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Summary. Prophylaxis of contacts of infectious cases such as household members and treatment of infectious
cases are methods to prevent spread of infectious diseases. We develop a method based on maximum likelihood
to estimate the efficacy of such interventions and the transmission probabilities. We consider both the design
with prospective follow-up of close contact groups and the design with ascertainment of close contact groups by
an index case as well as randomization by groups and by individuals. We compare the designs using simulations.
We estimate the efficacy of the influenza antiviral agent oseltamivir in reducing susceptibility and infectiousness
in two case-ascertained household trials.
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1. Introduction

Transmission of many infectious diseases takes place mainly through close contacts in mixing groups such
as households, daycare centers, schools, and the workplace, and to a lesser extent through casual contacts
in the community at large. Data from studies based on close contact groups offer a basis for estimating
person-to-person and community-to-person transmission probabilities (Longini and Koopman, 1982; O’Neill
et al., 2000), and more importantly, for evaluating the effectiveness of prophylactic interventions such as
vaccination (Halloran et al., 1997) and antiviral agents. Key study design elements include randomization
scheme and ascertainment method. Often in infectious disease studies, the intervention product and placebo
are randomized so that all participants within a group receive either the intervention product or placebo.
However, individual randomization within a group could improve precision of the parameter estimates (Datta
et al., 1999) as well as identifiability of the parameters of interest. In some studies, households are ascer-
tained once a case is identified (Welliver et al., 2001; Hayden et al., 2004), while in the prospective design,
contact groups free of disease are enrolled at the beginning of an epidemic season and then followed to some
predetermined end point (Monto et al., 2002; Hayden et al., 2000). The case-ascertained trial size could be
much smaller than that of a prospective follow-up study with the same number of cases, but at the price of
potential bias due to left truncation of the infection status of the non-index cases. These latter cases could
already be infected at the time of ascertainment of the close contact group, but not yet showing symptoms.
If this left truncation can be dealt with, then the case-ascertained trials may be preferable to the larger
prospective trials.



Table 1. Two randomized multi-center trials conducted in North America and Europe in winter
seasons for evaluating the efficacy of oseltamivir, an influenza antiviral agent.

Trial 1 Trial 11
(Welliver et al., 2001) (Hayden et al., 2004)
Time of trial 1998-1999 2000-2001
Households 372 277
Population 1329 1110
Treatment for illness None Oseltamivir
Duration of medication
Illness treatment N/A 5 days
Prophylaxis 7 days 10 days
Follow up (symptom diary) 14 days 30 days
Infected/Total(index cases) 165/372 179/298
Infected/Total (susceptible)
Control* 38/464 45/392
Oseltamivir 4/493 14/420
Numbers may slightly differ from references due to different criteria of data inclusion for analysis.
1 Numerator is the number of infections confirmed by lab test, and denominator is the total
number of subjects in the corresponding group. Some households had > 1 index cases.
{ Participants in the control group received placebo in trial I and no treatment in trial II (see text
for further explanation).

Two randomized, controlled multi-center Phase III efficacy trials of oseltamivir, an orally administered
influenza neuraminidase inhibitor, are examples of studies with case-ascertained follow-up and household-
level randomization. These two trials were conducted in North America and Europe during the winter
influenza seasons of 1998 - 1999 (Welliver et al., 2001)and 2000 - 2001 (Hayden et al., 2004). Details of the
trials are given in Table 1.

Many methods are available for analyzing clinical trial data of acute infectious diseases based on close
contact groups (Becker, 1989). Longini and Koopman (1982), Longini et al.(1988), Addy et al.(1991) and
Magder and Brookmeyer (1993) developed methods that use only final infection status of individuals within
each close contact group. Rampey et al.(1992) developed a method for time of onset data for prospective
trials, but not for case-ascertained trials.

In this paper, we develop an estimation procedure based on maximum likelihood for both prospective
and case-ascertained clinical trials in close contact groups. We develop a method to deal with the left
truncation in the case-ascertained study design. Individual- and group-level randomization schemes as well
as prospective and case-ascertained designs are compared using simulations. The approaches are generalized
to stratified populations that include discrete covariates, allowing for different transmission probabilities.
We analyze the data from the two trials of oseltamivir using these methods.

2. Methods

Suppose, without loss of generality, that influenza is the infectious disease of interest and that the close
contact groups are households. In addition, the intervention of interest is the prophylactic use of influenza
antiviral agents. We define two types of potentially infectious contact: (1) being in the household with
another infected person, and (2) making contact with possibly infected people outside of the household. We
define p as the transmission probability per daily contact within the household between a susceptible person
and an infective person if both have not received antiviral agents. Similarly, define b as the daily probability
that a susceptible and untreated person is infected by a source of infection from the community.

Define AVEg as the antiviral efficacy for susceptibility to infection and illness. Then AVEg = 1 — 6,
where 6p is the reduced transmission probability resulting in illness if the susceptible person is taking an
antiviral agent and exposed to an untreated infected person in the household. For simplicity, we assume that
efficacy is the same for contacts outside the household, i.e., the reduced transmission probability resulting
in illness for a person taking an antiviral agent is §b. With a rich data set, one could estimate two separate



parameters. Define AVE; as the antiviral efficacy for infectiousness. Then, AVE; = 1 — ¢, where ¢p is the
reduced transmission probability if the infective person is treated. We can also estimate the AVEr, the total
effect on transmission when both people in a transmission pair are treated, similar to the VEr in Halloran et
al.(1997), also discussed in Farrington (2003). We consider two types of parameterization for AVEr. In the
first model, we assume independence and multiplicativity of § and ¢, so that the transmission probability
reduces to 8¢p and the total effect on the transmission is AVE; = 1 — 6¢. In the second model, we drop
the assumption of independence, and the transmission probability reduces to ¥p, where 1) is estimated as a
separate parameter. In this case, AVE; = 1—1). For identifiability, we make the following assumptions about
influenza: (1) The latent period (i.e., time from infection to being infectious) is the same as the incubation
period (i.e., time from infection to the onset of illness symptoms). (2) The probability distributions of the
lengths of the latent and the infectious periods are known and independent of treatments.

2.1. Maximum likelihood estimation
2.1.1. Prospective follow-up study design
We start with the model for the prospective follow-up study. Without loss of generality, let the trial start
on day 1 and end on day T. The simplest data for each participant are (1) the first date with symptoms if
infected, (2) assigned treatment, and (3) treatment period. Other time-dependent or -invariant information
could be included. Let #; denote the day of illness onset for an infected person i. We let r;(t) = (0 untreated,
1 treated) indicate the treatment status of person i on day ¢t. Under the assumption of independence between
0 and ¢, the probability that a susceptible person i escapes infection by an infective family member j on
day t is given by

0ii(8) = 1= 07O griOpf(elF), (1)

where the function f(t|f;) is the probability that person j is infectious on day ¢ given the day of illness onset
t;. When the assumption of independence is dropped, the escape probability is

gij(t) =1— i) A=ri(t)) grs M) (A=ri(t)) yyri () (t)pf(t|fj). (2)

It follows that
ei(t) = (1 =679 I a0 3)

JED;
and
t
Qi(t) = I] ei(r) (4)
T=1

are the escape probabilities for person ¢ on day ¢ and up to day t, respectively, where D; is the set of people
in the same household with person i. The probability that person ¢ is infected on day ¢ is given by

Zi(t) = Qi(t — 1)(1 — e4(t))-

However, we do not observe the exact infection time but just the onset time of illness. Let l,,,4, and I, be
the maximum and minimum duration of the latent period. Define t; = ; — limae and &; = ; — Ly as the
earliest and latest potential infection day for person i. Further denote the likelihood contributed by person
i by Li = Li(b7p707¢7¢|5j7j € Dz) Then

QiLT), if individual 7 is not infected,
i i 9(lilt) Zi(t), otherwise, (5)
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Fig. 1. Time sequence of the earliest and latest potential infection days and the illness onset day for an index case
as determined by the minimum and maximum duration of the latent period. Members other than the index case in
the household must have escaped infection up to day t4;. If infected after day ¢4;, a non-index case shows no illness

symptoms up to day £4, with a positive probability. This probability is 1 if the infection happens after day %, .

where g(%;|t) is the probability of illness onset on day #;, given infection on day #, or equivalently, the
probability that the latent period lasts for #; —t days (Rampey et al., 1992). The Newton-Raphson algorithm
can be applied to obtain the MLEs.

Household-level randomization leads to the same treatment status for all members of the same household,
if they are treated during the same period. Thus, the escape probability (1) simplifies to

ai;(t) = 1 — " Opf(t|E;), (6)

where 1 — ¢ is the total effect. Only ¢ is identifiable from within-household infections, and 6 can only be
identified from contacts within the community. Under the assumption of independence between 8 and ¢, ¢
is estimated as ¢ /6. If the assumption of independence it not made, ¢ can no longer be identified.

2.1.2. Case-ascertained follow-up study design

In a case-ascertained follow-up study, a household is enrolled only if an index case (i.e., illness) is identified,
giving rise to left truncation. The full likelihood in (5) should be conditioned on the infection status of
household members on the illness onset day of the index case. Possible selection bias due to left truncation
is then eliminated because the index case does not contribute to the conditional likelihood. To see this,
assume that person ¢ is a non-index-case household member. Let d; be the identifier for the index case
in the household of person i. Also, let f4, be the illness onset day of d;. Similarly, t4, = 4, — lmae and
tq, = tq, — lmin are the earliest and latest potential infection day of the index case (see Fig. 1).

The marginal probability that i does not show illness symptoms up to day %4, is

Pr(i; > i4,) {Zz

where Pr(t; > #4,|t) = 3°,o;, g([t) is the probability that the latent period is longer than f4, — t, given

)} + Qu(T), (7)

person i was infected on day ¢. Since the latent period is bounded between I, and lyaz, Pr(f; > t4,|t) is 0
for {t :t4, —t > lmas} and 1 for {t : t4, —t < lmin}, or equivalently 0 for {t: ¢ < ta,} and 1 for {t:t >4}

Also since {Zt>t Zi(t )} + Q;(T) = Q;(tg,), the marginal probability reduces to

Prll > 1a) ={ > Zit) Pr(hi >l } + QiFa)- (8)
t=ta;+1



By conditioning the full likelihood L; in (5) on the marginal likelihood L™ = Pr(f; > #4,), the solution to
the left truncation problem naturally results from a decomposition of L; and L}* as follows. The marginal
likelihood can be written as L = Q;(t4;).Ai, where

ta; i—1 ta;
A= X AT a@)(-e) Pe>faln J+ I eto). o)
=ttt =t t=ta; +1

Similarly, the full likelihood can be broken into L; = Q;(t4;)B;, where

HZ;H e;(t), if i is not infected,
B; = = . _ .
i Yt 9(ilt) (T2, 41 €i(M) (L = €i()),  otherwise,

is the full likelihood after ¢4,. The conditional likelihood contribution of 7 is given by
L = L;/LT" = B;/ A;, (10)

and the joint conditional likelihood []; L§ for the whole population will be maximized to obtain the MLEs.
The expression of L§ in (10) suggests that the likelihood history up to day tq;, can be cancelled in the
conditional likelihood for case-ascertained follow-up studies. This is not surprising since ¢4, + 1 is the first
day with uncertainty about infection status of non-index-case members in the household. For an index case,
both the full and the marginal likelihood contributions are equal to the probability of illness onset on day
t4;, hence the likelihood contribution of the index case is cancelled by conditioning.

2.1.3. Allowing for covariate-specific transmission probabilities

It is straightforward to extend the likelihood model to allow for covariate-specific transmission probabilities.
For example, it is possible to allow for age-group specific transmission probabilities between children, p..,
adults pge, adults to children p,., and children to adults p.,, as well as age-group specific community
probabilities of infection, b, and b., where subscript a denotes adults and ¢ denotes children (Addy et al.,
1991).

2.2. Assessing Fit

We use a frequency grouping method motivated by the development of goodness-of-fit tests for logistic
regression models (Hosmer and Lemeshow, 1980). Since the only observable binary outcome is daily illness
onset status (yes/no) for each person, we track the exposure status of each participant and then calculate
the probability of illness onset for each day based on the fitted model. This probability serves two purposes:
first, it is the model-predicted frequency of illness onset times per person-day that will be compared with the
observed onset times; and second, it measures the risk level of exposure to infection that is used to determine
the risk categories.

The probability of illness onset on day ¢ for person i is

t—lmin 7—1

mw= Y {@-am) [[ e }gn.

T=t—lmae s=t—lma=

Suppose the population of 7;()’s has been grouped into m risk levels according to the percentiles with cut

points 0 = ¢g < ¢1 < ... < ¢y = 1. Then 7y, = Z%_Kka m; is the fitted number of illness onsets at level



Table 2. Empirical cumulative distributions of the latent period and the infectious period
for influenza (Elveback et al., 1976).

Latent Period Infectious Period
Duration  Cumulative Duration  Cumulative
(days) Probability (days) Probability
1 0.2 3 0.3
2 0.8 4 0.7
3 1.0 5 0.9
6 1.0

k. Let Ny be the total person-days and nj be the observed number of illness onsets at level &, then

which simplifies to > 7" (e —in)® g fir < Ny for all k.

=1 g )

3. Simulation study

We created a discrete event stochastic simulation model to assess how well the estimation procedures perform
and to investigate what the best intervention trial design would be. We created a simulation community
composed of 749 households of size two and larger with 2000 people roughly based on the distributions of
age and household sizes from the US Census 2000. Since households with a single member do not provide
information on ¢, we do not include single-member households in the simulation. The profile of the simulated
household sizes is {2 : 67%,3 : 13%,4 : 10%,5 : 7%,6 : 2%, 7 : 1%}. We stopped the simulated trials on day
100 which is generally the maximum length of clinical trials of influenza antiviral agents and vaccines. We
set the values of parameters as b = 0.004,p = 0.1,0 = 0.7,¢ = 0.2, and assume independence between 6
and ¢. The empirical latent and infectious period distributions were based on past experience with influenza
(Elveback et al., 1976), and are given in Table 2, from which f(¢|¢;) and g(#;|t) were derived. One thousand
stochastic replications were carried out for each scenario investigated.

We are interested in which intervention trial designs give the most efficient estimates of the AVEg and
the AVE;. Table 3 compares estimates, Monte Carlo standard errors, and coverage rates of 95% confi-
dence intervals (C.I.) based on estimated standard errors between randomization schemes (columns) and
between ascertainment methods (rows) for 8 and ¢. In both ascertainment methods, both 6 and ¢ are biased
slightly upward under household-level randomization. Most striking is that individual-level randomization
is much more efficient than household-level randomization regardless of the ascertainment scheme. In addi-
tion, household-level randomization yields lower coverage probabilities of 95% C.I.’s. Of all infections that
occurred, only 5% on average occurred during prophylaxis under household-level randomization, much lower
than 11% under individual-level randomization. The low proportion of infections during prophylaxis leads to
the larger standard errors of 6 and ¢. However, the overall attack rates are similar, 43% for individual-level
randomization and 44% for household-level randomization. Table 3 also shows that estimates of # and ¢
in the case-ascertained study are almost as precise as in the prospective study, given the same randomiza-
tion scheme. Point estimates of the transmission probabilities p and b do not differ by trial design, but
the prospective design gives a much smaller Monte Carlo standard error for b due to its richer information
about community-to-person transmissions (results not shown). In our simulation setting with b = 0.004, the
case-ascertained design involves on average only 62% of the households included in the prospective design.
If we change b to 0.001 and 0.01, this proportion decreases to 23% and increases to 90%, respectively.



Table 3. Comparison of MLEs by randomization schemes and household follow-up schemes.
Results are based on 1000 simulations.

Parameter’ Estimate MC s.e.* 95% C.I. coverage(%)®
IN H” I H I H

[4
Prospective 0.70 0.71 0.083 0.25 95.3 93.8
Case-ascertained  0.70 0.71 0.083 0.26 96.1 94.3

[
Prospective 0.20 0.24 0.045 0.16 94.6 91.5
Case-ascertained 0.20 0.24 0.044 0.15 95.3 91.3

1 True efficacy-related parameters are set to #=0.70, $=0.20.

}{ Monte Carlo standard errors.

* I: individual-level randomization, H: household-level randomization.
$ 95% C.I. is obtained as exp{log(}) £ 1.96 x s.e.(log(A))}, A = 6, ¢.

4. Data analysis

The two trials of oseltamivir in Table 1 fall into the category of case-ascertained follow-up with household-
level randomization. Only models (1) or (2) and not model (6) can be applied since neither trial had families
in which all members received treatments during the same period. In the first trial (trial I, Welliver et
al.(2001)), index cases were not treated with either oseltamivir or placebo but eligible exposed household
members (aged 12+ years) were given oseltamivir for prophylaxis or placebo within 48 hours of the onset of
illness symptoms in the index case. In the second trial (trial II, Hayden et al.(2004)), all index cases were
treated with oseltamivir after ascertainment. Exposed household members (aged 14 years) were randomized
to groups with or without oseltamivir for prophylaxis and, in the case of illness, were treated with oseltamivir.
The AVEg can be estimated solely from trial I, but most of the information about the AVE; comes from
pooling data from the two trials. We used only laboratory-confirmed illness in our analysis. We divided the
population into two age groups: children (1-17) and adults (18+).

In an initial analysis, we assumed the two trials share the same p, €, ¢, and 1, but have different
probabilities of infection from the community, i.e., by for trial I and by for trial II. Hence, the pooled
population was partially stratified by trial. The MLEs of b; and by for the two trials are about the same,
0.0012 (s.e. 0.00036) and 0.0011 (s.e. 0.00026), indicating that each untreated person had about 1/1000
chance of being infected from outside of the household each day.

Table 4 shows the results based on MLEs when we allow for age-group specific transmission probabilities.
Under the assumption of independence between 6 and ¢ (model (1)), prophylactic use of oseltamivir is shown

to be significantly protective against infection with illness by AVEg = 0.85 (95% C.1.=(0.52, 0.95)). Thus,
if a person uses oseltamivir prophylactically, it reduces his chance of being infected with illness by 85% per
daily exposure to an untreated infected person. In addition, oseltamivir reduces the infectiousness of infected
people who take the drug therapeutically or prophylactically, with AVE; = 0.66 (95% C.1.=(-0.10, 0.89)),
but the effect is not statistically significant. Thus, if an infected person uses oseltamivir therapeutically or
prophylactically, it reduces his chance of transmitting influenza to another person not using the drug by 66%
per daily household exposure. With AVE;=0.95 (95% C.1.=(0.77, 0.99)), when both people in a transmission
pair are treated, oseltamivir reduces the chance of transmission by 95%. Welliver et al.(2001) reported an
efficacy in preventing clinical influenza of 0.89 (95%C.1.=(0.71, 0.96)) and an efficacy in inhibiting viral
shedding of 0.84 (95%C.1.=(0.57, 0.95)) for trial I, and Hayden et al.(2004) reported a conditional efficacy
in preventing lab-confirmed influenza of 0.68 (95%C.1.=(0.35, 0.84)) when index cases were treated. These
results are comparable to our efficacy estimates. If we drop the assumption of independence between 8 and
¢ (model (2)), the point estimates of AVEg and AVE; are raised to 0.93 (95% C.1.=(0.50, 0.99)) and 0.78
(95% C.1.=(-0.27, 0.96)) respectively, whereas AVEr decreases to 0.87 (95% C.I1.=(0.41, 0.97)). To compare
these two models, a likelihood ratio test is performed, and the p-value is 0.16 based on a x? distribution,



Table 4. Maximum likelihood estimates by age (1-17 vs
18+) for pooled oseltamivir trials conducted in 1998-1999
and 2000-2001, North America and Europe.

With Assumption
Y =100 Parameter MLE 95% C.I.
Yes bt 0.0023  (0.0015, 0.0035)
ba 0.00055 (0.0003, 0.001)
Pee 0.038 (0.023, 0.063)
Pea 0.012 (0.007, 0.021)
Pac 0.018 (0.008, 0.040)
Paa 0.022 (0.014, 0.034)
AVEg 0.85 (0.52, 0.95)
AVE; 0.66 (-0.10, 0.89)
AVEr 0.95 (0.77, 0.99)
No AVEs 0.93 (0.50, 0.99)

AVE; 0.78 (-0.27, 0.96)
AVET 0.87 (0.41, 0.97)
SAR..F 0.15 (0.074, 0.21)
SAR., 0.049 (0.021, 0.075)
SARq. 0.071 (0.014, 0.13)
SARgq 0.086 (0.047, 0.12)

t, } Subscription ¢ denotes child (1-17), a denotes adult

(184), and ca denotes child-to-adult transmission.
1 SAR,. is based on the average 4.1 days of infectious
period, i.e., SARyy =1 — (1 — pyo)*t.

indicating that the assumption of independence and multiplicativity between 6 and ¢ is reasonable for these
data.

In Table 4, we only present estimates of transmission probabilities for model (1) since the assumption
of independence between 6§ and ¢ does not have a substantial effect on these estimates. The estimated
probability of being infected from the community on any given day for children (0.0023) is four times higher
than that for adults (0.00055). For secondary spread within the household, the estimated transmission
probability between untreated children (p.. = 0.038) is nearly twice as high as that between untreated
adults (p,, = 0.022). The ms and the X\TE, are about the same as those found in the unstratified
analysis (results not shown). Another way to assess secondary spread in the household is via the household
secondary attack rate (SAR). We define SAR,,, as the probability that an untreated infected person with
covariate value v infects an untreated household member with covariate value uw throughout the former
person’s infectious period. Since we assume the average infectious period for influenza to be 4.1 days, we
define SAR,, =1 — (1 — p,,u)“. The estimated SARs are give in Table 4. The estimated SAR between
children is almost twice that between adults.

We assessed how well model (1) stratified by age-group fits the data. We categorized the probabilities
of illness onset per person-day into 10 risk levels in Table 5 according to the clustering pattern of the
probabilities. For the most part, there is good agreement between the observed and predicted illness onset
counts. To calculate an approximate y-square statistic, we collapsed the first three levels into one level,
levels 4 and 5 into one level, and levels 6 and 7 into one level. This results in x2 = 2.36 that has a p-value
of 0.67, indicating an adequate fit.

To assess sensitivity of the efficacy estimates to the distributions of the latent and infectious periods, we
re-analyzed the data at several combinations of different distributions as shown in Table 6. The estimates of
AVEg and AVEr are robust to the distribution of latent and infectious periods, as compared to AVE;. The
estimates of AVEg (AVEr) range from 0.83 to 0.87 (0.92 to 0.97) under model (1) and 0.91 to 0.94 (0.85 to
0.89) under model (2), all 95% confidence intervals excluding 0 (not shown in the table). The point estimates
of AVE; increase as the mean duration of the latent and infectious periods become longer, varying from 0.47
to 0.79 under model (1) and from 0.57 to 0.93 under model (2), and remain statistically not significant in
most cases (95% confidence intervals not shown).



Table 5. Assessing goodness-of-fit of the likelihood
model for pooled oseltamivir trials conducted in 1998-
1999 and 2000-2001, North America and Europe.

Risk Total Observed # of  Predicted # of
Level Person-days illness onsets illness onsets
1 2084 0 0
2 1321 0 0
3 15878 8 9
4 1434 1 3
5 8165 19 22
6 933 3 3
7 935 5 4
8 1241 12 9
9 1084 17 18
10 894 25 27
t With assumption of ¢y = 6¢.

Table 6. Sensitivity of Maximum likelihood estimates for efficacies to distributions of the latent period and the
infectious period for pooled oseltamivir trials conducted in 1998-1999 and 2000-2001, North America and Europe.

Latent' With Infectious Period?
of Assumption 3.7¢ 4.1° 4.87
Period Y =0¢ AVEg AVE; AVEr AVEg AVE; AVEr AVEg AVE; AVEr
1.5%
Yes 0.84 0.47 0.92 0.85 0.54 0.93 0.87 0.62 0.95
se.  (0.094) (0.284)  (0.059) (0.087)  (0.243)  (0.048) (0.079)  (0.198)  (0.036)
No 0.91 0.57 0.85 0.92 0.64 0.86 0.93 0.72 0.89
\ s.e.  (0.091) (0.285)  (0.124) (0.080)  (0.239)  (0.106) (0.066)  (0.191)  (0.087)
2.0
Yes 0.84 0.60 0.94 0.85 0.66 0.95 0.87 0.72 0.96
se.  (0.096) (0.239)  (0.048) (0.089)  (0.204)  (0.039) (0.080)  (0.167)  (0.029)
No 0.92 0.74 0.85 0.93 0.78 0.87 0.94 0.84 0.89
se.  (0.079) (0.232)  (0.119) (0.070)  (0.195)  (0.102) (0.059)  (0.156)  (0.083)
2.4¢
Yes 0.83 0.70 0.95 0.84 0.74 0.96 0.86 0.79 0.97
s.e.  (0.100) (0.211)  (0.041) (0.093)  (0.180)  (0.033) (0.083)  (0.148)  (0.025)
No 0.93 0.89 0.85 0.93 0.91 0.86 0.94 0.93 0.89
se.  (0.075) (0.196) (0.118) (0.067)  (0.162)  (0.101) (0.058)  (0.129)  (0.084)
1,1 Mean duration (days) of latent and infectious periods.
a Probability mass function is (1:0.6, 2:0.3, 3:0.1).
b Probability mass function is (1:0.2, 2:0.6, 3:0.2).
¢ Probability mass function is (1:0.1, 2:0.4, 3:0.5).
d Probability mass function is (3:0.6, 4:0.2, 5:0.1, 6:0.1).
e Probability mass function is (3:0.3, 4:0.4, 5:0.2, 6:0.1).
f Probability mass function is (3:0.1, 4:0.2, 5:0.5, 6:0.2).




5. Discussion

We have developed statistical methods for estimating the effectiveness of infectious disease interventions from
illness incidence data in close contact groups. We have used these methods to evaluate which study design
may be the best for clinical trials in close contact groups. Our simulations indicate that individual-level
randomization is more efficient than household-level randomization in terms of producing smaller standard
errors for the parameter estimates of interest. Our simulations also reveal that, if correctly adjusted for
left truncation, the case-ascertained follow-up study provides estimates of almost the same quality as those
provided by the prospective follow-up study, except that the latter estimates b, a nuisance parameter, with
better precision.

In this work, we provide the first joint estimates of the efficacies of an influenza antiviral agent in reducing
susceptibility to infection with illness (AVEg), in reducing infectiousness (AVE ), and the combined effect
(AVE7T). We estimate that the prophylactic use of oseltamivir reduces the probability of infection and illness
given exposure to infection by 85%. In addition, if oseltamivir is taken therapeutically soon after symptoms
appear or prophylactically, then the probability the infected person will transmit to others in the household
is reduced by 66%. Longini et al.(2004) used values similar to these estimates in a stochastic simulation
model of pandemic influenza to show that the targeted use of oseltamivir in close contact groups could slow
the transmission of influenza on the community level. Such an intervention would be important because
there would be little or no vaccine available against the first wave of pandemic influenza (Longini et al.,
1978; Longini et al., 2004). In addition, the targeted use of oseltamivir could be used to possibly contain a
potential pandemic strain of influenza at the source (Longini, et al., 2005). Above we make an assumption
of independence between AVEg and AVE;, and the combined effect AVEr under this assumption is 95%.
Without this assumption, both AVEg and AVE; increase to some extent, and AVEr is lowered to 87%. Our
higher estimates of the SAR between children than between adults and from the community to children than
to adults, similar to those of Addy et al.(1991), confirm that children are both the major introducers and
spreaders of influenza in households.

Several issues in this research deserve future investigation. First, unmeasured heterogeneity may be
present in both the probability that a household is invaded with influenza and SARs within households. In
this case, random effects terms added to the transmission probabilities might be appropriate (Halloran et
al., 2003a). However, this would complicate the model and increase the data requirements. We already take
the clustering of cases into account through the transmission model that includes secondary transmission
within households. A related issue is the possibility of ascertainment bias for the case-ascertainment design
since households more prone to influenza invasion have a higher probability of having an index case and,
thus, getting into the sample. Dealing with this potential source of bias will require further research.
Parameter estimation could be affected by potential misclassification of infection and illness status of study
participants. Validation set methods could be developed for study designs that include more sensitive
infection detection tests for a subset of study participants (Halloran et al., 2003b). Extension of Bayesian
approaches (Cauchemez et al., 2004) could allow estimation of the latent and infectious periods as well.

We have assumed that the susceptibility status of each individual in the trial is known on day 1. However,
if some of the susceptibles are only partially susceptible or immune at that time, there would not be a bias in
the AVE estimators as long as the trial were randomized. If the trial were not randomized, then the initial
susceptibility status of each participant would have to be taken into account, at least partially through an
immunity marker such as antibody level.

For small trials or trials with a small numbers of illnesses, the maximum likelihood method that we
develop here could have convergence problems. To help deal with this problem and to find starting values
for the maximum likelihood algorithm, we developed an alternative approach based on generalized linear
models fitted by iteratively re-weighted least squares in combination with the EM algorithm (Yang et al.,
2004).
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In this work, we assume that the intervention trial would be performed on a sample of several hundred
households that would constitute a small fraction of the community. This has been the case in past trials.
Thus, intervention in the trial households would not affect transmission in the community nor would the
trial provide information on the epidemic curve in the community. For this reason we modeled the daily
probability that a susceptible and untreated person is infected by a source of infection from the community,
b, as constant in time. If information on the epidemic curve were available from the community, then b could
be treated as time-dependent (Longini et al., 1996). In addition, if the trial were done on a community scale,
then it would be appropriate to take the entire epidemic process into account in the analysis (Halloran et
al., 1999; Longini et al., 2002).

Based on this research, we recommend that future intervention trials in close contact groups for the
efficacy of the intervention to prevent infection, illness and transmission be randomized on an individual level
and be case-ascertained if there are limited resources for the trial. Use of the individual level randomization
in the trials analyzed here would have resulted in a more precise estimate of the AVE;. The close contact
group setting allows the estimation methods to condition on exposure to infection, which, in turn, allows
estimation of AVEg, AVE;, and AVEr (Halloran et al., 1997). These estimates can be used in transmission
models to assess the potential effect of the intervention on a community level (Longini et al., 2004; Longini
et al., 2005).
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