
Biometrics 62, 893–900

September 2006
DOI: 10.1111/j.1541-0420.2005.00516.x

A Comparison of Eight Methods for the Dual-Endpoint Evaluation
of Efficacy in a Proof-of-Concept HIV Vaccine Trial

Devan V. Mehrotra,1,∗ Xiaoming Li,1 and Peter B. Gilbert2

1Merck Research Laboratories, UN-A102, 785 Jolly Road, Blue Bell, Pennsylvania 19422, U.S.A.
2Fred Hutchinson Cancer Research Center and Department of Biostatistics, University of Washington,

Seattle, Washington 98109, U.S.A.
∗email: devan mehrotra@merck.com

Summary. To support the design of the world’s first proof-of-concept (POC) efficacy trial of a cell-mediated
immunity-based HIV vaccine, we evaluate eight methods for testing the composite null hypothesis of no-
vaccine effect on either the incidence of HIV infection or the viral load set point among those infected, relative
to placebo. The first two methods use a single test applied to the actual values or ranks of a burden-of-illness
(BOI) outcome that combines the infection and viral load endpoints. The other six methods combine separate
tests for the two endpoints using unweighted or weighted versions of the two-part z, Simes’, and Fisher’s
methods. Based on extensive simulations that were used to design the landmark POC trial, the BOI methods
are shown to have generally low power for rejecting the composite null hypothesis (and hence advancing the
vaccine to a subsequent large-scale efficacy trial). The unweighted Simes’ and Fisher’s combination methods
perform best overall. Importantly, this conclusion holds even after the test for the viral load component is
adjusted for bias that can be introduced by conditioning on a postrandomization event (HIV infection). The
adjustment is derived using a selection bias model based on the principal stratification framework of causal
inference.
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1. Introduction
More than 20 million people worldwide have died of AIDS
since the first cases were identified in 1981, including 3 million
deaths in 2004 alone. An estimated 40 million people are cur-
rently living with HIV/AIDS, and approximately 15,000 new
HIV infections are being added each day (UNAIDS, 2004).
An efficacious prophylactic HIV vaccine (administered to HIV
uninfected persons) is urgently needed.

The first-generation candidate HIV vaccines, developed
in the 1980s and early 1990s, were designed to prevent
HIV acquisition by stimulating anti-HIV antibodies. However,
antibody-based vaccines failed to lower the rate of HIV in-
fection compared to placebo in the first two large-scale HIV
vaccine efficacy trials (The rgp120 HIV Vaccine Study Group,
2005). The absence of protection has been explained, in part,
by the inability of the tested vaccines to elicit antibodies
that neutralize HIV particles freshly sampled from popula-
tions (Burton et al., 2004). Due to HIV’s expansive genetic
diversity and its many mechanisms of evading neutralization,
development of an effective antibody-based HIV vaccine has
proven to be an extremely difficult task.

Second-generation HIV vaccine candidates have been de-
signed not to elicit humoral immune responses (antibodies),
but rather to elicit cell-mediated immune (CMI) responses
(Graham, 2002). These candidates are motivated by increas-
ing evidence that CMI responses, mediated primarily by

CD8+ cytotoxic T lymphocytes, play a key role in the con-
trol of acute and chronic HIV infection (Borrow et al., 1994;
Shiver et al., 2002).

To establish the efficacy of an antibody-based HIV vaccine
in a randomized, placebo-controlled clinical trial, it would suf-
fice to demonstrate a statistical difference in the HIV infec-
tion rates between vaccine and placebo recipients. But how
does one establish the efficacy of a CMI-based HIV vaccine?
Vaccine-induced CMI responses (unlike antibody responses)
are not expected to impact the initial entry of host cells by
HIV. However, they could abort an infection before it be-
comes fully established (implying a negative HIV diagnostic
test), or contain the viral load at a low “set point” in people
who become infected despite vaccination. As noted in Gilbert
et al. (2003b), the latter outcome would likely provide sub-
stantial clinical benefit by preventing or delaying the onset of
AIDS, and would decrease the rate of secondary transmission
of HIV. These considerations support the use of HIV infection
and viral load set point as co-primary endpoints in an efficacy
trial of a CMI-based HIV vaccine.

The first proof-of-concept (POC) efficacy trial of a CMI-
based HIV vaccine began enrolling volunteers in December
2004. This groundbreaking trial is being conducted by Merck
Research Laboratories, in collaboration with the HIV Vaccine
Trials Network and the Division of AIDS in the U.S. Na-
tional Institutes of Health. The candidate vaccine, developed
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by Merck, consists of a mixture of three identical nonrepli-
cating adenovirus serotype-5 vectors, each encoding the HIV
gag, pol, or nef genes as vaccine antigens.

In this article, we use simulations to evaluate eight methods
for testing the composite null hypothesis of no-vaccine effect
on either efficacy endpoint (infection or viral load set point).
The first two methods use a single unconditional test based
on the actual values or ranks of a burden-of-illness (BOI)
outcome that combines the two endpoints. In contrast, the
remaining six methods generate a test statistic (or p-value) by
combining two separate tests: an unconditional test for the in-
fection endpoint and a conditional (on HIV infection) test for
the viral load endpoint. The approaches used to combine the
tests include methods for linearly combining two Z-statistics,
methods based on the maximum and minimum of the p-values
from the two tests, and methods based on a geometric mean of
the two p-values. These methods can incorporate prespecified
weights that allow prior data and beliefs on the mechanism of
vaccine efficacy to be accounted for to optimize power. While
our focus is on HIV vaccine trials, the methods studied can
be used more generally to test a composite null hypothesis
with multiple efficacy endpoints.

The rest of this article is organized as follows. In Section 2
we define the composite null hypothesis and the data collected
for testing it. In Section 3 we describe the eight testing pro-
cedures, and in Section 4 we compare their powers in a com-
prehensive simulation study that was used to design the POC
trial. In Section 5 we provide more power comparisons after
modifying the combination test methods to build in robust-
ness against potential postrandomization selection bias using
the principal stratification framework of causal inference. We
conclude with summary remarks in Section 6.

2. Composite Null Hypothesis and Data
In the POC trial, approximately 1500 HIV uninfected adults
whose lifestyles put them at relatively high risk of acquiring
HIV infection will be randomized in a 1:1 ratio to receive
either the HIV vaccine or placebo. All subjects will be tested
periodically for acquisition of HIV infection until a total of 50
cases of HIV infection (“events”) have accrued; justification
for 50 events is provided later. Subjects who are diagnosed
as becoming HIV positive will be followed longitudinally for
viral load and CD4 cell count evaluations. The viral load set
point is defined for this trial as the average of the log10 HIV
RNA plasma levels at 2 and 3 months after diagnosis of HIV
infection.

Corresponding to the two primary endpoints are two vac-
cine efficacy parameters of interest: VES (“vaccine efficacy
for susceptibility”) is one minus the true relative risk of HIV
infection, and δVL (“vaccine efficacy for viral load”) is the
true between-group difference (placebo minus vaccine) in the
means of the viral load set points of subjects who become HIV
infected. The composite null hypothesis for the POC trial is

H0 : VES = 0 and δVL = 0. (1)

Interest lies in testing H0 versus the one-tailed alternative H1 :
VES > 0 and/or δVL > 0. POC is established if H0 is rejected
in favor of H1.

Let Nv (Np) be the number of subjects randomized to receive
vaccine (placebo), and nv (np) be the number who become HIV

infected during the trial, with p̂v = nv/Nv and p̂p = np/Np

the proportions infected, and p̄ = (nv + np)/(Nv + Np) the
pooled proportion infected. For subjects infected in the vac-
cine (placebo) group, let x1, . . . , xnv (y1, . . . , ynp) be the viral
load set points. Finally, let r = Np/Nv andD = p̂v − p̂p.

3. Methods for Testing the Composite
Null Hypothesis

3.1 Using a Single Test Based on a Composite
Burden-of-Illness Outcome

To test a composite efficacy hypothesis like (1), Chang, Guess,
and Heyse (1994) proposed a method in which first a BOI out-
come is observed for each randomized subject. In the context
of the POC trial, the outcome is zero if the subject remains
HIV uninfected, and is the viral load set point if the subject
becomes HIV infected. The BOI per randomized subject is
then compared between the placebo and vaccine groups. The
numerator of the test statistic is

T =

nv∑
i=1

xi

Nv

−

np∑
i=1

yi

Np

.

Note that
∑nv

i=1 xi/Nv = p̂v(
∑nv

i=1 xi/nv) and
∑np

i=1 yi/Np =
p̂p(

∑np

i=1 yi/np), so that the BOI method compares between
groups the product of the HIV infection rate and the mean
viral load set point among infected subjects. A standardized
test statistic based on T is

ZBOI =
T −E(T |nv + np,H0)√

V̂ (T |nv + np,H0)
, (2)

where E(T |nv + np,H0) = 0, and the variance estimate was
derived by Chang et al. (1994) as

V̂ (T |nv + np = n,H0) = n

(
a2

NvNp

+
s2
x/Nv + s2

y/Np

Nv + Np

)
,

where a = n−1(
∑nv

i=1 xi +
∑np

i=1 yi) and s2
x(s2

y) is the sample
variance of the x’s (y’s). H0 is rejected in favor of H1 at one-
tailed level α if ZBOI < −Z1−α, where Z1−α is the 100 (1 − α)
percentile of N(0, 1).

An alternative to the original BOI method is to use the
Wilcoxon rank sum test applied to the BOI outcomes; we
refer to this as the rank-based BOI approach. In this ap-
proach, the Nv + Np BOI outcomes for the two randomized
groups are pooled and ranked in the usual manner. All sub-
jects who remain HIV uninfected are assigned a tied “best
rank” of 0.5 × (Nv + Np + 1 − nv − np), and among the HIV-
infected subjects, those with larger BOIs (= viral load set
points) get higher ranks. Let ZrankBOI denote the resulting
standardized Wilcoxon rank sum statistic; H0 is rejected if
ZrankBOI < −Z1−α. Of note, Mehrotra, Li, and Gilbert (2005)
showed that this approach can inflate the probability of a
type I error for an event-driven trial. This follows upon not-
ing that ZrankBOI is a weighted sum of Z ∗

1 and Z ∗
2 , where

Z∗
1 = (p̂v − p̂p)/(p̄(1 − p̄)(n−1

v + n−1
p ))1/2 is the score statistic

for comparing two independent binomial proportions, and Z ∗
2

is the standardized Wilcoxon rank sum statistic for comparing
viral load set point distributions between infected vaccine and
infected placebo recipients. If the number of events (nv + np)
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is fixed, then p̂v and p̂p are negatively correlated, implying
that the denominator of Z ∗

1 is smaller than it should be. This
explains the inflated rate of rejecting H0 based on ZrankBOI <
−Z1−α. However, because the simplicity of the rank-based
BOI approach makes it appealing to clinical investigators, we
have included it to explicitly draw attention to its pitfalls, as
shown in Section 4.

3.2 Combining Separate Tests for the Infection
and Viral Load Endpoints

The composite null hypothesis in (1) is an intersection hy-
pothesis: H0 = HINF

0 ∩ HVL
0 , where HINF

0 :VES = 0 and HVL
0 :

δVL = 0. Let Z1 and Z2 be any valid statistics for one-tailed
tests of HINF

0 versus HINF
1 :VES > 0, and HVL

0 versus HVL
1 :

δVL > 0, respectively. For example, if event times are used, the
Cox model could be used. However, because of the anticipated
low event rate in the POC trial, a test that incorporates event
times will not provide appreciably more power than one based
on binomial proportions (Cuzick, 1982). Accordingly, we use a
test based on the binary HIV infection endpoint. Specifically,
note that given nv + np = n, nv is approximately distributed
as Binomial(n, (1 + r)−1) under HINF

0 . Hence, a one-tailed

p-value p1 can be obtained as p1 =
∑nv

x=0 ( n
x )( 1

1 +r
)x( r

1 +r
)n−x,

or as the tail area under the N(0,1) p.d.f. to the left of

Z1 =
D −E(D |nv + np,H0)√

V̂ (D |nv + np,H0)
=

nv(nv + np)
−1 − (1 + r)−1√

r(1 + r)−2(nv + np)−1
.

(3)

For Z2, we use the standardized Wilcoxon rank sum test statis-
tic applied to the viral load set points of the infected subjects;
let p2 denote the corresponding one-tailed p-value.

Let w1 be a known constant between 0 and 1, and w2 =
1 − w1. Six procedures for testing the composite null hypoth-
esis in (1) at one-tailed level α based on a combination of Z1

and Z2 or p1 and p2 are defined below. Note that p1 and p2 de-
rived from Z1 and Z2 are stochastically independent under H0.
This result, proved by Shih and Quan (1997) in an unrelated
context, establishes the validity of the combination tests.

(a) Two-part z-test (O’Brien, 1984): Reject H0 if Z =
(Z1 +Z2)√

2
< −Z1−α. (Lachenbruch, 2001 proposed a re-

lated two-tailed test based on Z2
1 + Z2

2 , but our problem
is one-tailed.)

(b) Weighted two-part z-test (Pocock, Geller, and Tsiatis,

1987; Follmann, 1995): Reject H0 if Zw =
w1Z1 +w2Z2√

w2
1 +w2

2

<

−Z1−α.
(c) Simes’ test (Simes, 1986): Reject H0 if max(p1, p2) <

α or min(p1, p2) < α/2.
(d) Weighted Simes’ test (Hochberg and Liberman, 1994):

Reject H0 if

max
(

p1

2w1
,
p2

2w2

)
< α or min

(
p1

2w1
,
p2

2w2

)
< α/2.

(e) Fisher’s test (Fisher, 1932): Reject H0 if p < α, where
p = P (χ2

4 > −4 loge

√
p1p2).

(f) Weighted Fisher’s test (Good, 1955): Reject H0 if pw <
α, where

pw =
w1q̃

1/w1

w1 − w2
+

w2q̃
1/w2

w2 − w1
, for w1 �= w2,

with q̃ = pw1
1 × pw2

2 .

Tests 1, 3, and 5 implicitly assign equal weight to the two
endpoints (w1 = w2 = 0.5), while the corresponding tests 2,
4, and 6 allow placing different weights.

If the viral load set points for infected subjects in the vac-
cine (X) and placebo (Y) groups have normal distributions
with means μv and μp , and variances σ2

v and σ2
p , respectively,

then the optimal weight for the viral load endpoint in test 2
(and the presumed nearly optimal weight for tests 4 and 6)
can be approximated as

w2,optimal

≈ 1 − VES

VES −
√

12(1 − VES)
[
Φ

(
−δVL

/√
σ2
v + σ2

p

)
− 0.5

] ,
(4)

where δVL = μp − μv; see details in the Appendix at
http://www.tibs.org/biometrics. It is possible, however,
that heterogeneity in host genetic characteristics (e.g., human
leukocyte antigen alleles) may impact the response to vacci-
nation, resulting in a mixed pool of “weak,” “moderate,” and
“strong” responders to vaccination. Accordingly, we assume
that the distribution of X will be similar to that of a mix-
ture of three normal distributions, with mixing proportions
πi(

∑3
i=1 πi = 1), means μv,i , and a common variance σ2

v,all.

Hence, w2,optimal is obtained by replacing Φ(−δVL/
√

σ2
v + σ2

p)

in (4) with
∑3

i=1 πiΦ(−δVL,i/
√

σ2
v,all + σ2

p), where δVL,i =
μp − μv,i.

Table 1 displays values of w2,optimal for various combinations
of VES and δVL, assuming δVL,1 = δVL − 0.957, δVL,2 = δVL −
0.457, δVL,3 = δVL + 0.543, σp = 0.75, σv,all = 0.65, π1 =
0.2, π2 = 0.243, and π3 = 0.557. Based on existing preclinical
data (Shiver et al., 2002) and discussions with experts, an
educated guess for the POC trial is that the point estimate of
VES will lie between 0% and 30%, and the point estimate of
δVL will lie between 0.75 and 1.25 log10 copies/ml. The optimal
weights for the “middle” value (VES , δVL) = (15%, 1.0) are
approximately w1 = 0.14 and w2 = 0.86.

Table 1
Optimal weight w2,optimal for the viral load component in the
weighted two-part z-test for different levels of VES and δVL

δVL (log10 copies/ml)

VES (%) 0.50 0.75 1.00 1.25 1.50

0% ∼1 ∼1 ∼1 ∼1 ∼1
15% 0.78 0.83 0.86 0.88 0.89
30% 0.62 0.70 0.74 0.77 0.79
45% 0.49 0.57 0.63 0.67 0.69
60% 0.38 0.46 0.52 0.56 0.59
75% 0.28 0.35 0.41 0.45 0.48
90% 0.17 0.22 0.27 0.30 0.32
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4. Power Comparisons of the Eight Tests
Using Simulations

The type I error rates and powers of the eight testing proce-
dures were evaluated in a comprehensive simulation study to
help identify an optimal method for the POC trial. Details of
how the data were simulated are provided in the Appendix
posted at http://www.tibs.org/biometrics. As expected,
the observed type I error rate was inflated for the rank-based
BOI method (up to 7.2%), but was always less than two stan-
dard errors of Monte Carlo variation above the nominal 5%
level (<5.6%) for the other methods. Figure 1 shows estimated
powers of the testing procedures, that is, the proportion of
times that H0 in (1) was rejected for each method in 5000
simulations at each fixed n. When all of the vaccine effect is
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Figure 1. Estimated powers of the eight testing procedures for rejecting the composite null hypothesis H0 :VES = 0 and
δVL = 0 as a function of the total number of HIV infections (events), for different combinations of VES (%) and δVL (log10

copies/ml).

on the viral load endpoint (VES = 0%), the three weighted
combination tests have high and equivalent power. The un-
weighted combination methods also do well but have slightly
lower power, demonstrating that up-weighting the viral load
endpoint had the intended effect. In contrast, the BOI meth-
ods have very low power when VES = 0%, demonstrating that
this approach cannot be recommended if there is high pretest
probability that the vaccine is unable to lower susceptibility
to HIV infection. When VES = 30%, the combination test
methods all perform well and comparably; the contribution
of vaccine efficacy to prevent infection makes the weighted
and unweighted methods perform similarly. Again the BOI
methods have much lower power than the combination test
methods. When VES = 60%, the BOI method is competitive,
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Table 2
Total number of events (HIV infections) required to have 80% power to reject the composite null hypothesis H0 :

VES = 0 and δVL = 0 for different levels of VES and δVL, for the Simes’ (S), Fisher’s (F), weighted Simes’ (WS), and weighted
Fisher’s (WF) combination tests

δVL (log10 copies/ml)

0.0 0.5 0.75 1.0

VES (%) S F WS WF S F WS WF S F WS WF S F WS WF

0% >100 >100 >100 >100 93 >100 81 75 45 49 37 37 28 31 24 23
10% >100 >100 >100 >100 92 92 79 75 44 47 38 37 28 29 24 23
20% >100 >100 >100 >100 87 78 77 72 44 41 38 36 27 27 23 23
30% >100 >100 >100 >100 77 64 74 71 42 36 39 36 27 25 24 23
40% >100 >100 >100 >100 63 50 65 67 40 32 37 35 25 23 24 23
50% 77 78 >100 >100 49 37 53 64 33 27 33 35 23 20 23 23
60% 47 47 63 >100 35 29 44 57 28 22 31 34 23 17 23 23
70% 28 30 39 >100 25 21 31 52 23 17 26 33 17 15 20 23

with power equal to that of the best-performing combination
test methods to detect δVL = 0.5 and only slightly lower to
detect δVL = 1.0. The weighted combination methods have
substantially lower power than their unweighted counterparts
for VES = 60%, δVL = 0.5, demonstrating that up-weighting
the endpoint on which there is a smaller effect size results in
a power loss.

Based on the above power analysis, all of the evaluated
combination test methods have acceptable performance for a
POC trial of a CMI-based HIV vaccine. Simes’ and Fisher’s
methods may be preferable to the two-part z-methods because
their power is less affected by the choice of weight function
(Figure 1, top two panels).

The total number of HIV infections required to have 80%
power to establish POC is summarized in Table 2 for the four
leading combination test methods. For example, 93 events will
provide 80% power to reject H0 using the unweighted Simes’
method (S) when VES = 0% and δVL = 0.5 log10 copies/ml.
Note that for low values of VES (≤30%), the methods that
up-weight the viral load endpoint require slightly fewer infec-
tions to detect the same viral load effect as the equal-weighted
methods, but for moderate to high values of VES (≥50%) the
former require notably more infections. In general, the num-
ber of infections required varies less over the range of efficacy
parameter values for the equal-weighted procedures. These re-
sults suggest that assigning equal weight to the two endpoints
provides the greatest robustness to uncertainties in the true
nature of vaccine efficacy. Accordingly, the unweighted Simes’
and Fisher’s methods emerge as optimal choices for evaluat-
ing the efficacy of the CMI-based HIV vaccine. The former
was selected for the POC trial, in part because rejection of
the composite null hypothesis in (1) using Simes’ test “auto-
matically” provides conclusions about statistical significance
separately for the two endpoints without any further multi-
plicity adjustment; this follows because with only two end-
points, Simes’ procedure is identical to Hochberg’s (1988).

5. Power Comparisons after Adjusting for
Postrandomization Selection Bias

To this point, the combination test methods have used a test
for the viral load endpoint that compares the mean viral

load set points of HIV-infected subjects in the vaccine and
placebo groups. Because the test is restricted to subjects who
are selected based on a postrandomization event (HIV infec-
tion), it does not assess a causal effect of vaccine (Robins
and Greenland, 1992). Rather, it assesses viral load differ-
ences due to a mixture of two effects: the causal vaccine effect
and the effect of variables correlated with viral load that are
(potentially) unevenly distributed among the infected sub-
groups (Frangakis and Rubin, 2002).

In Section 4, we discarded the BOI method and chose the
unweighted Simes’ and Fisher’s combination test methods
based on the latter having better power for the POC trial.
However, the BOI method usefully provides unbiased infer-
ences on a causal effect of the vaccine, because it is based
on all randomized subjects. In contrast, the combination test
methods provide unbiased causal inferences only under the
untestable assumption of no selection bias for the viral load
component. We now proceed to show that the BOI method is
generally less powerful than the two leading combination test
methods even after the latter are adjusted for plausible levels
of selection bias in a manner that makes it harder for them to
reject H0. To do so, we use the potential outcomes framework
for causal inference (Rubin, 1974).

Each subject i has two potential HIV infection outcomes:
one under assignment to vaccine (Si (v)) and one under assign-
ment to placebo (Si (p)). In addition, each subject if infected
under assignment to vaccine has a potential viral load set
point VLSi (v), and if infected under assignment to placebo has
a potential viral load set point VLSi (p). Following Hudgens,
Hoering, and Self (HHS) (2003) and Gilbert, Bosch, and
Hudgens (GBH) (2003a), a causal vaccine effect on viral load
can be defined for the “always-infected” principal stratum of
subjects who would become HIV infected regardless of ran-
domization to vaccine or placebo (i.e., those with Si (v) =
Si (p) = 1). Any functional that measures a contrast of the
distributions

F alw. inf
(v) (y) ≡ P (VLS i(v) ≤ y |Si(v) = Si(p) = 1) and

F alw. inf
(p) (y) ≡ P (VLS i(p) ≤ y |Si(v) = Si(p) = 1) (5)

is a causal estimand. Unfortunately, because neither distribu-
tion in (5) is readily identifiable (because Si (v) and Si (p) are
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not both observed), it is possible to assess a causal vaccine
effect on viral load only after making some assumptions.

Following Rubin (1974), HHS and GBH outlined three as-
sumptions: (i) the potential outcomes for each subject are
independent of the treatment assignments of other subjects,
(ii) the treatment assignment for each subject is independent
of his/her potential outcomes, and (iii) Si (v) ≤ Si (p) for all
subjects i, that is, the vaccine does not increase the risk of ac-
quiring HIV infection. Under these assumptions, F alw. inf

(v) = Fv,
that is, the distribution of potential viral loads under assign-
ment to vaccine equals the identifiable distribution of viral
loads in infected vaccine recipients. Moreover, as in GBH, the
above three assumptions plus the selection model

F alw. inf
(p) (y, β) = (1 − VES)−1

∫ y

0

w(z, β) dF p(z) (6)

identify F alw. inf
(p) , where Fp is the c.d.f. of the viral load set

point in infected placebo recipients, w(y, β) = exp(τ + βy)/
[1 + exp(τ + βy)] is a selection weight function, β ∈ [−∞,∞]
is a parameter fixed by the investigator that quantifies the
degree of selection bias, and τ is determined by the equa-
tion Fp(∞|β) = 1. For finite β, e−β is the odds ratio of HIV
infection under assignment to vaccine given infection under
assignment to placebo with viral load set point y versus with
viral load set point y + 1. β = 0 specifies no selection bias,
and β > 0 (β < 0) specifies bias toward the infected vacci-
nees having selectively higher (lower) viral load set points. To
protect against selection bias that could artificially favor the
vaccine, we focus on β < 0.

The causal null hypothesis of interest for the vi-
ral load endpoint is HVL

0,causal : δ
ACE
VL = 0, where δACE

VL =∫
y dF alw. inf

(p) (y)−
∫
y dF alw. inf

(v) (y) is the average causal effect.

Note that given a fourth assumption: (iv) selection bias oper-
ates only through a vaccine effect on the infection endpoint,
there is no opportunity for selection bias when VES = 0
(regardless of β), and w(y, β) = 1. Hence, δVL = δACE

VL when
VES = 0, implying that under assumptions (i)–(iv) the com-
posite null hypothesis in (1) can be rewritten as

H0 : VES = 0 and δACE
VL = 0. (7)

Table 3
Total number of events (HIV infections) required to have 80% power to reject the composite null
hypothesis H0 :VES = 0 and δVL = 0 for different levels of VES and δVL, for the Simes’ (S) and

Fisher’s (F) combination tests with (β < 0) or without (β = 0) an adjustment for potential
selection bias, and for the BOI method

β = 0∗ β = −1 β = −2 β = −∞
δVL
(log10 copies/ml) BOI S F S F S F S F

VES = 15%
0.75 >100 44 45 54 52 61 59 78 72
1.00 >100 27 28 32 32 35 35 40 40

VES = 30%
0.75 91 42 36 59 51 77 63 >100 85
1.00 74 27 25 34 32 41 37 53 46

VES = 60%
0.75 24 28 22 37 30 42 36 86 71
1.00 20 23 17 30 23 35 28 56 47

∗No adjustment for selection bias.

To account for potential selection bias resulting from VES > 0,
we replace Z2 in the combination test methods with a statistic
Tβ that tests for a vaccine effect on viral load that is above and
beyond a plausible level of selection bias indexed by β. Among
several options for Tβ , we propose using a rank statistic that
is consistent with the analysis discussed earlier. Specifically,
let ȳ = n−1

p

∑np

i=1 yi denote the observed mean viral load set
point for the placebo group, and let

y∗
i,β = yi −

⎛⎜⎜⎜⎜⎝ȳ −

np∑
i=1

w(yi | τ̂ , β)yi

np∑
i=1

w(yi | τ̂ , β)

⎞⎟⎟⎟⎟⎠ (8)

denote the “adjusted” (reduced) viral load set point for in-
fected subject i in the placebo group, where τ̂ is obtained as
described in GBH. Our proposed Tβ is the Wilcoxon rank
sum test statistic calculated using the adjusted and observed
viral load set points in the placebo and vaccine groups, re-
spectively. Because the null distribution of Tβ is intractable,
the p-value based on Tβ , denoted by p2,β , is obtained using an
adaptation of the bootstrap procedure proposed by GBH. If
the estimated VES is ≤0, then w(yi | τ̂ , β) = 1∀i, β, in which
case Tβ will equal Z2, the unadjusted Wilcoxon statistic.

Table 3 shows the estimated number of events required
to have 80% power to establish POC for the selection-bias-
adjusted Simes’ and Fisher’s combination test methods for
β = −1 and −2 (selection odds ratios of e−β = 2.7 and 7.4,
respectively), and for β = −∞. Corresponding results without
a selection bias adjustment (β = 0) and results for the BOI
method are included for comparison. Note that the number
of events required for the adjusted Simes’ and Fisher’s tests
increases as β becomes more negative, reflecting a higher hur-
dle for establishing POC as a larger amount of selection bias
is assumed. When VES = 15%, the adjusted combination test
methods require notably fewer events than the BOI method
under any degree of selection bias. This is also generally true
when VES = 30%, though the advantage over BOI is smaller.
When VES = 60%, the combination test and BOI methods
require comparable numbers of events assuming no selection
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bias (β = 0), but after adjusting the former for selection bias
the BOI method is more powerful (i.e., it needs relatively few
events), with greater advantage when more selection bias is
controlled for.

These simulations demonstrate that if the true vaccine ef-
fect on the infection endpoint is somewhere between absent to
moderate (up to about 50%), then the adjusted Simes’ and
Fisher’s methods are more powerful than the BOI method,
even after building in robustness to selection bias. It is only
when VES is fairly high (>50%) that the BOI method is the
more powerful procedure. But in that case, the viral load com-
parison becomes less important because POC will likely be
established based on a causal vaccine effect on the infection
endpoint. These results suggest that for a POC efficacy trial
of a CMI-based HIV vaccine that is more likely to work by
lowering postinfection viral load set points rather than pre-
venting HIV infection, the selection-bias-adjusted Simes’ and
Fisher’s combination test methods are preferred over the BOI
method.

6. Discussion
We have demonstrated that for a POC efficacy trial of a CMI-
based HIV vaccine, the unconditional BOI method is generally
less powerful than methods that combine an unconditional
test for the infection endpoint with a conditional test for the
viral load endpoint. In particular, we have staked a case for
choosing either the unweighted Simes’ or Fisher’s combina-
tion test for establishing POC. Both methods are generally
more powerful than the BOI method even after the test for
the viral load component is adjusted for selection bias that
might artificially favor the vaccine; the power advantages are
substantial when the vaccine has at most a modest effect on
the infection endpoint, which is more likely for a CMI-based
vaccine.

We conclude by noting that arguments can be made both
for and against adjusting for potential selection bias in a POC
trial. Consider first the arguments against adjustment. We
have shown that under assumptions (i)–(iv), rejection of H0

implies that VES > 0 and/or δACE
VL > 0. This finding of some

benefit, albeit with uncertainty about the component effects,
may form sufficient justification for advancing a vaccine can-
didate to a subsequent large-scale trial. Additional support for
using the combination tests without accounting for selection
bias derives from noting that the most likely operative selec-
tion mechanisms would create selectively higher viral loads in
infected vaccinees (e.g., due to a greater propensity for vac-
cine failure in those with relatively weak immune systems). It
can therefore be argued that the unadjusted combination test
methods (that assume β = 0) already have built-in robustness
against the selection bias effects of interest.

To make the argument in favor of a selection-bias adjust-
ment, we note that the prevailing majority opinion in the
field is that immune responses induced by a CMI-based HIV
vaccine are more likely to control postinfection HIV replica-
tion rather than reduce the risk of HIV infection. An observed
moderate effect for the infection endpoint (e.g., VE obs

S = 25%)
in tandem with a moderate effect for the viral load endpoint
(e.g., δobs

VL = 0.75 copies/ml) may be difficult to interpret, be-
cause there will be a high degree of uncertainty about the
extent to which the observed vaccine effect on viral load is

a causal effect. From this point of view, initiation of a sub-
sequent large-scale trial may not be warranted unless there
is “robust” evidence for a causal vaccine effect on viral load.
Of note, even if an adjustment for plausible levels of selection
bias is deemed necessary, approximately 50 events will pro-
vide at least 80% power to establish POC if VES ≥ 60% or
δVL ≥ 1.0 log10 copies/ml (Table 3, method S or F). Accord-
ingly, the POC trial was designed to accrue 50 events, with
a planned interim analysis of efficacy at 30 events (details
omitted). A “positive” result at the interim analysis (based on
prespecified statistical criteria) could advance the vaccine to
a large-scale efficacy trial approximately 9–15 months sooner
than the analysis at 50 events.
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