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SUMMARY:
To support the design of the world’s first proof-of-concept (POC) efficacy trial of a cell mediated immunity-based HIV vaccine, we evaluate eight methods for testing the composite null hypothesis of no vaccine effect on either the incidence of HIV infection or the viral load set-point among those infected, relative to placebo.  The first two methods use a single test applied to the actual values or ranks of a burden of illness (BOI) outcome that combines the infection and viral load endpoints.  The other six methods combine separate tests for the two endpoints using unweighted or weighted versions of the 2-part Z, Simes’, and Fisher’s methods.  Based on extensive simulations that were used to design the landmark POC trial, the BOI methods are shown to have generally low power for rejecting the composite null hypothesis (and hence advancing the vaccine to a subsequent large-scale efficacy trial).  The unweighted Simes’ and Fisher’s combination methods perform best overall.  This conclusion holds even after the test for the viral load component is adjusted for bias that can be introduced by conditioning on a post-randomization event (HIV infection).  The adjustment is derived using a selection bias model based on the principal stratification framework of causal inference.
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1.
Introduction
More than 20 million people worldwide have died of AIDS since the first cases were identified in 1981, including 3 million deaths in 2004 alone.  An estimated 40 million people are currently living with HIV/AIDS, and approximately 15,000 new HIV infections are being added each day (UNAIDS, 2004).  An efficacious prophylactic HIV vaccine (administered to HIV uninfected persons) is urgently needed.


The first generation candidate HIV vaccines, developed in the 1980s and early 1990s, were designed to prevent HIV acquisition by stimulating anti-HIV antibodies.  However, antibody-based vaccines failed to lower the rate of HIV infection compared to placebo in the first two large-scale HIV vaccine efficacy trials (The rgp120 HIV Vaccine Study Group, 2005).  The absence of protection has been explained, in part, by the inability of the tested vaccines to elicit antibodies that neutralize HIV particles freshly sampled from populations (Burton et al., 2004).  Due to HIV's expansive genetic diversity and its many mechanisms of evading neutralization (Wei et al., 2003), development of an effective antibody-based HIV vaccine has proven extremely difficult.  


Second generation HIV vaccine candidates have been designed not to elicit humoral immune responses (antibodies), but rather to elicit cell mediated immune (CMI) responses (Graham, 2002).  These candidates are motivated by increasing evidence that CMI responses, mediated primarily by CD8+ cytotoxic T lymphocytes, play a key role in the control of acute and chronic HIV infection (Borrow et al., 1994; Shiver et al., 2002).  

To establish the efficacy of an antibody-based HIV vaccine in a randomized, placebo-controlled clinical trial, it would suffice to demonstrate a statistical difference in the HIV infection rates between vaccine and placebo recipients.  But how does one establish the efficacy of a CMI-based HIV vaccine?  Vaccine-induced CMI responses (unlike antibody responses) are not expected to impact the initial entry of host cells by HIV.  However, they could abort an infection before it becomes fully established (implying a negative HIV diagnostic test), or contain the viral load at a low “set-point” in people who become infected despite vaccination.  As noted in Gilbert et al. (2003), the latter outcome would likely provide substantial clinical benefit by preventing or delaying the onset of AIDS, and would decrease the rate of secondary transmission of HIV.  These considerations support the use of HIV infection and viral load set-point as co-primary endpoints in an efficacy trial of a CMI-based HIV vaccine.  



The first “proof-of-concept” (POC) efficacy trial of a CMI-based HIV vaccine began enrolling volunteers in December 2004.  This groundbreaking trial is being conducted by Merck Research Laboratories, in collaboration with the HIV Vaccine Trials Network and the Division of AIDS in the U.S. National Institutes of Health.  The candidate vaccine, developed by Merck, consists of a mixture of three identical non-replicating adenovirus serotype-5 vectors, each encoding the HIV gag, pol, or nef genes as vaccine antigens.

In this paper, we use simulations to evaluate eight methods for testing the composite null hypothesis of no vaccine effect on either efficacy endpoint (infection or viral load set-point).  The first two methods use a single unconditional test based on the actual values or ranks of a burden-of-illness (BOI) outcome that combines the two endpoints.  In contrast, the remaining six methods generate a test statistic (or p-value) by combining two separate tests: an unconditional test for the infection endpoint and a conditional [on HIV infection] test for the viral load endpoint.  The approaches used to combine the tests include methods for linearly combining two Z-statistics, methods based on the maximum and minimum of the p-values from the two tests, and methods based on a geometric mean of the two p-values.  These methods can incorporate pre-specified weights that allow prior data and beliefs on the mechanism of vaccine efficacy to be accounted for to optimize power.  While our focus is on HIV vaccine trials, the methods studied can be used more generally to test a composite null hypothesis involving multiple efficacy endpoints.. 


The rest of this paper is organized as follows.  In Section 2 we define the composite null hypothesis and the data collected for testing it.  In Section 3 we describe the eight testing procedures, and in Section 4 we compare their powers in a comprehensive simulation study that was used to design the POC trial.  In Section 5 we provide more power comparisons after modifying the combination test methods to build in robustness against potential post-randomization selection bias using the principal stratification framework of causal inference.  We conclude with summary remarks in Section 6.
2.
Composite Null Hypothesis and Data

In the POC trial, approximately 1500 HIV uninfected adults whose lifestyles put them at relatively high risk of acquiring HIV infection will be randomized in a 1:1 ratio to receive either the HIV vaccine or placebo.  All subjects will be tested periodically for acquisition of HIV infection until a total of 50 confirmed cases of HIV infection (“events”) have accrued; justification for 50 events is provided later.  Subjects who are diagnosed as becoming HIV positive will be followed longitudinally for viral load and CD4 cell count evaluations.  The viral load set-point is defined for this trial as the average of the log10 HIV RNA plasma levels at approximately two and three months after diagnosis of HIV infection.  


Corresponding to the two primary endpoints are two vaccine efficacy parameters of interest: 
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("vaccine efficacy for susceptibility") is one minus the true relative risk of HIV infection, and 
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 ("vaccine efficacy for viral load") is the true between-group difference (placebo minus vaccine) in the means of the viral load set-points of subjects who become HIV infected.  The composite null hypothesis for the POC trial is
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Interest lies in testing 
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 the pooled proportion infected.  For subjects infected in the vaccine (placebo) group, let 
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3. Methods for Testing the Composite Null Hypothesis

3.1 Using a single test based on a composite burden-of-illness outcome

To test a composite efficacy hypothesis like (1), Chang, Guess, and Heyse (1994) proposed a method in which first a burden-of-illness (BOI) outcome is observed for  each randomized subject.  In the context of the POC trial, the outcome is zero if the subject remains HIV uninfected, and is the viral load set-point if the subject becomes HIV infected.  The burden-of-illness per randomized subject is then compared between the placebo and vaccine groups.  The numerator of the test statistic is
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, so that the BOI method compares between groups the product of the HIV infection rate and the mean viral load set-point among infected subjects.  A standardized test statistic based on T is
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where 
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 is the sample variance of the x’s (y’s).  
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An alternative to the original BOI method is to use the Wilcoxon rank sum test applied to the BOI outcomes; we refer to this as the rank-based BOI approach.  In this approach, the 
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 BOI outcomes for the two randomized groups are pooled and ranked in the usual manner.  All subjects who remain HIV uninfected are assign a tied “best rank” of 
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, and among the HIV infected subjects, those with larger BOIs [= viral load set-points] get higher ranks.  Let 
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.  Of note, Mehrotra, Li, and Gilbert (2005) showed that this approach can inflate the probability of a type I error for an event-driven trial.  This follows upon noting that 
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3.2
Combining separate tests for the infection and viral load endpoints

The composite null hypothesis in (1) is an intersection hypothesis: 
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, respectively.  For example, if event times are used, the Cox model could be used.  However, because of the anticipated low event rate in the POC trial, a test that incorporates event times will not provide appreciably more power than one based on binomial proportions (Cuzick, 1995).  Accordingly, we use a test based on the binary HIV infection endpoint.  Specifically, note that given 
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For 
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Let 
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1.
2-part Z test (O'Brien, 1984): Reject 
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2.
Weighted 2-part Z test (Pocock, Geller and Tsiatis, 1987; Follmann, 1995): Reject 
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3. 
Simes' test (Simes, 1986): Reject 
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4.
Weighted Simes' test (Hochberg and Liberman, 1994): Reject 
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5.
Fisher's test (Fisher, 1932):  Reject 
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6. 
Weighted Fisher's test (Good, 1955): Reject 
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Tests 1, 3, and 5 implicitly assign equal weight to the two endpoints (
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If the viral load set-points for infected subjects in the vaccine (X) and placebo (Y) groups have normal distributions with means 
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where 
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; see Appendix.  It is possible, however, that heterogeneity in host genetic characteristics (e.g., human leukocyte antigen alleles) may impact the response to vaccination, resulting in a mixed pool of “weak”, “moderate” and “strong” responders to vaccination.  Accordingly, we assume that the distribution of X will be similar to that of a mixture of three normal distributions, with mixing proportions 
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Table 1 displays values of 
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4.
Power Comparisons of the Eight Tests Using Simulations

The Type I error rates and powers of the eight testing procedures were evaluated in a comprehensive simulation study to help identify an optimal method for the POC trial.  Details of how data were simulated are provided in the Appendix posted at http://www.biometrics@tibs.org/??.  As expected, the observed Type I error rate was inflated for the rank-based BOI method (as high as 8.7% at n = 500), but was always less than two standard errors of Monte Carlo variation above the nominal 5% level (< 5.6%) for the other methods.  Figure 1 shows estimated powers of the testing procedures, i.e., the proportion of times that 
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.  The weighted combination methods have substantially lower power than their unweighted counterparts for 
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, demonstrating that up-weighting the endpoint on which there is a smaller effect size results in a power loss.  


Based on the above power analysis, all of the evaluated combination test methods have acceptable performance for a POC trial of a CMI-based HIV vaccine.  Simes’ and Fisher’s methods may be preferable to the 2-part Z methods because their power is less affected by the choice of weight function (Figure 1, top two panels).


The total number of HIV infections required to establish POC with 80% power are summarized in Table 2 for the four leading combination test methods.  For example, 93 events will provide 80% power to reject 
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 (( 30%) the methods that up-weight the viral load endpoint require slightly fewer infections to detect the same viral load effect as the equal-weighted methods, but for moderate to high values of 
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 (( 50%) the former require notably more infections.  In general, the number of infections required varies less over the range of efficacy parameter values for the equal-weighted procedures.  These results suggest that assigning equal weight to the two endpoints provides the greatest robustness to uncertainties in the true nature of vaccine efficacy.  Accordingly, the unweighted Simes’ and Fisher’s methods emerge as optimal choices for evaluating the efficacy of the CMI-based HIV vaccine.  The former was selected for the POC trial, in part because rejection of the composite null hypothesis in (1) using Simes’ test “automatically” provides conclusions about statistical significance separately for the two endpoints without any further multiplicity adjustment. 

5.
Power Comparisons after Adjusting for Post-Randomization Selection Bias

To this point, the combination test methods have used a test for the viral load endpoint that compares the mean viral load set-points of HIV infected subjects in the vaccine and placebo groups.  Because the test is restricted to subjects that are selected based on a post-randomization event (HIV infection) does not assess a causal effect of vaccine  (Robins and Greenland, 1992). Moreover, rather than assessing a causal effect of vaccine, the test assesses viral load differences due to a mixture of two effects: the causal vaccine effect and the effect of variables correlated with viral load that are (potentially) unevenly distributed among the infected subgroups (Frangakis and Rubin, 2002).


In Section 4, we discarded the BOI method and chose the unweighted Simes’ and Fisher’s combination test methods based on the latter having better power for the POC trial.  However, the BOI method usefully provides unbiased inferences on a causal effect of the vaccine, because it is based on all randomized subjects.  In contrast, the combination test methods provide unbiased causal inferences only under the untestable assumption of no selection bias for the viral load component.  We now proceed to show that the BOI method is generally less powerful than the two leading combination test methods even after the latter are adjusted for plausible levels of selection bias in a manner that makes it harder for them to reject 
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Each subject i has two potential HIV infection outcomes: one under assignment to vaccine 
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is a causal estimand.  Unfortunately, since neither distribution in (5) is readily identifiable (because 
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 are not both observed), it is possible to assess a causal vaccine effect on viral load only after making some assumptions.

Following Rubin (1974), HHS and GBH outlined three assumptions: (i) the potential outcomes for each subject are independent of the treatment assignments of other subjects, (ii) the treatment assignment for each subject is independent of his/her potential outcomes, and (iii) 
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 for all subjects i, i.e., the vaccine does not increase the risk of acquiring HIV infection.  Under these assumptions, 
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identify 
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The causal null hypothesis of interest for the viral load endpoint is 
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To account for potential selection bias resulting from 
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denote the “adjusted” (reduced) viral load set-point for infected subject i in the placebo group, where 
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Table 3 shows the estimated number of events required to establish POC with 80% power for the selection bias-adjusted Simes’ and Fisher's combination test methods for 
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 becomes more negative, reflecting a higher hurdle for establishing POC as a larger amount of selection bias is assumed.  When 
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, but after adjusting the former for selection bias the BOI method is more powerful, with greater advantage when more selection bias is controlled for.


These simulations demonstrate that if the true vaccine effect on the infection endpoint is somewhere between absent to moderate (up to about 50%), then the adjusted Simes’ and Fisher’s methods are more powerful than the BOI method, even after building in robustness to selection bias.  It is only when 
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 is fairly high (> 50%) that the BOI method is the more powerful procedure.  But in that case, the viral load comparison becomes less important because POC will likely be established based on a causal vaccine effect on the infection endpoint.  These results suggest that for a POC efficacy trial of a CMI-based HIV vaccine that is more likely to work by lowering post-infection viral load set-points rather than by preventing HIV infection, the selection-bias adjusted Simes’ and Fisher’s combination test methods are preferred over the popular  BOI method. 

6.
Discussion

We have demonstrated that for a proof-of-concept efficacy trial of a cell mediated immunity-based HIV vaccine, the unconditional BOI method is generally less powerful than methods that combine an unconditional test for the infection endpoint with a conditional test for the viral load endpoint.  In particular, we have staked a case for choosing either the unweighted Simes’ or Fisher’s combination test for establishing POC (and hence advancing the vaccine to a large-scale efficacy trial).  Both methods are generally more powerful than the BOI method even after the test for the viral load component is adjusted for selection bias that might artificially favor the vaccine; the power advantages are substantial when the vaccine has at most a modest effect on the infection endpoint, which is more likely for a CMI-based vaccine.


We conclude by noting that arguments can be made both for and against adjusting for potential selection bias in a proof-of-concept efficacy trial.  Consider first the arguments against adjustment.  We have shown that under assumptions (i)-(iv),  rejection of the composite null hypothesis implies that 
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. This finding of some benefit, albeit with uncertainty about the component effects, may form sufficient justification for advancing a vaccine candidate to a subsequent large-scale trial.  Additional support for using the combination tests without accounting for selection bias derives from noting that the most likely operative selection mechanisms would create selectively higher viral loads in infected vaccinees (e.g., due to a greater propensity for vaccine failure in those with relatively weak immune systems).  It can therefore be argued that the unadjusted combination test methods (that assume 
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To make the argument in favor of a selection-bias adjustment, we note that the prevailing majority opinion in the field is that immune responses induced by a CMI-based HIV vaccine are more likely to control post-infection HIV replication rather than reduce the risk of HIV infection.  An observed moderate effect for the infection endpoint (e.g., 
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0.75 copies/ml) may be difficult to interpret, since there will be a high degree of uncertainty about the extent to which the observed vaccine effect on viral load is a causal effect of the vaccine..  From this point of view, initiation of a subsequent large-scale trial may not be warranted unless there is “robust” evidence for a causal vaccine effect on viral load.  Of note, even if an adjustment for plausible levels of selection bias is deemed necessary, approximately 50 events will provide at least 80% power to establish proof-of-concept if 
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 log10 copies/ml (Table 3, method S or F).  Accordingly, the POC trial was designed to accrue 50 events, with a planned interim analysis of efficacy at 30 events (details omitted).  The latter was included because 30 events will provide ( 80% power to establish POC if 
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 (Table 2, method S).  A “positive” result at the interim analysis (based on pre-specified criteria) could advance the vaccine to a large-scale efficacy trial approximately 9 to 15 months sooner than the analysis at 50 events.
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Figure Captions

Figure 1.  Estimated powers of the eight procedures for rejecting the composite null hypothesis (i.e., establishing proof-of-concept), for different levels of 
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Table 1

Optimal weight 
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	(%)
	.50
	.75
	1.00
	1.25
	1.50

	0%
	~1
	~1
	~1
	~1
	~1

	15%
	.78
	.83
	.86
	.88
	.89

	30%
	.62
	.70
	.74
	.77
	.79

	45%
	.49
	.57
	.63
	.67
	.69

	60%
	.38
	.46
	.52
	.56
	.59

	75%
	.28
	.35
	.41
	.45
	.48

	90%
	.17
	.22
	.27
	.30
	.32


Table 2

Total number of events (HIV infections) required to have 80% power to reject the composite null hypothesis (i.e., to  establish proof-of-concept) for different levels of 
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, for the Simes’ (S), Fisher's (F), weighted Simes' (WS), and weighted Fisher's (WF) combination tests.
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	>100
	93
	>100
	81
	75
	45
	49
	37
	37
	28
	31
	24
	23

	10%
	>100
	>100
	>100
	>100
	92
	92
	79
	75
	44
	47
	38
	37
	28
	29
	24
	23

	20%
	>100
	>100
	>100
	>100
	87
	78
	77
	72
	44
	41
	38
	36
	27
	27
	23
	23

	30%
	>100
	>100
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	77
	64
	74
	71
	42
	36
	39
	36
	27
	25
	24
	23

	40%
	>100
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	63
	50
	65
	67
	40
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	37
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	24
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	50%
	77
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	>100
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	47
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	70%
	28
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	>100
	25
	21
	31
	52
	23
	17
	26
	33
	17
	15
	20
	23


Table 3

Total number of events (HIV infections) required to have 80% power to reject the composite null hypothesis (i.e., to establish proof-of-concept) for different levels of 
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