observed data without assumptions A.1 and A.2. Indeed, this functional form
is strongly driven by the chosen value of 5. This is not surprising since, as argued earlier,
B is identified under model M,. A consequence of this remark is that some choices of
B can result in poor model fits. For example, extreme values of § may correspond to
a bimodal distribution for fy(o)s()=1,x (¥|S(0) = 1,z) and this may be contradicted by
the evidence in the data. If such extreme values of 8 were indeed regarded as plausible
prior to assuming M.1-M.4b, then we recommend that the analyst consider more flexible
distributional shape assumptions since poor model fits under plausible values of 3 suggest

incorrect specification of at least one of the assumptions in M.1-M.4b.

5. Simulations
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To evaluate the small sample performance of our estimators of ACE(z) we conducted
a 2 x 2 x 3 x 3 factorial simulation experiment, corresponding to generating data under
M, or My; VE = P(S(1) = 0[S(0) =1) = 0.3 or 0.6; 8 = 0,1, or 3; ACE(-) constant
and equal to 0,1/3, or 1/2. Each simulation generated 1000 vectors W according to the
following steps: A) The first 500 vectors were set at Z = 0, the second 500 were set at
Z = 1. B) X was a single covariate generated according to the N(38,6?) distribution
(resembling the age distribution in the VaxGen trial). C) Given X, S(0) was drawn from
a Bernoulli(6,(X; 1)) distribution where 6,(X; 1) was as in (5) with p = (log(1/3),0) so
that 6,(X; ) was constant and equal to 0.25 (this choice yields an expected number of
infections in the placebo arm of 125, which is typical for a Phase III vaccine trial). D)
Y (0) was generated for all realizations with S(0) = 1 according to the density f,(y|z;n§)
given in (8) (under M,) or the density f(y|z;a,n?) (under M,) induced by f(y|x;nf)
in (9) and w(z,y; B, «) in (6). For simulations generated under Mg, n§ = (A, A1, 0) =
(2.3,0.05,1.0) (which resembles the viral load distribution for infected placebos in the
VaxGen trial, where the mean and variance were 4.2 and 1.0, respectively). We detail
our choices of a and 7% below. E) Given X and Y(0), for each realization with Z = 1
and S(0) = 1, S(1) was drawn from a Bernoulli(w(X,Y (0);8,«)) distribution with
w(z,y; B, a) defined as in (6). In all simulations, oy = log(2)/10, so that for a 10 year
increase in age, the odds of being in the a7z stratum doubled. Under M,, oy was chosen
sothat VE =1— [ [w(z,y; B, @) fp(ylz;n§)e((x — 38) /6%)dzdy ~ 0.3 or 0.6 (where ¢(-)
denotes the standard normal density). To ensure that V E = 0.3, o was set at —1.8, —5.8,
or —13.4, when [ was set at 0, 1, or 3 respectively; and to ensure that VE = 0.6, ay was
set at —3.1, —7.4, or —16.3, when § = 0,1, or 3. For simulations generated under Mj,
oo and n) were chosen together so that E(Y(0)|S(0) = 1) ~ 4.2 and VE =~ 0.3 or

0.6. For VE =~ 0.3 we set (o, Y0, Vp1,0p) as (—1.8,2.3,0.05,1.0), (—5.7,2.6,0.05,1.0), or
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(—12.1,3.1,0.05,1.0), when 8 was equal to 0,1, or 3, respectively; for VE ~ 0.6 we set
(0, Yp0s Yp1, 0p) as (—3.1,2.3,0.05,1.0), (—7.4,2.9,0.05,1.0), or (—17,4.2,0.05,1.0), when
B = 0,1, or 3, respectively. F) For the realizations with Z = 1 and S(1) = 1, Y(1) was

set equal to Y(0) + A, with A = 0,1/3, or 1/2. Note that with this choice, A = ACFE(x).

MLEs were obtained using quasi-newton methods implemented in R using the func-
tion optim(-). Under M,, when 8 # 0, obtaining MLEs requires maximizing over an
integral that is not in closed form. Numerical integration programs written in C were
used to obtain these integrals, which were then called into R. For some simulations there
were local maxima. Analyses were run using multiple initial parameter values; computa-
tionally, it is important to specify good initial values. In practice we recommend starting
the estimation at § = 0, and then to iteratively conduct estimation at increasing (or
decreasing) values of § using as initial values the ML estimators obtained at the nearest

neighbor of the current . Programs can be made available by contacting the authors.

Table 1 reports Monte Carlo rejection probabilities, based on 1000 simulated datasets,
of two-sided Wald tests of Hy : ACE (x) = 0 at nominal 0.05 level for the values x = 30, 38,
and 55 under model M, using (5)-(8) with values of 3 set at 0, 1 or 3 (only one of
them being the true value under which the data were generated) and 3, in (7) fixed at
0. Because of the computational time it takes to calculate the bootstrap variance of the
estimate of E(Y (1)|S (1) = 1, X = z) under M,, it is not feasible to perform an extensive
simulation study with M.3 correctly specified as (7) and 3, unknown. For this reason we
conducted a small sub-study described below to evaluate the bootstrap performance, but
we also evaluated the performance of standard variance estimates using the information
and delta method when [, was set (possibly incorrectly) to 0. Interestingly, even when
the true value of 5 was different from 0 (and hence inference was conducted assuming an

incorrect value of 3, in (7)) the type I error (i.e. the rejection probability under A = 0) was
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close to the nominal 0.05 level and the tests had substantial power for detecting A =1/2
at £ = 38 (the mean of X). The lower power of the tests at z = 30 and especially 55
is presumably because these values are far from the mean of X (with 55 being about
three standard deviations away from the mean). Also, as predicted by theory, very poor

inference is obtained when the values of £ are incorrectly specified.

On a small subset of the simulated data used in Table 1 (the first 200 datasets
generated with VE ~ 0.3 and § = 1) we examined the performance of the ML estimator
of E(Y(1)|S(1) = 1,X = z) with M.3 properly specified by (7) (leaving 3, free) and
with its variance estimated from 100 bootstrap repetitions. The coverage probabilities of
Wald-based 95% confidence intervals of E(Y(1)[S(1) =1,X = z) for x = 30, 38, and 55

were 0.950, 0.975, and 0.955, respectively.

Table 2 reports rejection probabilities for the same test under the same settings
as in Table 1 except that data were generated under model M, and ML estimation was
conducted under model M, using (5)-(6) and (9). Simulation results are similar, although
it should be pointed out that because data were generated under different models, Tables
1 and 2 are not directly comparable. Table 3 reports rejection probabilities for Hi"" and

H{"  as defined in Section 4.2, based on the data and estimators used in Table 2.

6. Example

We illustrate our methods using data from the VaxGen vaccine trial. This was a
randomized, double-blind, placebo controlled Phase III trial of AIDSVAX B/B conducted
between 1998 and 2003. This study recruited 5,403 HIV negative, at risk individuals from
61 sites spanning large cities of North America and the Netherlands. The ratio of vaccine
to placebo assignment was 2:1. Overall, the vaccine was not found to protect against HIV

infection, although interaction tests suggested that the vaccine might partially prevent
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infection for non-whites and high risk subjects. Detailed study results are found in Flynn
et al. (2005). Here we compare the viral load between the vaccine and placebo arms
among participants (overall and within covariate subgroups) who would have been infected

regardless of randomization assignment.

A total of 368 subjects were infected during the trial, and of these, 347 enrolled in
the post-infection phase of the study (225 in the vaccine arm). Viral load was measured
from infected participants at visits < 1 Month, 1 Month, and 2 Months post-infection
diagnosis. We defined each participant’s set-point viral load (the outcome of interest)
as the median of all logq viral load measurements taken by the Month 2 visit and prior
to initiation of antiretroviral therapy. (Results were comparable when means were used.)
The viral load assay had lower and upper quantitative limits of 400 and 750,000 copies/ml,
respectively. A subject’s median viral load was defined exactly if the number of detectable
viral load values exceeded the number undetectable. Otherwise, the median was left- or

right-censored; 23 subjects had a left-censored median and 7 had a right-censored median.

There was presumably little interaction among study participants, so SUTVA was
thought to be reasonable. Because this trial was randomized and double blinded, individ-
uals’ behavior and exposure to HIV were expected to be the same regardless of treatment
assignment. In addition, this vaccine was designed in such a way that it could not mutate
to become the virus. These facts justify A.1, although the assumption could be violated
if the blinding was broken or if the vaccine induced susceptibility-enhancing immune re-
sponses for certain subjects. Some, though not all, instances in which monotonicity is
violated imply that P(S(1) = 1) > P(S(0) = 1). Those instances are detectable with
power converging to 1 as the sample size goes to infinity by an a-level two-sample t-test
of Hj : P(S =0|Z =0) > P(S = 0|Z = 1). Since the rates of infection were 241 of 3598

(6.7%) in the vaccine arm and 127 of 1805 (7.0%) in the placebo arm, a Wald test of H{
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fails to reject. Thus, monotonicity seems reasonable.

We first estimated the unconditional average causal effect of vaccine on viral load
(ACE), defined in Section 3. Figure 1 shows the estimated ACFE for § in (—3,3) using
A) the method of GBH with censored median viral load values set to either the lower or
upper detection limit, and B) the ML estimators for the censored likelihood under M,
using (5)-(8) for the relevant distributions and probabilities except not conditional on
covariates. Results based on the two procedures are similar, with the method of GBH
yielding slightly narrower confidence intervals presumably because censored values were
truncated. The range of (—3,3) for 5 was chosen to reflect various possibilities about the
relationship between the HIV viral load distributions in the always infected and protected
strata. When [ is negative, the always infected distribution is tilted to the left of the
protected distribution and the opposite happens when ( is positive. The tilting is more
marked the larger the absolute value of 5. Absolute values of 3 as large as 3 correspond
to pronounced tilting (for example, with 5 = 3 the odds of being in the ai stratum
versus the protected stratum for a one unit increase in viral load multiplicatively increase
exp(3) ~ 20). Thus, for example, 5 would likely be positive if individuals with relatively
strong immune systems tend to have lower viral loads when infected and if the vaccine is
more likely to protect these individuals from infection. On the other hand, postulating
negative values of  would be reasonable if it is believed that the vaccine prevents infection
from relatively strong/virulent viruses better than it prevents infection from weaker/a-
virulent viruses. For all 8 in (=3, 3), the null hypothesis, Hy: ACE = 0, was not rejected.
The ML estimator of ACE under M, using (5)-(6) and (9) was also computed for 3 in
(—3,3). Results using this parameterization were similar for 8 in (—1,1.5). However,
outside this range the fitted distribution of viral load in the infected placebos under M,

was bimodal, even though the observed distribution of viral loads among people infected
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in the placebo arm was not bimodal. Hence, presumably for S outside this range, the
assumed model is misspecified (as discussed in Section 4.2). The test described in HHS

(which corresponds to GBH setting § = +o0) also did not reject Hy.

It is more compelling and interesting to estimate ACE(x) for covariate levels under
which vaccine efficacy, P (S (1) =0[S(0) =1,X = z), is large; it is hypothesized that
vaccine-induced antibodies that partially protect against infection also may have a ben-
eficial effect to lower viral load. Among non-whites vaccine efficacy was estimated as
0.487. The vaccine also appeared more effective for those with higher baseline risk scores
(the number of self-reported high infection-risk behavior activities, taking integer values
from 0-9). There is an hypothesized biological mechanism for why the vaccine’s ability to
prevent infection and lower viral load might vary by risk behavior: natural exposure to
HIV may “prime” the immune system, which is “boosted” by the vaccine to provide extra
protection (Rowland-Jones et al., 1998). Hence, it is of interest to apply our methods to

estimate the ACFE(x) at different risk levels among non-whites.

The first row of Figure 2 contains sensitivity analyses of the estimated ACE(z) at
different risk scores based on the non-white cohort data only, under distributional as-
sumptions M, using (5)-(8) with x defined as risk score. For non-whites with risk scores
of 2, if 5 < —1/2 then there is evidence that ACE(z) > 0. The second row of Figure 2 is
similar to the first, only this analysis was performed under M, using (5)-(6) and (9) for
the relevant distributions and probabilities. Under M,, if § > 1, there is evidence that
the vaccine causes lower viral loads among non-whites with risk scores of 2, 3, and 4. In
addition, based on the analysis under M, if 8 > 1.5, H#'”* is rejected at the 0.05 level.
There is insufficient evidence, however, to conclude that ACE(x) varies by risk score;

under M, at all values of 3 in (—3, 3), we fail to reject H{"*" (P-values > 0.18).

The discrepancies between the first and second rows of Figure 2 are primarily due to
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different model choices for f,(y|z;n;). In the first row under M, using (7), f,(y|z;n) is
modeled with six parameters, leading to a much more flexible estimate of E(Y(1)|S(1) =
1,X = z) than under M, using (9) (see Figure 3). When we perform the sensitivity
analyses under M, except setting 3, in (7) equal to 0 (as in Table 1 of our simulations,
which is equivalent to modeling f,(y|x;n;) with the normal linear model (9)), then the

estimated ACE(x) is very similar to the estimate under M, (see Figure 2, row 3).

It should be noted that for large negative values of 3, our parameterization choices
under M, are probably inadequate. The sharp shifts in the ACE(z) (seen in the plot

with Risk=4) for 8 < —1.5 are presumably due to either M.2 or M.4b being misspecified.

7. Discussion

In this paper we have considered estimation of ACE (x) under parametric models for
the counterfactuals. We have motivated our methods with an application in which Y is
continuous. Our methods apply also to discrete outcomes, provided adequate parametric
models are used in M.3 and M.4. As we have seen, there are some inherent challenges
to using parametric methods for estimating ACE(z). Under M,, there are identification
and over-fitting issues. Under M,, it may be difficult to find models that are compatible
with the observed data for the complete range of 5. One could imagine a third parametric
model, say M., based on assumptions (1), (2), and A.1, modeling f,(-), f;}i(-), and instead
of w(-), modeling f2(-) (the distribution of viral loads for placebos in the protected
principal stratum), with a sensitivity parameter specifying some discrepancy between
frrot(-) and f3*(-). This is very similar to model M, (where we specified f3*(-) and
w(-), inducing f27°(-)). Although under this model there is no longer the requirement
that w(-) > 0 for all z and y, care would still have to be taken to make distributional

assumptions compatible with the observed data for the entire range of 8 (similar to model
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M,). Instead of considering inference using distributional shape assumptions on viral
loads we could consider estimation under less restrictive semiparametric models that only
make assumptions about the conditional means of the counterfactuals given covariates in
the ai principal stratum. One advantage of the semiparametric approach is that it gives
inferences (in particular, tests of the null hypothesis Hy : ACE (x) for all z), that are
valid under less stringent assumptions about the distribution of the outcome in the az

stratum. In future work we will describe semiparametric estimation of ACFE ().

Both the semiparametric and the parametric methods require assuming that £ in
A.2 is known. In its fullest sense, a sensitivity analysis includes not just varying (3, but
also varying the form of w (x,y; ). To be useful, w(z,y; ) should be chosen so that
the sensitivity parameter 5 has a meaningful interpretation, allowing one to intuitively
choose a range over which to perform the analyses; with w(z,y; 8) defined by (6), 5 has

a log-odds ratio interpretation.

These sensitivity analyses can be thought of as examining departures from assumption
A3, that Y(0) IT1 S(1)|S(0) = 1, X. If A.3 holds, then one can simply perform standard
regression analyses on the infected subjects. Adding to X additional covariates thought
to be associated with both vaccine efficacy and viral load may make A.3 more believable.
However, this does not imply that adding covariates to the analysis restricts the range
of values of 3 considered plausible (Scharfstein et al., 1999). If monotonicity is not
reasonable, then in order to identify ACE(z) one will need to make other assumptions
about the joint distribution of (S(0),S(1)) given X. One such assumption is explainable
non-random infection (Robins, 1998; Hayden et al., 2005). In the absence of covariates and
monotonicity, sharp non-parametric bounds have been derived by Jemiai (unpublished
Ph.D. dissertation) and Zhang and Rubin (2003). Jemiai’s dissertation also discusses

methods for conducting sensitivity analyses.
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Other possible applications of these methods include: mother-to-child HIV transmis-
sion studies, comparing outcomes in always surviving infants; antiretroviral clinical trials,
comparing metrics of HIV resistance mutations in subjects always failing treatment regi-
mens; and cancer research, comparing disease severity between a preventative treatment
and placebo among those who would have developed cancer regardless of randomization.
In general, these methods are applicable to intervention studies with post-randomization

selection criteria where SUTVA and monotonicity are thought to hold.
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APPENDIX

Under M,,

friszx(ylS=1,2=0,X =)

= froso=1zx ¥[S0)=1,Z=0,X=2) by (1)

= froyso=1,x (y/S(0)=1,X =2z) by (2)
= fp (ylz;np) by M.4a.
Under My,

fY\S,Z,X (y|S = 1,Z = O,X = ,x)
= froyso=tzx ¥S(0)=1,Z2=0X =) by (1)

= froyso=1,x ¥S0)=1,X =2x) by (2)
wH(x,y; B, )w(z,y; B, @) froyso)=1,x (y[S(0) =1, X = x)/
f (z,y; B, @) fy©)s@=1,x (¥[S(0) = 1,X = z)dy

Jw Nz, y; B, )w(z, y; B, @) froyso)=1,x (¥[S(0) = 1, X = z)dy

= if w(-) >0
f (.T Y; ﬁa )fY (0)|S(0 1X(:U|S(0) =1, X = x)dy
 wTi(z,y;8,0) fy 1=s)=1,x (¥|S(0) =5(1) =1, X =z)
= Jwz,y; B, @) fro)so=s)=1,x (¥]S(0) = S(1) =1, X = z)dy by A.2, M.2
w 1(x’yaﬁa )faz( |CU 770)
N by M.4b
[wt(z,y; B, @) foi(y|z; nd)dy y
= f,(ylz; o,m).
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Under M, or M,,

friszx WS=1,Z2=1,X =x)

Fronsm=1,zx @WlS(1)=1,Z2=1,X =) by (1)
fraysm=1x (¥lS (1) =1,X = 2) by (2)
fo(ylz;m) by M.3.

PS\Z,X (S: 1‘Z: O,X :.T)

Pso)z,x (S(0)=1|Z=0,X = z) by (1)
Ps)zx (S(0) =1|X = z) by (2)
Op (; 1) by M.1.

PS\Z,X (S: 1‘Z: ]_,X :.I)

Psazx (S(1)=1Z=1,X =) by (1)
Psayzx (S(1) = 11X = z) by (2)
Ps(o)x (S (0) = 1|X = z) Psq1y|s00),x (S (1) =1[S(0) =1, X = x) by A.1

6, (a: 1) x / Psayisorox (S (1) =118 (0) = 1,V (0) = 4, X = )

fronso=1,x (¥|S(0) =1, X =z)dy by M.1
Op(z; 1) [w(z,y; B, @) fp (yla;ns) dy by A.2, M.2, M.4a
Op (5 1) [ w (x,y; B, ) f3 (yl; o, ) dy by A.2, M.2, M.4b
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Table 1: Size/power for detecting a 0, 1/3, and 1/2 mean shift alternative of the Wald
test of Hy: ACE(z) = 0 under M, with §, in (7) set equal to 0.

VE  True Presumed A=0 A=1/3 A=1/2
B8 B8 z=30 z=38 z=55 =30 x2=38 z=55 x=30 =38 x=55
~0.3 0 0 0.047 0.052 0.050 0.251 0.634 0.129 0.506 0.936 0.230
0 1 0.260 0342 0.074 0.053 0.098 0.073 0.096 0.360  0.145
0 3 0.520 0.588  0.086  0.137  0.097 0.065 0.066 0.080  0.106
1 0 0.383 0479  0.048 0.868 0994 0.115 0.956 1 0.237
1 1 0.056 0.056 0.059 0.264 0.605 0.086 0.477 0.919 0.159
1 3 0.146 0.132 0.060 0.066 0.173 0.075 0.123  0.460 0.128
3 0 0.832 0951  0.067  0.993 1 0.161  0.998 1 0.288
3 1 0.178 0.275 0.074 0.653 0949 0.114 0.838 0.998 0.197
3 3 0.048 0.073 0.083 0.184 0.521 0.089 0.379 0.860 0.161
~ 0.6 0 0 0.058 0.042 0.058 0.193 0.462 0.128 0.350 0.807 0.195
0 1 0462 0.752 0.085 0.144 0.122 0.061 0.073 0.049 0.086
0 3 0.825 0979 0.141 0.507 0.682 0.061 0318 0.336  0.059
1 0 0483 0813 0.062 0.828 0997 0.193 0.921 1 0.303
1 1 0.058 0.071 0.043 0.213 0.471 0.107 0.357 0.775 0.167
1 3 0.217 0391 0.061  0.057 0.109 0.171  0.102 0.060 0.096
3 0 0.987 1 0.114 1 1 0.335 1 1 0.487
3 1 0433 0635 0.068  0.999 1 0.334 1 1 0.485
3 3 0.049 0.053 0.067 0.190 0.492 0.115 0.339 0.807 0.189
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Table 2: Size/power for detecting a 0, 1/3, and 1/2 mean shift alternative of the Wald
test of Hy: ACE(x) = 0 under M,.

VE  True Presumed A=0 A=1/3 A=1/2
B8 B8 z=30 z=38 =55 =30 2=38 z=55 =30 z=38 =z=055
~03 O 0 0.058 0.055 0.047 0.308 0.673 0.124 0.559 0.949 0.211
0 1 0.232 0363 0.061 0.064 0.084 0.096 0110 0.350  0.157
0 3 0492 0.710 0.153 0.253 0323 0.133 0213 0.272  0.159
1 0 0471 0.573 0.048 0.881 0.988 0.095  0.956 1 0.172
1 1 0.056 0.061 0.050 0.269 0.547 0.121 0.449 0.853 0.197
1 3 0.314 0432 0.096 0.384 0439 0.140 0.441  0.579  0.200
3 0 1 1 0.391 1 1 0.173 1 1 0.092
3 1 0422 0422 0.0561 0.767 0945 0.032 0.888 0.994 0.057
3 3 0.056 0.052 0.058 0.186 0.502 0.121 0.351 0.831 0.201
~ 0.6 0 0 0.057 0.058 0.069 0.209 0.507 0.143 0.387 0.824 0.212
0 1 0.466  0.742 0.117 0.139 0.136 0.066 0.063  0.050  0.098
0 3 0.797 0988 0.210 0.492 0.697 0.127 0326  0.382  0.120
1 0 0.644 0900 0.083 0.896 0.998 0.174  0.964 1 0.257
1 1 0.061 0.049 0.062 0.180 0.388 0.113 0.307 0.686 0.167
1 3 0.284 0.460 0.129 0.132 0.110 0.121 0.124 0.170 0.164
3 0 1 1 0.062 1 1 0.048 1 1 0.070
3 1 0.505 0.655 0.038 0.750 0.935 0.076 0.838 0.982  0.116
3 3 0.063 0.064 0.056 0.145 0.301 0.105 0.240 0.545 0.168
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Table 3: Size of the Wald test for ACE(z) independent of z (H{™": ~,; = ~,;), and
size/power of the likelihood ratio test of ACE(z) = 0 for all z (HZ"**: ~, = ,), under
M,

VE True Presumed H{"er Hob
B Y A=0 A=1/3 A=1/2
~0.3 0 0 0.063 0.051 0.561 0.907
0 1 0.068 0.283 0.093 0.289
0 3 0.128 0.569 0.460 0.530
1 0 0.162 0.491 0.983 1
1 1 0.057 0.052  0.456 0.780
1 3 0.135 0.261 0.311 0.453
3 0 0.948 1 1 1
1 0.187 0.307 0.874 0.979
3 3 0.055 0.057  0.420 0.769
~ 0.6 0 0 0.075 0.056 0.430 0.766
0 1 0.087 0.662 0.124 0.076
0 3 0.139 0.975 0.635 0.368
1 0 0.146 0.824 0.994 1
1 1 0.051 0.059 0.317 0.599
1 3 0.118 0.383 0.104 0.151
3 0 0.878 1 1 1
3 1 0.170 0.507 0.901 0.971
3 3 0.057 0.056 0.275 0.528
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Figure 1. Sensitivity analysis estimates and 95% confidence intervals of the AC'E for the
complete VaxGen cohort using both the method of GBH and parameterizing with M,.

Figure 2. Sensitivity analyses of the ACE(z) at different risk behavior levels in the
non-white cohort. The first row is under distributional assumptions M, using (5)-(8) for
the relevant distributions and probabilities. The second row is under M, using (5)-(6)

and (9). The third row is under M, using (5)-(8) except fixing £, = 0 in (7).

Figure 3. Estimates for the expected viral load among infected non-whites in the vaccine
arm conditional on risk score, E(Y(1)|S(1) = 1,X = z), based on model (7) (solid line)
and model (9) (dashed line). The circles are the observed viral loads (the three viral load

values below 2.5 were censored).
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Figure 3.
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