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SUMMARY

The generalized estimating equations (GEE) approach is commonly used to model incomplete longitu-
dinal binary data. When drop-outs are missing at random through dependence on observed responses
(MAR), GEE may give biased parameter estimates in the model for the marginal means. A weighted
estimating equations approach gives consistent estimation under MAR when the drop-out mechanism
is correctly speci�ed. In this approach, observations or person-visits are weighted inversely propor-
tional to their probability of being observed. Using a simulation study, we compare the performance
of unweighted and weighted GEE in models for time-speci�c means of a repeated binary response
with MAR drop-outs. Weighted GEE resulted in smaller �nite sample bias than GEE. However, when
the drop-out model was misspeci�ed, weighted GEE sometimes performed worse than GEE. Weighted
GEE with observation-level weights gave more e�cient estimates than a weighted GEE procedure with
cluster-level weights. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In longitudinal studies, subjects often have data missing due to missed visits, commonly when
subjects drop-out of a study or are lost to follow-up. A subject is called a drop-out when the
response variable is observed through a certain visit and is missing for all subsequent visits [1].
The problem of drop-outs can be particularly acute in epidemiological cohort studies where
interest lies in estimating trends over time and where subjects are followed prospectively over
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a period spanning several years. The GEE approach [2] has been widely applied in estimating
time trends from incomplete longitudinal binary data such as those arising in cohort studies.
The performance of GEE for unequal cluster sizes and binary outcomes has been evaluated
for between-cluster e�ects such as found in geographically clustered data [3] and in dose–
response studies in toxicology [4] and teratology [5]. Other simulation studies restrict focus to
equal cluster sizes [6–9]. Lipsitz et al. [10] evaluate GEE by simulation for a bivariate binary
response when drop-out occurs prior to the second time point. Evaluation by simulation of
the GEE method for estimating time trends from repeated binary data with more than two
time points in the presence of drop-outs appears missing from the literature.
To address this de�ciency, this paper presents a simulation experiment motivated, in part,

by an analysis of cigarette smoking trends among young adults in the Coronary Artery Risk
Development in Young Adults (CARDIA) study [11]. In that study, more than 5000 black and
white males and females were followed for 7 years and the outcome, self-reported cigarette
smoking status (yes=no), was recorded on four occasions. About two-thirds of the participants
had complete data. The probability of drop-out conditional upon not dropping out at earlier
visits was greater for those who were smokers at previous visits than for those who were non-
smokers. In this case, an analysis based upon GEE may give biased estimates of parameters
for the regression model of the marginal probabilities describing trends in smoking prevalence.
Given the limitations of GEE, there is a growing interest in weighted generalized estimating
equations [11–16], which give consistent estimates when the model for the missing data has
been correctly speci�ed and consistently estimated.
The validity of an estimating procedure for regression model parameters depends upon

model assumptions, including those for missing data. In longitudinal models, the drop-out
mechanism may be described hierarchically as data missing completely at random (MCAR),
data missing at random, or data missing not at random (MNAR) [17]. The data are MCAR if
the drop-out and measurement processes are independent. Under this scenario, the probability
of missingness for any response depends in no way on the responses or covariates, whether
observed or unobserved. The data are missing at random if missingness depends on observed
data but not on unobserved data. In repeated measures studies with drop-outs, and where
interest lies in a regression model, two types of missing at random should be delineated. First,
covariate dependent missingness allows the missingness of responses to depend only upon
covariates. Second, an assumption of missing at random depending upon observed outcomes,
which we denote MAR, allows missingness to depend on the observed responses from previous
visits as well as observed covariates. Conditional upon these observables, missingness does
not depend upon the current or future responses. Finally, missing data is non-ignorable or
missing not at random (MNAR) if the missingness is related to the unobserved responses
[18]. Neither GEE nor weighted GEE, as considered here, is appropriate in this case. Whether
the missingness process is MAR, as opposed to MNAR, often involves assumptions which
cannot be tested with the data. Weighted GEEs valid under MNAR [19] are not considered
in this paper.
We report on simulation study results that evaluate the performance of GEE and weighted

GEE under possible misspeci�cation of models for drop-outs and intraperson correlation. We
evaluate bias, test size, coverage of nominal 95 per cent con�dence intervals, and relative ef-
�ciency under di�erent working correlation structures. Two di�erent formulations of weighted
GEE, due to Robins et al. [12] and to Fitzmaurice et al. [13], are studied with data simulated
under several di�erent missingness mechanisms.
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2. WEIGHTED ESTIMATING EQUATIONS FOR LONGITUDINAL DATA

We consider marginal models for longitudinal studies that relate the expected value of an
individual’s binary response at time t (for example, the probability of being a smoker at time
t) to covariates via a known link function g(·) [20]. Assume a set of T observation times
common to all individuals, and de�ne the complete data response vector Yi=(Yi1; : : : ; YiT )′ for
individual i, i=1; : : : ; K . For example, if a subject possesses the outcome of interest (subject is
a smoker) Yit =1, and Yit =0 if the subject does not possess this characteristic (subject is not
a smoker). The corresponding complete covariate matrix for individual i is Xi=(Xi1; : : : ; XiT )′

where Xit is a p× 1 covariate vector at time t.
Now suppose individual i is observed at times t=1; : : : ; Ti, giving the Ti× 1 vector of

observed responses, Y oi =(Yi1; : : : ; YiTi)
′, 16Ti6T . Likewise, let X oi =(Xi1; : : : ; XiTi)

′ represent
the corresponding matrix of covariates. Next, let E(Yit |Xi)=�it be the probability that Yit =1
given Xi, and let �i=(�i1; : : : ; �iT )′ and �oi =(�i1; : : : ; �iTi)

′. Our goal is to make inferences
about marginal probabilities, �it(�), where g(�it)=X ′

it�, for individuals regardless of whether
or not they drop out. In particular, our interest is in generalized linear models for �it given
by the logit link function, g(�it)= ln[�it=(1− �it)].
To estimate �, while accounting for correlation among an individual’s repeated responses,

Liang and Zeger [2] proposed generalized estimating equations

K∑
i=1
Do

′
i (X

o
i ; �)(V

o
i )

−1[Y oi − �oi (�)]=0 (1)

where Doi (X
o
i ; �)= @�

o
i =@� is a Ti×p matrix and Voi is a working covariance matrix for

Y oi . A working model for the correlation is assumed such that Voi =A
o
i C

o
i A

o
i , A

o
i =diag{v1=2it }

is a Ti×Ti diagonal matrix where vit =�it(1 − �it) for binary data, and Coi (�) is a work-
ing correlation matrix that depends on an unknown nuisance parameter vector �. Equa-
tion (1) yields a consistent estimate of � if the data are MCAR or missingness depending
only on the vector of covariates, whereas, under MAR, a GEE analysis may give biased
estimates.
An alternative estimating equations approach that can provide unbiased inference in longi-

tudinal studies with drop-outs has been proposed by Robins et al. [12]. They proposed a class
of estimating equations in which observations or person-visits have weights inversely propor-
tional to their probability of being observed. This weighted generalized estimating equations
approach, which has been called the inverse probability of censoring weighted GEE estimator,
is valid under an MAR assumption even if the correlation model is misspeci�ed, provided the
model for estimating the probability for missing response is correctly speci�ed. A consistent
estimate of � may be obtained from

K∑
i=1
D′
i(Xi; �)V

−1
i Wi[Yi − �i(�)]=0 (2)

where Di(Xi; �)= @�i=@� and Vi=AiCiAi is a T ×T working covariate matrix for Yi. Here,
the drop-out process is taken into account through speci�cation of a T ×T diagonal matrix
of occasion-speci�c weights, Wi=diag{Ri1wi1; : : : ; RiTwiT}, where Rit =1 if the ith individual’s
response is observed at time t, and 0 otherwise. In other words, the weight is given by wit for
observed visits and 0 for unobserved visits. The de�nition and estimation of wit , the inverse
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of the probability that the ith individual is observed at the tth visit, is described below. Note
that unless Ci= I , (2) depends upon covariates, assumed known, from both observed and
unobserved occasions. The choice of the working correlation matrix in (2) a�ects e�ciency
[14]. Like GEE, the use of sandwich variance estimators in weighted GEE provides robust-
ness, in an asymptotic sense, to misspeci�cation of the correlation structure. With consistent
estimation of weights provided by a correctly speci�ed drop-out model, weighted GEE does
not require correct speci�cation of the correlation structure in order to estimate � and the
variance of its estimate consistently.
To characterize the missing data process and obtain estimates ŵit , let �it =P(Rit =1 |Ri(t−1)

= 1; Xi; Yi; �) denote the probability of observing a response at time t for the ith individual con-
ditional on the individual being observed at the time t−1. Following the convention of Robins
et al. [12], we do not consider intermittent missing data patterns, that is, (Rit =0; Ri(t+k) = 1,
for k¿0 is not allowed). For the �rst time point, assume Ri1 = 1 and de�ne �i1 = 1. The
MAR assumption of the weighted GEE approach speci�es that �it =P(Rit =1 |Ri(t−1) = 1; Xi;
(Yi1; : : : ; Yi(t−1)); �), so that conditional upon the past responses Yi1; : : : ; Yi(t−1), Rit and Yit are
independent. The missing data mechanism therefore depends only on observed data and
may be speci�ed up to a q× 1 vector of unknown parameters, �. We obtain �̂it by �t-
ting a logistic model, logit{�it(�)}=Zit�, with a vector of predictors, Zit which may include
visit indicator variables, covariates and past responses. The log partial likelihood for the ith
subject is

∑
t
Ri; t−1 log{�it(�)Rit [1− �it(�)]1−Rit} (3)

Di�erentiation with respect to � yields Si(�)=
∑

t Ri; t−1Zit[Rit − �it(�)], the score component
of the ith individual. The partial likelihood estimate �̂ and thus �̂it’s are obtained by solv-
ing the estimating equations

∑
i Si(�)=0. The weight wit for the ith individual at the tth

time is the inverse of the unconditional probability of being observed at time t, estimated
as the inverse of the cumulative product of conditional probabilities, ŵ−1

it = �̂i1× · · · × �̂it .
Note that an observation with a low probability of being observed will receive a large
weight.
The weighted GEE estimate is obtained by solving (2) where Wi(�̂) is a diagonal matrix

with elements ŵit , for t=2; : : : ; Ti, and ŵi1 = 1. As in GEE, iteratively reweighted estimation
of � alternates at each step with method of moments estimation of �. Under correctly speci�ed
models for the marginal means and for the drop-out process, equation (2) yields a consistent
estimate of � which has an asymptotic normal distribution with consistent estimator of its
asymptotic variance given by

(
K∑
i=1
D′
iV

−1
i WiDi

)−T K∑
i=1
EiE′

i

(
K∑
i=1
D′
iV

−1
i WiDi

)−1
(4)

where Ei=Ui−(
∑K

i=1UiS
′
i )(

∑k
i=1 SiS

′
i )Si, Ui=D

′
iV

−1
i Wi(Yi−�i), and Si is the score component

for the ith individual from the drop-out model [12]. Note that
∑K

i=1 EiE
′
i is the matrix sum

of squares and cross-products of the residuals from the multivariate regression of the score
component from (2) on the score vectors from the drop-out model (3). The use of

∑K
i=1 EiE

′
i

in the centre of (4) instead of
∑K

i=1UiU
′
i adjusts for estimation of �.
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Fitzmaurice et al. [13] studied a weighted GEE using cluster level weights. Their weighted
estimating equations are

K∑
i=1
wiDo

′
i (X

o
i ; �)(V

o
i )

−1[Y oi − �oi (�)]=0 (5)

with cluster-level (subject-speci�c) weights, wi. An individual’s weight is the inverse of the
probability of dropping out at the observed time of drop-out. Letting m denote the time of
drop-out, 26m6T + 1, for the ith individual

w−1
i =

(
m−1∏
t=2
�it

)
(1− �im)I{m6T}

where I(·) is the indicator function. Again, following Robins et al. [12], a consistent estimator
for the variance of �̂ is

(
K∑
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−1Doi
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o
i − (
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i=1U

o
i S

′
i )(

∑k
i=1 SiS

′
i )Si and U

o
i =wiD

o′
i (V

o
i )

−1(Y oi − �oi ).

3. A SIMULATION STUDY

3.1. Design

A simulation experiment was performed to compare six methods of analysis under di�erent
conditions pertaining to the correlation structure, the missing data mechanism and the amount
of missingness. The methods include GEE, given by (1), and the two weighted GEE meth-
ods, (2) and (5), respectively, each under independence and exchangeable working correlation
structures. The design of the simulation study was based partly upon characteristics of data
from the CARDIA study where the binary response was self-described smoking status at
time t. For each individual, a vector of correlated binary responses, Yi=(Yi1; Yi2; : : : ; YiT ), indi-
cating smoking status at T time points were generated, where the marginal log-odds of being
a smoker at time t=1; 2; : : : ; T was taken to be logit[P(Yit =1)]=�1 + �T ( t−1T−1 ). Through-
out, we �xed �1 = − 0:7 and �T =0:2 corresponding to marginal probabilities �i1 = 0:332 and
�iT =0:378 indicating a moderate increase in smoking prevalence. Correlated binary responses
were generated using a method based upon a family of multivariate binary distributions with
a certain conditional linear property. This method requires speci�cation of the T × 1 vector
of marginal means �i, and the T ×T correlation matrix, Ci. See the Appendix for a detailed
description of the data generating process.
Data were generated under three correlation structures: independence given by Ci= I , and

exchangeable correlation structures with the common correlation among any two time points
taking values of �=0:2 and �=0:6. These three correlation structures represent no correlation,
weak correlation and strong correlation, respectively. The strong correlation case resembles
data from the CARDIA study where pairwise correlations are high irrespective of the time be-
tween measures because there were relatively few young adults who initiated or quit smoking
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over the course of the study. Each method was applied with K =50, K =100 and K =200
subjects. We set T =6 for the �rst two cases, and T =4 when K =200.
Observed data, Y oi , were generated according to simulated patterns of missingness given

by the indicators Ri2; : : : ; RiT generated under various models for the drop-out process. We
assumed that Ri1 = 1 with probability 1 and set Ri; t+k =0; k¿0 whenever Rit =0 so that in-
termittent missing data patterns are not allowed. Missingness models are of the form

logit(�it)= �0 + �1y?i(t−1) + �2y
?
i(t−2)I(t¿2) + �3y

?
it t=2; : : : ; T (7)

where I(t¿2)=1 if t¿2, and 0 otherwise, and y?it =2yit−1 (yit is a realization of the random
variable Yit) giving y?it =1 if the ith individual was a smoker at time t and −1 if a non-smoker.
Model (7) speci�es that �it , the probability of being observed at time t, given being observed
at time t − 1, may depend on the smoking status at the current or previous two observations.
Indicators for non-missingness, Ri2; : : : ; RiT , were generated from �ve di�erent general models
for drop-out determined by �=(�0; �1; �2; �3). The �ve missing data mechanisms are given by
(i) �=(�0; 0; 0; 0), (ii) �=(�0;−0:2; 0; 0), (iii) �=(�0;−0:5; 0; 0), (iv) �=(�0;−0:5;−0:2; 0),
and (v) �=(�0; 0; 0;−0:5). Case (i) is an MCAR process, cases (ii) and (iii) are MAR (weak
and strong, respectively), case (iv) is a more complicated MAR process (which we call two-
dependent) where drop-out depends upon smoking status at the two previous time points.
Finally, case (v) is MNAR since drop-out depends upon the potentially unobserved value
of smoking at the current time point. These simulations were repeated by considering four
di�erent levels of �0, a parameter that roughly speaking relates to the average conditional
probability of drop-out under any given model (7). We consider values of 3.0, 2.2, 1.4 and
0.4 for �0. These four values specify the ‘average’ probability of drop-out at the current visit
given not having dropped out prior to the visit to be 0.05 (‘minimal’), 0.10 (‘mild’), 0.20
(‘moderate’) and 0.40 (‘severe’), respectively. For K =50 we do not report severe drop-out
since resulting data contains too little information to justify use of the methods considered
here, and for K =100 or K =200 we do not consider minimal drop-out since preliminary
investigation found the results were similar to the case of mild drop-out.
For each of the 45 ways that data were generated (three correlation values × �ve general

missing data models × three overall magnitudes of missingness per scenario), we compared
the six methods of analysis using 1000 replicate observations. For weighted GEE, we used
an estimated missing data model like (7) but that included only an intercept and smoking
status at the previous visit (that is, �2 = �3 = 0). Thus, the �rst three cases of the missing-
ness generating process above would expect to yield approximately unbiased weighted GEE
estimates of �, while the two-dependent MAR and the MNAR process would correspond to
misspeci�ed drop-out models. The parameter of interest is �T , the change in the log-odds
of smoking from the last compared to the �rst time point. We �tted the unconstrained (if
overparameterized) marginal log-odds model, logit[P(Yit =1)]=�1 + �tI (t¿1); t=1; : : : ; T ,
estimating T regression parameters instead of 2. None the less, �T in the �tted model retains
the same interpretation as in the model which generated the data. We speci�ed binomial-type
variances, var(Yit)=�it(1 − �it), and used Liang and Zeger’s [2] all-available-pairs estimator
to estimate �.
For each of the six methods of analysis, we evaluate, for �T , per cent relative bias, test

size, observed coverage of a nominal 95 per cent con�dence interval, and the accuracy of its
variance estimator. Per cent relative bias was computed as (1=1000)

∑1000
s=1 (�̂s − �T )=�T × 100
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per cent where �T =0:2 and �̂s is the estimate of �T from the sth simulated replicate. Test size
was de�ned as the proportion of times |�̂T =SE(�̂T )|¿t0:975; K−T when �T =0, where t0:975; K−T
is the 97.5th percentile of Student’s t-distribution with K − T degrees of freedom, and ‘SE’
denotes the empirical sandwich standard error for GEE or the standard error from (4) or (6)
for the respective weighted GEE methods. Coverage was de�ned as the per cent of 95 per
cent Wald-type con�dence intervals for �T using the same standard error formulae as for
size that contained �T =0:2. Finally, the standard errors for the six methods are evaluated by
comparing their average values over all simulations to the Monte Carlo or empirical standard
deviation of the 1000 �̂T parameter estimates.
In addition to examining the four criteria described above, the e�ciency of the GEE and

weighted GEE estimators relative to a maximum likelihood estimator was determined for �4
when K =200. The relative e�ciency was de�ned as the ratio of the Monte Carlo mean
squared error of the maximum likelihood estimator �̂4;ML, to that of estimating equations es-
timator, �̂4. Our rationale for examining a maximum likelihood estimator is that the weighted
GEE estimators given by (2) and (5) are not in general the semi-parametric e�cient estima-
tors in their classes. We consider the maximum likelihood estimator �̂4;ML based upon the
unconstrained multinomial likelihood model for the 24 contingency table formed by the cross-
classi�cation of the binary smoking outcomes from the four time points. This model places
no restrictions on the 16× 1 vector of joint cell probabilities, �, other than that its elements
sum to 1. Thus, the ‘working’ model for maximum likelihood estimation is not the same as
the data generation model which it has as a special case. The ‘working’ model for maximum
likelihood coincides with working models used in the GEE and weighted GEE methods with
respect to the marginal mean structure. However, unlike the estimating equations methods
considered, its implicit working covariance structure is unstructured since no constraints are
placed on the joint probabilities. For T =4, �̂T;ML is easily determined as a matrix function of
�̂, the maximum likelihood estimator of �. In particular, �̂4;ML =A3 logA2�̂ with A2 a matrix
of 0’s and 1’s transforming the joint cell probabilities to the marginal probabilities, the log
operator de�ned elementwise, and A3 a constrast vector of −1’s, 0’s and 1’s. Finally, under
the unconstrained multinomial model, �̂ has a closed-form expression based upon factored
likelihoods for multinomial data with monotone patterns of missingness (Little and Rubin,
reference [17], Section 9.2). When there is complete data (that is, Ti=T for i=1; : : : ; K),
�̂ is simply the vector of observed cell relative frequencies.

3.2. Results

The results of the simulation study are given in the tables where ‘WEE’ refers to the
observation-weighted GEE procedure using (2) and ‘CWEE’ refers to the cluster-weighted
GEE procedure using (5). Results for the WEE method with independent working correlation
matrix (WEE-indep) are not shown in the tables since these results were nearly the same as
the results for WEE with exchangeable working correlation (WEE-exch). We comment with
a footnote in a table whenever WEE-indep gives a di�erent result than WEE-exch.
Tables I to III report on bias of �̂T for K =50, K =100 and K =200, respectively. In

each table, all methods have large bias under MNAR as expected. We consider per cent
relative bias to be low if it is at most 25 per cent, and to be large otherwise. Then, under
those cases where the asymptotic bias is zero, that is all methods under MCAR missingness,

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3035–3054
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Table I. Per cent relative bias of �̂6; K =50; T =6.

� True model Working model

Drop-out GEE WEE CWEE

Type Amount Indep Exch Exch Indep Exch

0.0 MCAR 5% −8 −8 −8 26 30
MAR-weak −4 −4 −4 15 7
MAR-strong 7 6 7 40 13
MAR-2-dep 9 10 9 12 −14
MNAR −21 −21 −21 26 27

0.2 MCAR 6 5 6 22 18
MAR-weak −5 4 5 42 23
MAR-strong −32 −9 −9 15 −2
MAR-2-dep −29 0 −4 −19 −19
MNAR −43 −33 −38 −80 −75

0.6 MCAR 0 0 −0 17 −0
MAR-weak −29 −3 −2 19 3
MAR-strong −70 2 5 8 3
MAR-2-dep −97 −3 −12 −49 −11
MNAR −83 −29 −41 −90 −62

0.0 MCAR 10% −10 −10 −10 1 −5
MAR-weak −7 −8 −7 3 −7
MAR-strong 7 6 8 16 −2
MAR-2-dep 6 6 5 −7 −35
MNAR −55 −55 −55 −38 −35

0.2 MCAR −1 −2 −1 1 2
MAR-weak −17 2 3 14 10
MAR-strong −61 −13 −12 −6 −12
MAR-2-dep −64 −3 −14 −38 −25
MNAR −94 −72 −83 −123 −108

0.6 MCAR −3 −5 −5 −2 −5
MAR-weak −64 −5 −3 4 2
MAR-strong −149 −5 1 5 3
MAR-2-dep −203 −16 −34 −59 −12
MNAR −175 −63 −88 −136 −87

0.0 MCAR 20% −30 −31 −29 −28 −32
MAR-weak −30 −30 −31 −31 −39
MAR-strong 3 1 5 9 −5
MAR-2-dep −9 −8 −12 −2 −23
MNAR −110 −109 −111 −107 −107

0.2 MCAR −12 −15 −13 −11 −13
MAR-weak −49 −8 −9 −8 −5
MAR-strong −124 −32 −33 −25 −26
MAR-2-dep −129 −17 −41 −39 −7
MNAR −191 −154 −174 −191 −171

0.6 MCAR −9 −9 −10 −12 −7
MAR-weak −136 −15 −17 −13 −3
MAR-strong −299 −35 −22 −17 −2
MAR-2-dep −392 −53 −110 −116 −18
MNAR −349 −141 −195 −215 −133

WEE-indep per cent relative bias is the same as the reported WEE-exch per cent relative bias rounded
to nearest whole per cent.
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Table II. Per cent relative bias of �̂6; K =100, T =6.

� True model Working model

Drop-out GEE WEE CWEE

Type Amount Indep Exch Exch Indep Exch

0.0 MCAR 10% −12 −12 −12 −9 −12
MAR-weak −4 −4 −4 1 −4
MAR-strong −4 −4 −3 −3 −12
MAR-2-dep 1 2 2 −13 −34
MNAR −47 −47 −47 −34 −30

0.2 MCAR −2 −3 −2 0 −2
MAR-weak −20 −1 1 5 2
MAR-strong −55 −6 −4 2 0
MAR-2-dep −67 −7 −17 −40 −20
MNAR −97 −77 −86 −124 −107

0.6 MCAR −1 −3 −2 1 −1
MAR-weak −60 −3 −0 2 −1
MAR-strong −150 −8 −2 −1 −0
MAR-2-dep −199 −14 −30 −59 −9
MNAR −172 −61 −85 −134 −84

0.0 MCAR 20% −24 −25 −24 −24 −26
MAR-weak −17 −18 −18 −17 −19
MAR-strong −2 −2 −0 0 −5
MAR-2-dep −3 −2 −3 3 −10
MNAR −97 −97 −97 −94 −94

0.2 MCAR −7 −10 −7 −6 −8
MAR-weak −43 −3 −1 −0 0
MAR-strong −107 −15 −12 −9 −8
MAR-2-dep −121 −12 −31 −31 1
MNAR −182 −148 −164 −181 −161

0.6 MCAR −7 −7 −7 −9 −6
MAR-weak −123 −8 −3 −0 −0
MAR-strong −294 −31 −12 −10 −2
MAR-2-dep −369 −40 −77 −88 −4
MNAR −345 −133 −183 −206 −128

0.0 MCAR 40% 21 15 22 26 21
MAR-weak −7 −11 −13 −10 −19
MAR-strong −4 −9 −10 −4 −20
MAR-2-dep −12 −11 −17 20 −4
MNAR −187 −191 −187 −185 −193

0.2 MCAR −7 −31 −9 −5 −24
MAR-weak −54 −10 16 22 6
MAR-strong −188 −57 −37 −30 −37
MAR-2-dep −231 −58 −103 −68 −33
MNAR −324 −315 −296 −281 −286

0.6 MCAR 6 −46 −9 −9 −40
MAR-weak −219 −58 −10 −2 −23
MAR-strong −466 −109 −64 −39 −33
MAR-2-dep −577 −144 −238 −197 −65
MNAR −556 −330 −315 −283 −255

WEE-indep per cent relative bias is the same as the reported WEE-exch per cent relative
bias rounded to nearest whole per cent except for three cases for 40 per cent drop-out: (i)
(�=0; MAR-weak)=−14; (ii) (�=0:6; MAR-strong)=−66; (iii) (�=0:6; MNAR)=−314.
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Table III. Per cent relative bias of �̂4; K =200, T =4.

� True model Working model

Drop-out GEE WEE CWEE ML

Type Amount Indep Exch Exch Indep Exch

0.0 MCAR 10% 0 0 0 1 1 −0
MAR-weak 0 0 0 1 −2 0
MAR-strong 2 2 2 6 −4 2
MAR-2-dep −2 −2 −2 −33 −52 −2
MNAR −47 −47 −47 −42 −43 −46

0.2 MCAR −7 −7 −7 −4 −4 −7
MAR-weak −10 1 2 8 7 2
MAR-strong −27 2 2 4 1 3
MAR-2-dep −35 −1 −5 −44 −35 1
MNAR −69 −59 −63 −97 −87 −58

0.6 MCAR −1 −0 −1 −3 −3 −0
MAR-weak −33 1 2 2 2 2
MAR-strong −87 −2 1 0 1 1
MAR-2-dep −109 −3 −9 −39 −10 3
MNAR −110 −46 −55 −101 −76 −43

0.0 MCAR 20% −4 −5 −5 −4 −4 −5
MAR-weak −2 −2 −2 −5 −6 −3
MAR-strong −0 −0 −0 2 −1 0
MAR-2-dep −5 −5 −4 −23 −33 −3
MNAR −95 −95 −95 −92 −92 −93

0.2 MCAR −8 −7 −7 −9 −7 −7
MAR-weak −22 0 1 1 2 1
MAR-strong −56 −2 1 −3 −1 2
MAR-2-dep −68 −6 −13 −38 −22 −0
MNAR −139 −121 −128 −153 −140 −119

0.6 MCAR −0 −1 −1 −2 −2 −0
MAR-weak −70 −2 −0 −1 −0 1
MAR-strong −172 −13 −1 −2 −0 −2
MAR-2-dep −212 −19 −25 −46 −6 −2
MNAR −220 −99 −114 −148 −115 −89

0.0 MCAR 40% −15 −15 −15 −15 −15 −11
MAR-weak −1 −2 −2 −2 −3 4
MAR-strong −11 −10 −13 −10 −14 −1
MAR-2-dep −3 −1 −1 11 3 13
MNAR −200 −200 −200 −200 −201 −186

0.2 MCAR −4 −5 −5 −5 −4 −4
MAR-weak −53 −10 −8 −9 −9 −9
MAR-strong −114 −17 −6 −6 −6 −6
MAR-2-dep −129 −20 −30 −21 2 −10
MNAR −280 −247 −260 −262 −247 −235

0.6 MCAR −9 −10 −9 −9 −6 −6
MAR-weak −152 −15 −14 −15 −4 −8
MAR-strong −331 −48 −11 −10 1 −10
MAR-2-dep −399 −66 −77 −76 1 −17
MNAR −439 −218 −242 −243 −190 −186

WEE-indep relative bias is the same as the reported WEE-exch relative bias rounded to nearest whole
per cent.
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and the weighted GEE methods under MAR-weak and MAR-strong, the following general
observations can be made: (i) for K =50, the bias is low for minimal or mild drop-out, but
not for moderate drop-out; (ii) for K =100, the bias is low for mild and moderate drop-out,
but not for severe drop-out; (iii) for K =200, the bias is low for mild, moderate and severe
drop-out. Henceforth, and in agreement with simulation results to follow, we refer to mild,
moderate and severe drop-out as the limiting missingness situations for K =50, K =100 and
K =200, respectively, where these drop-out rates are su�ciently low such that they correspond
to acceptable performance of �̂T in this study. The one exception to these remarks is that the
bias for CWEE is large for minimal drop-out in Table I. Indeed, the bias more than doubles
those �gures under limited simulations for 2 per cent drop-out (not shown), underscoring
the poor properties of the CWEE method in situations where one would want a method to
perform best.
All three tables show that use of GEE may result in biased estimates when drop-out is

MAR. In particular, GEE with independence working correlation resulted in heavily biased
estimates for non-zero correlation. This bias increased in absolute terms as the true correlation
increased or as the strength of the MAR e�ect grew. Interestingly, GEE with exchangeable
working correlation gave estimates with small bias under MAR-weak when the correlation was
small (�60:2). However, under limiting situations with MAR-strong and �=0:6 (for example,
K =100 with 20 per cent drop-out; K =200 with 40 per cent drop-out) GEE with the correct
exchangeable working correlation gave large bias. As noted earlier, WEE with independence or
exchangeable correlation gave small bias in these cases under correctly speci�ed MAR (weak
or strong) mechanisms. However, under a misspeci�ed missingness model (MAR-2-dep), the
results show it is possible to have greater bias with weighted GEE than with GEE.
Tables IV to VI report on size. Table IV shows that the CWEE method can be very anti-

conservative when drop-out is minimal. When drop-out did not exceed that of the limiting
situations for a given K , WEE performed well. Conversely, in some of those same situations,
the test size of GEE was in�ated, even when the exchangeable correlation was correctly
speci�ed. In particular, for K =100 with 20 per cent drop-out, �=0:6, and MAR-strong, the
test size of GEE-exch was estimated to be 0.089 versus 0.048 for the WEE methods. For
K =200 with 40 per cent drop-out, �=0:6, and MAR-strong, the test size of GEE-exch was
estimated to be 0.108, more than double the nominal 0.05 level, versus 0.051 for the WEE
method. The test size for GEE-indep can be very in�ated under MAR. Thus the results for
test size parallel those for bias in that they are in general agreement with statements made
above about the limiting situations of acceptable performance.
Tables VII and VIII report for these limiting situations, coverage of nominal 95 per cent

con�dence intervals for �T and performance of the standard errors of �̂T , respectively. We
consider only MCAR and MAR corresponding to correctly speci�ed drop-out models for the
weighted GEE methods. For the weighted GEE methods, these results indicate coverage near
the nominal 95 per cent level. Table VII shows that under MAR-strong and �=0:6, GEE may
result in undercoverage. Table VIII shows that for the three methods that use an exchangeable
working correlation matrix, the standard errors tend to slightly underestimate the true values.
For K =200, the underestimation was less when drop-out was less (not shown). Results for
the independence working correlation are similar to those shown in Table VIII. Generally,
these results along with the con�dence interval coverage close to the nominal 95 per cent
level indicates that the variance estimators (along with asymptotic normality) are reasonable
for the limiting situations.
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Table IV. Size of �6 (probability × 1000), K =50, T =6.

� True model Working model

Drop-out GEE WEE CWEE

Type Amount Indep Exch Exch Indep Exch

0.0 MCAR 5% 40 40 43 88 93
MAR-weak 39 39 40 101 99
MAR-strong 46 46 48 118 114
MAR-2-dep 39 39 40 141 130
MNAR 39 39 41 98 105

0.2 MCAR 55 50 58 111 120
MAR-weak 50 55 54 100 92
MAR-strong 48 50 49 112 113
MAR-2-dep 52 55 52 101 106
MNAR 38 35 39 83 101

0.6 MCAR 41 41 47 80 87
MAR-weak 48 49 50 63 87
MAR-strong 56 54 46 80 71
MAR-2-dep 95 64 52 74 74
MNAR 63 52 57 94 92

0.0 MCAR 10% 44 45 46 53 54
MAR-weak 42 40 41 60 53
MAR-strong 51 51 50 67 66
MAR-2-dep 43 43 44 63 62
MNAR 31 31 33 46 44

0.2 MCAR 44 51 50 54 48
MAR-weak 47 50 49 69 59
MAR-strong 51 51 56 67 67
MAR-2-dep 45 60 53 73 75
MNAR 54 51 48 57 59

0.6 MCAR 39 41 45 55 55
MAR-weak 50 55 53 47 57
MAR-strong 72 55 39 67 59
MAR-2-dep 153 73 42 61 67
MNAR 102 72 61 81 77

0.0 MCAR 20% 40 43 41 37 37
MAR-weak 34 37 42 41 41
MAR-strong 42 41 52 44 43
MAR-2-dep 34 36 48 54 53
MNAR 18 17 21 22 15

0.2 MCAR 45 48 53 45 48
MAR-weak 34 49 40 43 46
MAR-strong 42 58 48 47 47
MAR-2-dep 50 70 54 68 76
MNAR 44 48 45 49 57

0.6 MCAR 29 50 39 41 56
MAR-weak 30 58 42 39 51
MAR-strong 78 85 59 66 77
MAR-2-dep 146 115 47 57 84
MNAR 92 121 31 48 68

WEE-indep test size is the same as the reported WEE-exch test size.
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Table V. Size of �6 (probability×1000), K =100, T =6.
� True model Working model

Drop-out GEE WEE CWEE

Type Amount Indep Exch Exch Indep Exch

0.0 MCAR 10% 44 42 45 50 51
MAR-weak 45 43 45 43 39
MAR-strong 52 52 54 68 69
MAR-2-dep 45 47 51 62 69
MNAR 44 45 45 47 42

0.2 MCAR 50 54 54 50 44
MAR-weak 52 59 64 61 60
MAR-strong 56 52 51 50 55
MAR-2-dep 56 47 43 67 63
MNAR 80 77 74 86 86

0.6 MCAR 61 54 58 48 53
MAR-weak 69 50 45 53 46
MAR-strong 181 61 49 68 68
MAR-2-dep 266 74 50 61 57
MNAR 196 76 85 108 98

0.0 MCAR 20% 37 40 42 41 41
MAR-weak 47 44 46 42 39
MAR-strong 54 52 52 57 58
MAR-2-dep 36 41 46 53 56
MNAR 40 42 41 42 40

0.2 MCAR 40 39 44 50 42
MAR-weak 43 47 47 55 51
MAR-strong 66 47 49 45 54
MAR-2-dep 82 63 54 51 66
MNAR 105 93 97 104 102

0.6 MCAR 42 48 44 45 44
MAR-weak 85 57 49 59 46
MAR-strong 284 89 48 60 66
MAR-2-dep 417 106 49 53 72
MNAR 356 172 107 129 108

0.0 MCAR 40% 18 22 23 24 29
MAR-weak 14 20 18 20 26
MAR-strong 23 27 46 50 47
MAR-2-dep 18 22 33 39 41
MNAR 8 13 8 11 12

0.2 MCAR 12 48 20 23 51
MAR-weak 15 65 34 40 73
MAR-strong 6 70 63 68 82
MAR-2-dep 13 74 55 55 79
MNAR 17 90 25 19 67

0.6 MCAR 15 92 24 23 78
MAR-weak 2 133 41 41 112
MAR-strong 22 191 77 83 151
MAR-2-dep 96 254 86 77 194
MNAR 45 360 17 15 194

WEE-indep test size is the same as the reported WEE-exch test size except table entry is 21 for
(drop-out = 40 per cent, � = 0:2, MCAR).
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Table VI. Size of �4 (probability × 1000), K =200; T =4.

� True model Working model

Drop-out GEE WEE CWEE ML

Type Amount Indep Exch Exch Indep Exch

0.0 MCAR 10% 49 50 49 47 54 49
MAR-weak 35 35 34 40 43 38
MAR-strong 44 44 47 61 62 47
MAR-2-dep 46 47 48 58 71 48
MNAR 68 69 69 61 57 68

0.2 MCAR 51 51 51 59 59 52
MAR-weak 77 73 75 78 76 73
MAR-strong 49 44 47 68 67 48
MAR-2-dep 45 39 39 64 70 38
MNAR 94 82 88 119 121 83

0.6 MCAR 50 59 62 54 60 58
MAR-weak 71 45 49 52 51 43
MAR-strong 160 38 36 58 52 40
MAR-2-dep 238 60 53 63 58 50
MNAR 261 100 106 140 119 74

0.0 MCAR 20% 53 51 56 52 51 50
MAR-weak 41 41 43 38 39 42
MAR-strong 54 52 50 53 51 48
MAR-2-dep 56 51 53 54 63 53
MNAR 98 100 101 96 96 98

0.2 MCAR 42 39 40 44 43 50
MAR-weak 75 74 74 70 75 68
MAR-strong 59 46 44 41 40 46
MAR-2-dep 81 43 43 53 51 43
MNAR 197 159 166 191 181 149

0.6 MCAR 48 61 57 57 52 60
MAR-weak 101 50 42 47 45 43
MAR-strong 362 48 39 33 36 37
MAR-2-dep 508 72 51 63 47 45
MNAR 538 218 203 230 220 138

0.0 MCAR 40% 55 56 56 52 54 64
MAR-weak 42 39 43 47 44 39
MAR-strong 45 44 45 41 41 37
MAR-2-dep 45 50 52 61 58 44
MNAR 161 163 167 169 169 155

0.2 MCAR 40 44 44 41 44 47
MAR-weak 54 59 55 55 60 58
MAR-strong 85 57 47 50 42 35
MAR-2-dep 95 50 55 50 51 46
MNAR 313 291 284 280 267 216

0.6 MCAR 38 51 42 44 57 41
MAR-weak 117 65 44 43 43 44
MAR-strong 512 108 51 45 55 33
MAR-2-dep 670 158 63 56 82 37
MNAR 721 437 249 232 241 145

WEE-indep test size is the same as the reported WEE-exch test size for all rows.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3035–3054



WEIGHTED ESTIMATING EQUATIONS FOR DROP-OUTS 3049

Table VII. Coverage of nominal 95 per cent con�dence intervals for �T .

K T � True model Working model

Drop-out GEE WEE CWEE

Type Amount Indep Exch Exch Indep Exch

50 6 0.0 MCAR 10% 94.8 94.6 94.7 94.4 93.9
MAR-weak 96.3 96.1 95.9 94.4 94.6
MAR-strong 96.0 96.2 95.4 93.3 93.4

0.2 MCAR 96.0 95.7 95.2 95.7 95.6
MAR-weak 94.9 94.2 94.2 93.1 93.5
MAR-strong 95.1 94.9 94.6 93.9 93.4

0.6 MCAR 96.0 95.5 95.6 93.8 94.2
MAR-weak 93.7 95.1 95.2 95.0 95.3
MAR-strong 91.8 94.7 96.1 93.9 94.5

100 6 0.0 MCAR 20% 94.9 95.2 94.6 95.3 95.8
MAR-weak 95.2 95.2 95.1 95.5 95.4
MAR-strong 94.6 94.6 94.4 94.4 94.7

0.2 MCAR 94.6 94.7 94.5 94.8 94.5
MAR-weak 94.8 94.9 94.5 95.4 95.1
MAR-strong 93.2 94.3 94.3 95.0 94.5

0.6 MCAR 95.4 94.6 95.0 95.8 95.0
MAR-weak 92.0 94.5 94.0 93.3 94.5
MAR-strong 71.3 92.5 95.7 94.9 94.0

200 4 0.0 MCAR 40% 94.3 94.1 93.8 94.1 94.1
MAR-weak 95.4 95.6 95.4 95.4 95.3
MAR-strong 96.2 96.2 95.8 94.9 94.8

0.2 MCAR 95.0 95.0 94.9 95.5 95.4
MAR-weak 94.0 94.1 93.9 94.1 93.8
MAR-strong 91.2 93.9 94.5 95.4 95.3

0.6 MCAR 96.7 95.4 95.5 95.5 95.7
MAR-weak 88.6 94.0 96.1 96.4 96.2
MAR-strong 48.7 88.6 95.1 95.1 95.1

WEE-indep coverage is the same as the reported WEE-exch coverage rounded to nearest tenth except
for three cases: (i) (drop-out = 20 per cent, �=0:2, MAR-strong)= 94:4; (ii) (drop-out = 40 per cent,
�=0, MAR-weak)=97:4; (iii) (drop-out = 40 per cent, �=0:6, MAR-weak)=96:0.

Table IX reports per cent relative e�ciency with respect to maximum likelihood of GEE
and the two weighted GEE methods for K =200, T =4. The e�ciency of WEE, like that of
GEE with correctly speci�ed exchangeable working correlation, was generally high. E�ciency
for these methods decreased with increasing drop-out and correlation as illustrated with 40
per cent drop-out and �=0:6 when e�ciency of WEE and GEE-exch was 70 per cent and
26 per cent, respectively. The low e�ciency for GEE-exch in this case is related to its large
bias as shown in Table III. We note that when T =4 under 40 per cent drop-out, only 22 per
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Table VIII. Average standard errors (SE) and Monte Carlo standard deviation (SD) of �̂T (× 103).

K T � True model Working model

Drop-out GEE WEE CWEE

Type Amount SE SD SE SD SE SD

50 6 0.0 MCAR 10% 494 520 489 520 586 647
MAR-weak 492 507 487 505 594 648
MAR-strong 489 490 486 491 616 668

0.2 MCAR 450 469 449 472 515 555
MAR-weak 443 474 446 478 518 571
MAR-strong 440 466 449 482 531 594

0.6 MCAR 317 326 328 340 364 401
MAR-weak 318 333 333 350 366 380
MAR-strong 315 329 344 351 373 395

100 6 0.0 MCAR 20% 427 439 424 440 442 457
MAR-weak 421 439 419 440 440 460
MAR-strong 413 433 416 442 452 485

0.2 MCAR 392 400 397 407 405 413
MAR-weak 381 403 393 417 401 421
MAR-strong 372 397 402 437 418 444

0.6 MCAR 283 296 310 326 293 309
MAR-weak 275 286 313 335 292 297
MAR-strong 265 292 339 352 303 321

200 4 0.0 MCAR 40% 357 373 355 374 360 378
MAR-weak 345 344 345 347 352 353
MAR-strong 334 338 346 358 358 369

0.2 MCAR 333 341 336 346 335 345
MAR-weak 322 342 333 355 332 351
MAR-strong 305 316 340 339 339 336

0.6 MCAR 248 254 273 281 249 256
MAR-weak 235 248 275 283 243 247
MAR-strong 224 249 299 307 250 260

Working model uses exchangeable correlation matrix.

cent of subjects have complete data. Lastly, the e�ciency of CWEE was consistently poor,
with the worst relative performance for the least amount of drop-out.

4. DISCUSSION

The simulation study presented in this paper illustrated that robustness to choice of working
correlation in GEE does not generally hold in cases where the data are not missing completely
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Table IX. E�ciency of �̂4; K =200; T =4.

� True model Working model

Drop-out GEE WEE CWEE

Type Amount Indep Exch Exch Indep Exch

0.0 MCAR 10% 100 100 100 67 65
MAR-weak 101 101 101 68 64
MAR-strong 101 101 101 58 54

0.2 MCAR 99 99 99 65 70
MAR-weak 82 101 99 56 62
MAR-strong 38 103 101 52 57

0.6 MCAR 88 100 96 50 65
MAR-weak 18 101 99 54 69
MAR-strong 3 96 95 45 59

0.0 MCAR 20% 101 100 100 92 90
MAR-weak 101 101 100 89 87
MAR-strong 103 103 101 86 84

0.2 MCAR 96 100 98 83 90
MAR-weak 55 101 100 83 89
MAR-strong 14 103 100 77 85

0.6 MCAR 80 100 94 69 89
MAR-weak 6 99 94 71 90
MAR-strong 1 65 92 64 87

0.0 MCAR 40% 95 94 94 92 91
MAR-weak 104 104 102 99 98
MAR-strong 98 98 84 84 79

0.2 MCAR 97 101 98 95 100
MAR-weak 32 99 95 92 96
MAR-strong 8 87 94 89 95

0.6 MCAR 60 86 73 67 92
MAR-weak 3 79 67 61 106
MAR-strong 1 26 70 69 111

E�ciency =100 × mse(�̂T;ML)=mse(�̂T;EE), where EE is the estimating equations method and ML is
maximum likelihood. WEE-indep e�ciency is the same as the reported WEE-exch e�ciency rounded
to nearest whole per cent.

at random [2]. Additionally, we demonstrated that GEE may perform poorly when data are
MAR even when the correlation structure is correctly speci�ed. Lipsitz et al. [10] have pro-
posed a modi�ed GEE approach for handling missing response data that is based upon an
alternative estimator for �. In a simulation study of longitudinal binary data with two time
points, it yielded regression parameter estimates with less bias than the standard GEE when
the data are MAR and the correlation structure has been correctly speci�ed.
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Under MAR, the weighted GEE using observation speci�c weights [12] performed well,
in terms of bias and e�ciency, for estimating trends in longitudinal data. Its success, how-
ever, depended upon a correctly speci�ed model for the missing data mechanism. Under a
misspeci�ed drop-out model, we demonstrated that it is possible to have worse performance
with weighted GEE than with GEE. Lipsitz et al. [10] reported similar �ndings for a model
with both an observation and a cluster-level covariate.
The results of the simulation study suggest that the weighted GEE procedure with cluster-

level weights [13] should not be used as a general method. It can be considerably less
e�cient than the observation-weighted GEE. This �nding is consistent with an earlier report
in a di�erent setting [15]. To see why the cluster-level weights may be very ine�cient,
reconsider the case where the missingness probability is small (�0 = 3:0). The probability of
observing only the �rst response is low, and the few such clusters receive a large weight, even
though these clusters contain the least information on the time trend parameter �T . Indeed, the
weighted GEE with cluster-level weights gave large bias when K =50 with minimal drop-out.
We found that variance estimators for all six methods tended to underestimate the true

variance of the regression parameter estimates to similar degrees. Adjustments to the weighted
GEE variance estimators like those proposed for GEE [21] may be needed in small samples.
There may be some interest in using (4) with Si=0; i=1; : : : ; K since these may be easily
obtained by adapting existing software. This approach is conservative. In results for K =200,
n=4 (not shown), we found that such procedures resulted in the average of the standard
errors being up to 15 per cent greater than the corresponding Monte Carlo estimate.
The simulation study did not reveal an e�ciency gain by using the correct exchangeable

correlation in WEE relative to an independence working correlation assumption. In other
settings, the choice of the working correlation matrix in equation (2) may a�ect e�ciency
[14]. For 200 clusters with maximum cluster size of 4, we found that the weighted GEE with
observation level weights had high e�ciency except in the notable case of severe drop-out
(40 per cent conditional drop-out or 22 per cent completers) and high intracluster correlation
(�=0:6). Relative to unweighted GEE and CWEE, it was overall the most e�cient. We did
not examine the semi-parametric e�cient estimator [22].

APPENDIX

Suppose we wish to simulate Y , a T -vector of Bernoulli variates with mean vector � and
covariance matrix V . For t=2; : : : ; T , de�ne Zt =(Y1; : : : ; Yt−1)�, �t =E(Zt), Gt =cov(Zt), and
st =cov(Zt; Yt). Note that Gt and st are determined from V . For a given (�; V ), a (t − 1)-
vector bt is de�ned as bt =G−1

t st (t=2; : : : ; T ). The conditional linear family (introduced in
an unpublished work by Bahjat Qaqish) is de�ned by

�t = �t(zt;�; V ) :=P(Yt =1 |Zt = zt)=�t + b�t (zt − �t)

= �t +
t−1∑
j=1
btj(yj − �j) (t=2; : : : ; T ) (A1)

The simulation algorithm proceeds as follows. First, simulate Y1 as Bernoulli with mean �1,
then for t=2; : : : ; T , simulate Yt as Bernoulli with conditional mean �t given by (A1). It then
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follows that E(Y )=� and for 1¡t6T , cov(Zt; Yt)= cov(Zt; b�t Zt)=Gtbt = st . The vector Y
thus obtained has the required mean, �, and covariance, V . There are some restrictions on
allowable � and V as discussed by Qaqish.
The full joint distribution of Y , whose explicit speci�cation is not required, can be computed

via (A1). For any valid (�; V ) that is reproducible by the conditional linear family, there is
a corresponding unique value of the 2T × 1 vector � of joint probabilities. For T =4 and ex-
changeable correlation, let �ijkl=P(Y1 = i; Y2 = j; Y3 = k; Y4 = l) and �T(�; �)= {�0000; �0001; : : : ;
�1111} be the 24 vector of joint probabilities with the later indices changing fastest. Letting �0
= (0:332; 0:348; 0:362; 0:378), the simulation results in Tables III, IX and the bottom thirds of
Tables VII and VIII were based upon generating T =4 correlated Bernoulli variates from:

(0:173 0:105 0:098 0:060 0:092 0:056 0:052 0:032 0:086 0:052 0:049 0:030 0:046 0:028 0:026 0:016)

(0:280 0:082 0:075 0:044 0:069 0:041 0:038 0:040 0:063 0:037 0:035 0:037 0:032 0:034 0:032 0:062)

(0:466 0:045 0:038 0:022 0:032 0:019 0:017 0:030 0:027 0:016 0:014 0:026 0:012 0:022 0:017 0:199)

the values of �T(�0; 0); �T(�0; 0:2), and �T(�0; 0:6), respectively.
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