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The case-cohort design is a common means of reducing the cost of covariate measurements in large failure-time studies. Under this design,
complete covariate data are collected only on the cases (i.e., the subjects whose failure times are uncensored) and on a subcohort randomly
selected from the whole cohort. In many applications, certain covariates are readily measured on all cohort members, and surrogate mea-
surements of the expensive covariates also may be available. The existing relative-risk estimators for the case-cohort design disregard the
covariate data collected outside the case-cohort sample and thus incur loss of efficiency. To make better use of the available data, we develop
a class of weighted estimators with general time-varying weights that are related to a class of estimators proposed by Robins, Rotnitzky, and
Zhao. The estimators are shown to be consistent and asymptotically normal under appropriate conditions. We identify the estimator within
this class that maximizes efficiency, numerical studies demonstrate that the efficiency gains of the proposed estimator over the existing ones
can be substantial in realistic settings. We also study the estimation of the cumulative hazard function. An illustration with data taken from
Wilms’ tumor studies is provided.
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1. INTRODUCTION

Clinical and epidemiological cohort studies are routinely
conducted to assess the effects of possibly time-dependent co-
variates on a failure time. For large studies, the assembly of the
covariate histories on all cohort members can be prohibitively
expensive. The cost can be substantially reduced by using the
so-called “case-cohort” design (Prentice 1986). Under this de-
sign, the covariate histories are ascertained only for the cases
(i.e., the subjects who experience the event of interest during
the follow-up period) and for a relatively small subcohort that is
a random sample from the original cohort. The case-cohort de-
sign has been applied in cancer research (e.g., Mark et al. 2000;
Zeegers, Goldbohm, and van den Brandt 2001), heart disease
research (Folsom, Aleksic, Catellier, Juneja, and Wu 2002), and
HIV research (Nokta et al. 2002). This design has played an in-
creasingly important role in genetic studies (e.g., Ensrud et al.
1999; Rasmussen et al. 2001) because it avoids the high cost
associated with genotyping a large number of subjects.

The case-cohort design is a form of two-phase sampling. At
the first phase, the study cohort is randomly sampled from a
general population; at the second phase, the subcohort is ran-
domly selected from the study cohort. In many applications,
certain variables (e.g., treatment assignment, age, gender, and
error-prone versions of the expensive true covariates) are ob-
served on all of the subjects in the cohort. Such data are referred
to as the first-phase covariate data. At the second phase of the
case-cohort sampling, complete covariate histories (including
all of the expensive covariates not measured at the first phase)
are assembled for the cases and the subcohort. These data are
known as the second-phase covariate data.

The Cox (1972) proportional hazards model is the basis for
most methods used to study relative risks in failure-time stud-
ies. Most of the existing relative-risk estimators under the case-
cohort design are based on modifications of the full-data partial
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likelihood score function by weighting the contributions from
the cases and subcohort members with the inverses of their true
or estimated sampling probabilities, ignoring the first-phase co-
variate data (Prentice 1986; Self and Prentice 1988; Kalbfleisch
and Lawless 1988). The only method that utilizes some of the
first-phase information is stratification on the first-phase co-
variates (Borgan, Langholz, Samuelsen, Goldstein, and Pogoda
2000). Estimators with time-varying weights have been pro-
posed as an alternative means of improving the efficiency of
the case-cohort estimation (Barlow 1994; Borgan et al. 2000).
Simulation studies suggest that the stratified estimator II with
time-varying weights proposed by Borgan et al. (2000), referred
to as the BII estimator throughout the present article, is the most
efficient among the existing estimators. The asymptotic theory
for this type of estimators has not been previously established.
With the exception of Self and Prentice (1988), no authors stud-
ied the estimation of the cumulative hazard function under the
case-cohort design.

In this article we seek to improve the efficiency of the
relative-risk estimation for case-cohort studies by making fuller
use of the available first-phase covariate data. We also aim to
fill in the gap in the existing theory of the case-cohort estima-
tion. In the next section we describe the fundamentals of case-
cohort sampling and present a unified estimation framework
encompassing the existing weighted estimators. In Section 3
we develop a general class of weighted estimators by incor-
porating arbitrary stochastic processes as time-varying weights
into the empirical sampling probabilities, which are in turn used
to weight the contributions of the cases and subcohort mem-
bers to the partial likelihood score function. The resulting dou-
bly weighted (DW) estimators are proven to be consistent and
asymptotically normal under appropriate conditions. The effi-
ciency of the DW estimator depends on the choice of the time-
varying weights. A by product of Section 3 is establishment of
the theoretical properties of the BII estimator and other existing
estimators with time-varying weights. In Section 3 we also pro-
pose and study a related class of estimators for the cumulative
hazard function.

Data arising from a case-cohort study can be viewed as a
special type of a missing-data problem. In Section 4 we show
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that the class of DW estimators is asymptotically equivalent to a
class of augmented estimators considered by Robins, Rotnitzky,
and Zhao (1994) and specify a time-varying weight that yields
an asymptotically efficient estimator within this class. We pro-
pose to combine this estimator with the BII estimator through
an optimal linear combination as a means of implementing the
efficient DW estimator to achieve good numerical properties in
finite samples. In Section 5 we report the results of our simu-
lation studies, which demonstrate that the proposed estimator
reliably estimates the relative-risk parameter and that its ef-
ficiency gains over the existing estimators can be substantial
in practical situations. In Section 6 we illustrate the proposed
methods with an example, and in Section 7 we give some con-
cluding remarks. Most of the technical details are relegated to
the Appendix.

2. A GENERAL FRAMEWORK FOR
CASE–COHORT ESTIMATORS

2.1 Model Assumptions and Definition of
Case-Cohort Sampling

Let T be the failure time, let C be a potential censoring time,
and let Z(t) be an m-vector of covariate processes. Suppose that
T is conditionally independent of C given Z(·) and that the con-
ditional distribution of T given Z(·) follows the Cox (1972) pro-
portional hazards model

λ(t|Z) = λ0(t) exp{βT
0 Z(t)},

where λ(t|Z) is the conditional hazard for failure given the co-
variate history up to time t, β0 is a vector-valued parameter, and
λ0(t) is an unspecified baseline hazard function.

Define X = min(T,C), � = I(T ≤ C), N(t) = I(X ≤ t,
� = 1), and Y(t) = I(X ≥ t). Suppose that the support of C is
bounded above by τ > 0 such that Pr(Y(τ ) = 1) > 0. A subject
whose failure time is observed (i.e., � = 1) is called a case, and
a censored subject (i.e., � = 0) is referred to as a control.

Consider a cohort of n subjects who can be divided into
K mutually exclusive strata based on a discrete random vari-
able V . In practice, V represents some of the first-phase infor-
mation. We require that V affects the failure time only through
the covariates; that is, T is independent of V given Z(·). Let
the selection of a subject into the subcohort be indicated by a
binary random variable ξ that is conditionally independent of
(T,C,Z(·)) given V . Sampling of subcohort subjects may be
done prospectively or retrospectively. The stratum variable V
may include any information available at the time of sampling,
including failure status and censored failure time. For each
k = 1, . . . ,K, let Pr(ξ = 1|V = k) = αk , where αk > 0. We
do not require that αj �= αk for all j �= k; in fact, V may de-
fine a finer stratification than that used for sampling the subco-
hort. Let E denote the expectation over the joint distribution of
(T,C,Z(·),V, ξ) and let Ek and vark denote the expectation and
variance within the kth stratum, that is, conditionally on V = k.

Throughout this article we assume that an independent re-
alization of the quintuple (T,C,Z(·),V, ξ) is attached to each
subject. The independence structure implies that the subcohort
is selected by Bernoulli sampling and the subcohort size is ran-
dom in each stratum. We let nk denote the number of subjects
in the kth stratum and let qk ≡ Pr(V = k) denote the limiting

proportion of subjects in the kth stratum. The subjects are in-
dexed by the subscript pairs {ki}, where k denotes the stratum
number and i indexes subjects within strata. For nonstratified
sampling (i.e., K = 1), we drop the stratum index k and use a
single subscript i to identify subjects.

Under the case-cohort design, complete observations (Xki,

�ki,Zki(t),0 ≤ t ≤ τ,Vki, ξki ≡ 1) are available for all subco-
hort subjects, and at least (Xki,�ki ≡ 1,Zki(Xki)) are observed
for the cases. Different case-cohort estimators make different
assumptions on what additional data are available for the non-
subcohort members. The information that may or may not be
observed includes complete covariate histories of the cases, at-
risk histories outside the subcohort, inexpensive covariates, and
surrogates that do not enter the model but can be used to predict
the expensive covariates.

2.2 Principles of Parameter Estimation With
Case-Cohort Data

With full data, β0 would be estimated by β̂F, the root of the
partial likelihood (Cox 1972) score function

UF(β) =
n∑

i=1

∫ τ

0
{Zi(t) − ZF(t,β)} dNi(t), (1)

where

ZF(t,β) = S(1)
F (t,β)/S(0)

F (t,β), (2)

S(1)
F (t,β) = n−1

n∑

i=1

Zi(t) exp{βTZi(t)}Yi(t),

and

S(0)
F (t,β) = n−1

n∑

i=1

exp{βTZi(t)}Yi(t).

Only the cases contribute to the summation in (1); the controls
affect UF only through the at-risk covariate average ZF.

Under the case-cohort design, (1) cannot be calculated, be-
cause ZF involves unobserved data. Virtually all existing case-
cohort estimators are based on pseudoscores parallel to (1), with
ZF replaced by an approximation ZC,

UC(β) =
K∑

k=1

nk∑

i=1

∫ τ

0
{Zki(t) − ZC(t,β)} dNki(t). (3)

We have switched to double indices {ki} to reflect the poten-
tial stratification. The case-cohort at-risk average is defined as
ZC(t,β) = S(1)

C (t,β)/S(0)
C (t,β), where

S(1)
C (t,β) = n−1

K∑

k=1

nk∑

i=1

�ki(t)Zki(t) exp{βTZki(t)}Yki(t),

(4)

S(0)
C (t,β) = n−1

K∑

k=1

nk∑

i=1

�ki(t) exp{βTZki(t)}Yki(t).

The potentially time-varying weight �ki(t) eliminates subjects
with incomplete data from the estimation by setting �ki = 0
whenever �ki = ξki = 0. The second-phase subjects have pos-
itive �ki(t), usually equal to the inverses of their true or esti-
mated sampling probabilities. Various proposals for �ki(t) have
been published, yielding different case-cohort estimators.
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The existing case-cohort estimators follow two different ap-
proaches that differ in the way the cases are treated. The first
approach includes the cases in ZC only at their failure times
unless they happen to be in the subcohort. Thus the cases are
sampled with probability 1 at the failure time only, but not be-
fore, and the subcohort is considered a sample from all study
subjects regardless of the failure status. We refer to these es-
timators as the N-estimators. The original estimator proposed
by Prentice (1986) belongs to this group; it is obtained by set-
ting �i(t) = ξi/α for t < Ti and �i(Ti) = 1/α. (Only a case can
be evaluated at the failure time Ti.) The α’s cancel out in the
numerator and denominator of ZC; we include them to empha-
size the inverse sampling probability interpretation of �i. Self
and Prentice (1988) considered a slightly modified estimator
with �i(t) = ξi/α for all t; other authors have suggested using
�i(Ti) = 1 rather than �i(Ti) = 1/α.

The general (stratified) N-estimator has weights

�ki(t) = ξki/α̂k(t), t < Tki and �ki(Tki) = 1, (5)

where α̂k(t) is a possibly time-varying estimator of αk. Using
an estimated rather than the known true sampling probability
can actually improve efficiency (cf. Robins et al. 1994). The
simplest way to estimate αk is to use the empirical proportion
of the sampled subjects (Borgan et al. 2000, est. I). A time-
varying weight can be obtained by calculating the proportion of
the sampled subjects among those who remain at risk at a given
time point (Barlow 1994; Borgan et al. 2000, est. I TV).

The second approach is to include the cases in ZC and weight
them by 1 throughout their entire at-risk periods. We call the
estimators under this approach the D-estimators. This approach
treats the cases quite distinctly from the subcohort. Given the
failure status, the probability that a case is included in the case-
cohort sample is 1; the original sampling probabilities αk apply
to the controls only. The sampling indicators ξki are no longer
relevant for the cases. Thus, once the failure status is known,
one can form a separate stratum consisting of the cases and
consider the whole stratum sampled with probability 1, whereas
the subcohort is sampled with probabilities α1, . . . , αK from the
controls classified into the remaining K strata. This shows that,
conditional on failure status, the analysis of the case-cohort de-
sign is similar to that of the case-control design whether or not
subcohort sampling is done retrospectively.

The first D-estimator, defined by the weights �i(t) = �i +
(1 −�i)ξi/α, was proposed by Kalbfleisch and Lawless (1988)
for K = 1. A general stratified D-estimator is defined by the
weights

�ki(t) = �ki + (1 − �ki)ξki/α̂k(t). (6)

Again, empirical sampling proportions can be substituted
for α̂k(t). Because of the separation between the cases and the
controls, α̂k(t) should be evaluated from the controls only. Ex-
amples of constant and time-varying weights of this type have
been given by Chen and Lo (1999), Borgan et al. (2000, est. II),
and Chen (2001). Specifically, the BII estimator (called esti-
mator II with time-varying weights by Borgan et al.) arises by
setting α̂k(t) = ∑

i ξki(1−�ki)Yki(t)/
∑

i(1−�ki)Yki(t), which
is the proportion of the sampled controls among those who re-
main at risk at the time t.

There are two principal differences between the N- and
D-estimators. Unlike the D-estimators, the N-estimators gen-
erate predictable weights, which facilitates the use of the mar-
tingale theory in deriving their theoretical properties. However,
this is no longer a critical issue, because other tools that do
not require predictability have become available. More impor-
tantly, the D-estimators require the retrospective assessment of
complete covariate histories for the cases, which improves effi-
ciency but may not be always feasible. In this article we focus
on the D-estimators, although we indicate how to adapt our re-
sults to the N-estimators.

3. A GENERAL DOUBLY WEIGHTED ESTIMATOR

In this section we generalize the D-estimators defined by
(3), (4), and (6). Here the estimated sampling probabilities are
weighted by an arbitrary random processes, and each compo-
nent of ZC uses a separate probability estimate with a poten-
tially different weighting process. These extensions lead to a
class of DW estimators, which includes the BII estimator and
other estimators mentioned in the previous section as special
cases. We establish the asymptotic properties of DW estima-
tors and study the estimation of the cumulative baseline hazard
function.

3.1 Definition of the Doubly Weighted Estimator

Let Aki(t) be a diagonal matrix with m potentially different
random processes on the diagonal. Consider the following esti-
mators of the subcohort sampling probabilities:

α̂k(t) =
{ nk∑

i=1

(1 − �ki)Aki(t)

}−1{ nk∑

i=1

ξki(1 − �ki)Aki(t)

}

.

We have m estimators of αk on the diagonal of α̂k(t), which is a
matrix. Each estimator can be interpreted as an empirical sam-
pling proportion based on the controls, with the contribution of
each control weighted by a component of Aki(t). We modify (6)
slightly to reflect the current matrix structure,

�ki(t) = �kiIm + (1 − �ki)ξkiα̂
−1
k (t),

where Im is an m×m identity matrix. We call Aki(t) the second-
level weight to distinguish it from the first-level weight �ki(t).

The at-risk covariate average is estimated by

ZDW(t,β) ≡ {
S(0)

DW(t,β)
}−1S(1)

DW(t,β),

where

S(1)
DW(t,β) = n−1

K∑

k=1

nk∑

i=1

�ki(t)Zki(t) exp{βTZki(t)}Yki(t)

and

S(0)
DW(t,β) = n−1

K∑

k=1

nk∑

i=1

�ki(t) exp{βTZki(t)}Yki(t).

Note that S(1)
DW is an m-vector, whereas S(0)

DW is a diagonal m×m
matrix. The pseudoscore is defined as

UDW(β) =
K∑

k=1

nk∑

i=1

∫ τ

0
{Zki(t) − ZDW(t,β)} dNki(t), (7)
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and the DW estimator β̂DW is the solution to the equation
UDW(β) = 0.

The BII estimator can be obtained by placing m copies
of Yki(t) on the diagonal of Aki(t). In the sequel, the pseudoscore
of the BII estimator will be denoted by UB, the associated at-
risk covariate average by ZB, and the estimator itself by β̂B.
Borgan et al.’s estimator II with fixed weights is also a special
case: Simply set Aki(t) = Im.

3.2 Properties of the Doubly Weighted Estimator

In addition to the usual regularity conditions for the Cox re-
gression (Andersen and Gill 1982), we assume the following:

Condition 1.

(a) For each component Zj of Z(t), var
∫ τ

0 |dVj(t)| < ∞,
where Vj(t) = Zj(t) exp{βT

0 Z(t)}. For each component Aj
of A(t), var

∫ τ

0 |dAj(t)| < ∞.
(b) The matrix Aki(t) is independent of ξki given stratum k.
(c) The absolute values of the diagonal elements of µk(t) ≡

Ek(1 − �ki)Aki(t) are bounded away from 0 for all t ∈ [0, τ ]
and all k = 1, . . . ,K.

Thus we require that the total variations of the second-level
weights and of certain transformations of covariate processes
have finite second moments, that the second-level weight be
independent of the subcohort sampling indicator, and that its
expectation over the controls in a stratum does not cross 0
in [0, τ ]. We relax Condition 1(c) in Section 3.4.

Andersen and Gill (1982) showed that there exists a neigh-
borhood B of β0 and a vector of deterministic functions z(t,β)

such that ZF(t,β) converges to z(t,β) in probability uniformly
in t ∈ [0, τ ] and β ∈ B, provided that Pr(Y(τ ) > 0) > 0.
We show in Appendix, Section A.2, that under Condition 1,
ZDW converges to the same limit. The following approximation
of the pseudoscore at β0, proven in Section A.3, is the key to
understanding the asymptotic properties of β̂DW.

Theorem 1. Under Condition 1,

1√
n

UDW(β0)

= 1√
n

UF(β0)

+ 1√
n

K∑

k=1

nk∑

i=1

(1 − �ki)

(

1 − ξki

αk

)

×
∫ τ

0

{
Rki(t) − µ−1

k (t)Aki(t)ψk(t)
}

d�0(t) + oP(1),

where Rki(t) = {Zki(t) − z(t,β0)} exp{βT
0 Zki(t)}Yki(t), ψk(t) =

Ek(1 − �ki)Rki(t), and �0(t) = ∫ t
0 λ0(s)ds.

Theorem 1 implies that the DW pseudoscore can be approx-
imated by the partial likelihood score plus a sum of iid mean-0
random vectors. Let IF be the limiting partial likelihood infor-
mation matrix, that is,

IF =
∫ τ

0

{
s(2)(t,β0)

s(0)(t,β0)
− z⊗2(t,β0)

}

s(0)(t,β0)d�0(t),

where s(l)(t,β) = E{Z(t)⊗l exp{βTZ(t)}Y(t)} for l = 0,1,2,
and a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT for any vector a.

Theorem 2. Under Condition 1, n−1/2UDW(β0)
D−→

N(0,IF + �DW) and
√

n( β̂DW − β0)
D−→ N(0,I−1

F + I−1
F �DWI−1

F ),

where

�DW =
K∑

k=1

qk
1 − αk

αk

× Ek

[

(1 − �ki)

×
∫ τ

0

{
Rki(t) − µ−1

k (t)Aki(t)ψk(t)
}

d�0(t)

]⊗2

. (8)

A proof is given in Appendix, Section A.4. The asymptotic
variance of β̂DW is that of the full-data partial likelihood es-
timator plus an extra term due to case-cohort sampling. Im-
portantly, the variance of β̂DW depends on the choice of the
second-level weights Aki, but the estimator is consistent no mat-
ter how the Aki’s are selected.

Remark 1. The asymptotic distribution of a DW N-estimator
with first-level weights �ki(t) = ξkiα̂

−1
k (t) for t < Tki and

�ki(Tki) = Im can be obtained from Theorems 1 and 2 by re-
placing each occurrence of (1 − �ki) in the extra pseudoscore
term, ψk(t), µk(t), and �DW, with 1.

3.3 Estimation of �0 and the Asymptotic
Variance of β̂DW

We propose estimating the cumulative baseline hazard �0(t)
by a DW estimator defined as

�̂DW(t) = n−1
∫ t

0

{
S(0)
� (u, β̂�)

}−1 ∑

k,i

dNki(u),

where β̂� is any case-cohort estimator satisfying
√

n(β̂� −
β0)

D−→ N(0,I−1
F + I−1

F ��I−1
F ), S(0)

� (t,β) = n−1 ×
∑

k,i �
�
ki (t) exp{βTZki(t)}Yki(t), and

��
ki (t) = �ki + (1 − �ki)

∑

k,i(1 − �ki)A�
ki(t)

∑

k,i ξki(1 − �ki)A�
ki(t)

.

Here the second-level weight A�
ki (t) is a single random process.

The following theorem establishes the weak convergence
of �̂DW.

Theorem 3. Suppose that Condition 1 holds for A�
ki (t). Then√

n(�̂DW(t) − �0(t)) converges weakly to a mean-0 Gaussian
process.

The theorem is proven and the covariance function of the lim-
iting process is given in Appendix, Section A.5.

The limiting variance IF of the partial likelihood score can
be consistently estimated by

ÎF ≡ n−1
∫ τ

0

{
S(2)

B (t, β̂DW)

S(0)
B (t, β̂DW)

− Z
⊗2
B (t, β̂DW)

}
∑

k,i

dNki(t),

where S(2)
B , S(0)

B , and ZB are estimators of s(2), s(0), and z, based
on the BII estimator. The extra pseudoscore variance, �DW, can
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be consistently estimated by replacing all of the unknown quan-
tities by their empirical counterparts. The estimator takes the
form

�̂DW = 1

n

K∑

k=1

nk(nk − ñk)

ñ 2
k

×
nk∑

i=1

ξki(1 − �ki)

×
[∫ τ

0

{
R̂ki(t) − µ̂−1

k (t)Aki(t)ψ̂k(t)
}

d�̂DW(t)

]⊗2

,

where ñk = ∑nk
i=1 ξki, ψ̂k(t) = ñ−1

k

∑nk
i=1 ξki(1 − �ki)R̂ki(t),

µ̂k(t) = n−1
k

∑nk
i=1(1 − �ki)Aki(t), and R̂ki(t) = {Zki(t) −

ZDW(t, β̂DW)} exp{β̂T
DWZki(t)}Yki(t).

3.4 Generalization to Arbitrary Weights

The theory presented in Section 3.2 requires Condition 1(c),
which rules out sign changes in the means of the second-level
weights. This condition is not guaranteed to hold for a gen-
eral Aki(t). We relax it by dynamic stratification on the sign
of Aki(t). Let γ +

ki(t) = I(Aki(t) > 0), γ −
ki(t) = I(Aki(t) < 0),

A+
ki(t) = γ +

ki(t)Aki(t), and A−
ki(t) = −γ −

ki(t)Aki(t). Assume that
for every t ∈ [0, τ ], the second-level weights are nonzero with
a positive probability. Incorporate the contributions of the posi-
tive parts of the weights into α̂+

k (t) = {∑(1 − �ki)A
+
ki(t)}−1 ×

{∑ ξki(1 − �ki)A+
ki(t)} and the contributions of the negative

parts into α̂−
k (t), defined analogously. Set

�ki(t) = �kiIm + (1 − �ki)ξki

×[
γ +

ki(t){̂α+
k (t)}−1 + γ −

ki(t){̂α−
k (t)}−1]

and calculate the DW estimator in the ususal way. For each t,
the diagonal matrices of indicators γ +

ki and γ −
ki classify the ob-

servations according to the sign of each component of Aki into
an upper or a lower stratum. An observation may contribute to
the upper stratum for some covariates and to the lower stratum
for others. Condition 1(c) is guaranteed to hold for A+

ki and A−
ki

and Theorems 1 and 2 apply in a slightly modified form. The
integral

∫
(Rki − µ−1

k Akiψk)d�0 in Theorem 1 is replaced by
∫ τ

0

[
Rki(t) − γ +

ki(t){µ+
k (t)}−1A+

ki(t)ψ
+
k (t)

− γ −
ki(t){µ−

k (t)}−1A−
ki(t)ψ

−
k (t)

]
d�0(t), (9)

where µ+
k (t) is a diagonal matrix of Ek{(1−�ki)Akij(t)|Akij(t) >

0} > 0, ψ+
k (t) is a diagonal matrix of Ek{(1 − �ki)Rkij(t)|

Akij(t) > 0}, and µ−
k and ψ−

k are defined analogously. The index
j = 1, . . . ,m runs over the components of the covariate vector.
The asymptotic distribution of the dynamically stratified DW
estimator is as shown in Theorem 2, with the integral in (8)
replaced by (9).

4. IMPLEMENTATION OF THE DOUBLY
WEIGHTED ESTIMATOR

In Sections 3.1 and 3.4 we introduced a class of DW estima-
tors with arbitrary second-level weights. In this section we use
the theory presented in Section 3.2 and the results of Robins

et al. (1994) to identify the efficient estimator within the DW
class. We propose to combine this estimator with the BII esti-
mator in an adaptive manner so as to implement the efficient
DW estimator in practice. To simplify the notation, we drop the
argument t from Z(t). All of the results can be easily extended
to time-varying covariates.

4.1 The Efficient Doubly Weighted Estimator

The dynamically stratified DW estimators of Section 3.4 are
consistent and asymptotically normal under mild conditions.
However, their efficiency depends on the choice of Aki, which
needs to be evaluated on every subject in the original cohort.
These weights can incorporate all information observed during
the first phase, that is, the stratum variable V , the failure indi-
cator �, the censoring time C, the observed components of Z,
and surrogates for the unobserved components of Z. We denote
all of the variables observed during the first phase by W.

Robins et al. (1994), hereafter referred to as RRZ, consid-
ered the general problem of regression models with missing co-
variates. They introduced a class of estimators with estimating
equations

∑
Di(β,h) = 0, where Di are iid terms of the form

η

π
φ − η − π

π
h, (10)

η is a binary indicator of fully observed covariates, π =
Pr(η = 1), φ is a mean-0 estimating function evaluable on sub-
jects with complete data, and h is an arbitrary function of ob-
served data. RRZ showed that for a given estimation function φ,
the optimal choice of h is h = E(φ|observed data). An estima-
tor that achieves the semiparametric efficiency bound can be
obtained by projecting φ onto the orthogonal complement of
the tangent space for all nuisance parameters (Bickel, Klaassen,
Ritov, and Wellner 1993). In cases where the projection is dif-
ficult to calculate, such as the case-cohort design, RRZ rec-
ommended taking the usual full-data score function as φ and
augmenting the estimator by the optimal h. This yields the es-
timator that is efficient within the class (10) restricted to the
full-data φ. We call this the efficient augmented estimator.

Translating the foregoing theory in our case-cohort notation
with no stratification and all indices dropped, we get φ = ∫ {Z−
z} dN − ∫

R d�0, η = 1 − (1 − �)(1 − ξ), and π = � + (1 −
�)α. Write h = ∫

Q d�0, where Q is an arbitrary process based
on observed data. Then (10) can be written as

∫

{Z − z} dN − ρ

∫

R d�0 − (1 − ρ)

∫

Q d�0, (11)

where ρ = � + (1 − �)ξ/α. In contrast, the DW estimators of
Section 3.1 have the expansion

∫

{Z − z} dN − ρ

∫

R d�0 − (1 − ρ)

∫

Aµ−1ψ d�0. (12)

Unless ψ = 0 on a subset of [0, τ ] with a positive Lebesgue
measure, every estimator satisfying (11) for some Q also satis-
fies (12) for some A and vice versa. Thus the class of DW es-
timators is essentially the same as the class of augmented RRZ
estimators. For stratified sampling, the foregoing arguments can
be applied within each stratum to yield the same conclusion.

The efficient DW estimator is obtained by setting Aki(t) =
diag[Ek{Rki(t)|Wki}]. With this weight, µk(t) = Ek(1 − �ki) ×
Aki(t) = diag{Ek(1−�ki)Rki(t)} = diag{ψk(t)}, and hence µ−1

k
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and ψk cancel out each other. The extra-score variance of
the efficient DW estimator is �DW = ∑K

k=1 qk
1−αk
αk

Ek{(1 −
�ki)

∫ τ

0 [Rki(t) − Ek{Rki(t)|Wki}] d�0(t)}⊗2. The dynamically
stratified version of the efficient DW estimator has the same
asymptotic variance and avoids the problem with 0 in both
µk and ψk.

The cumulative baseline hazard estimator that minimizes the
asymptotic variance of

√
n(�̂DW(t)−�0(t)) for every t ∈ [0, τ ]

(over the class of estimators proposed in Sec. 3.3) can be found
in the same way. In particular, it follows from the asymptotic
expansions in Appendix, Section A.5, that the optimal �̂DW
should use β̂DW as β̂� and A�

ki(t) ≡ Ek[exp{βT
0 Zki}Yki(t)|Wki]

as the second-level weight.
As shown earlier, the efficient DW estimator is asymptoti-

cally equivalent to the efficient augmented estimator described
by RRZ. We recognized the connection of the DW estima-
tors with the RRZ class of estimators only after our results
were mostly developed. A direct implementation of the effi-
cient augmented estimator with survival data is not straightfor-
ward; one cannot simply substitute an estimate of the efficient
Q = Ek{Rki(t)|Wki} into (11) because of the unknown functions
z and �0 involved in (11). If these functions are replaced by
consistent estimators (Wang and Chen 2001), a nonnegligible
variability is added to the pseudoscore, and efficiency is lost.
It is possible, though, that one could obtain the efficient aug-
mented estimator through a representation of (10) as ηπ̂−1φ,
where π̂ is an estimate of the subcohort selection probability
based on a correctly specified logistic regression model (RRZ,
sec. 6.4).

4.2 Calculating the Efficient Doubly Weighted Estimator

The efficient second-level weight Aki(t) has the elements

Ek
[
Zki exp{βT

0 Zki}Yki(t)|Wki
]

− z(t,β0)Ek
[
exp{βT

0 Zki}Yki(t)|Wki
]

on the diagonal. These elements involve β0, z, and two un-
known conditional expectations. We show in Appendix, Sec-
tion A.6, that the unknown parameters in Aki(t) can be replaced
by any consistent estimators without affecting the asymptotic
variance of the pseudoscore. (This would not be true for esti-
mating parameters in the pseudoscore itself.) Thus we can re-
place β0 by, for example, the BII estimator β̂B, and replace
z by ZB. The conditional expectations can be estimated from
the second-phase sample.

If Yki and all components of Zki but one are observed during
the first phase, then we only need to estimate Ek[Zl exp{βlZl}|
W] and Ek[exp{βlZl}|W], where Zl is the covariate not ob-
served during the first phase. Unless Zl is binary, it is not ob-
vious how this can be done in general. Instead, we suggest
using approximations to the conditional expectations. The sim-
plest method is to specify a model for the mean of Zl given W
and to approximate the conditional expectations by plugging in
the fitted values Ẑl for Zl. In fact, this approximates exp(βlZl)

and Zl exp(βlZl) linearly by the first-order Taylor expansions
around Ẑl. One could also use the second-order expansions,
which augment the plug-in approach by incorporating the resid-
ual variance of Ẑl and allow for heteroscedasticity.

In our experience, using the second-order expansion or even
estimating the exact conditional expectations from the true dis-
tribution of Z given W did not confer a substantial advantage
over the plug-in approach. Thus we recommend constructing Ẑ
such that for fully observed covariates, Ẑl = Zl, and for second-
phase covariates, Ẑl is the fitted value from a rich model re-
gressing Zl on all the first-phase variables. Then we set

Aki(t) ≡ diag
[{Ẑki − ZB(t, β̂B)} exp{β̂T

BẐki}Yki(t)
]

(13)

and implement the DW estimator as suggested in Section 3.4.

4.3 The Combined Doubly Weighted Estimator:
Justifications and Properties

Although it has appealing asymptotic properties, the pro-
posed efficient DW estimator may not always perform well in
finite sample sizes. First, the asymptotic theory assumes that the
number of subcohort controls is large in every stratum through-
out [0, τ ]. In practice, the subcohort usually thins out toward
the end of the study, affecting the performance of the estima-
tor. Second, the proposed DW estimator is efficient only if the
model for Z given W is correct. A misspecified model may se-
riously reduce the efficiency of the DW estimator. For these rea-
sons, we propose that the efficient DW estimator be combined
with another consistent estimator that does not use the entire
first-phase data (e.g., the BII estimator).

Take any diagonal m × m matrix � and define a combined
pseudoscore

UCW(β) = �UDW(β) + (Im − �)UB(β).

The combined doubly weighted (CDW) estimator, β̂CDW,
is the solution to UCW(β) = 0. It follows from Theorems
1 and 2 that this estimator is consistent and asymptotically nor-
mal. The asymptotic variance of

√
n( β̂CDW − β0) is I−1

F +
I−1

F �CW(�)I−1
F , where

�CW(�) = ��DW�T + ��DB(Im − �)T

+(Im − �)�T
DB�T + (Im − �)�B(Im − �)T,

�B is the asymptotic variance of UB, and

�DB =
K∑

k=1

qk
1 − αk

αk

× Ek

[

(1 − �ki)

×
∫ τ

0

{
Rki(t) − µ−1

k (t)Aki(t)ψk(t)
}

d�0(t)

×
∫ τ

0

{

Rki(t) − Yki(t)

Ek{(1 − �ki)Yki(t)}ψk(t)

}T

d�0(t)

]

.

The asymptotic variance can be easily minimized over di-
agonal � to obtain the optimal �0 ≡ diag(ω1, . . . ,ωm), where
ωj = (σ

j,j
B −σ

j,j
DB)/(σ

j,j
B +σ

j,j
DW −2σ

j,j
DB), and σ

j,j
X is the jth diag-

onal element of the matrix �X . The CDW estimator β̂CDW that
we propose uses a combination matrix �̂0, which is a consis-
tent estimator of �0 obtained by replacing all unknown quan-
tities with their empirical counterparts. By Slutsky’s theorem,
the asymptotic variance of β̂CDW is I−1

F + I−1
F �CW(�0)I−1

F .
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The optimal combination matrix �̂0 ensures that the asymptotic
variance of each component of the CDW estimator is no larger
than that of the BII estimator alone or the DW estimator alone.
Thus the CDW estimator is protected against a deterioration of
efficiency below that of the BII estimator due to an incorrect
model for Z given W and generally improves the performance
of the DW estimator in finite samples.

The efficient augmented RRZ estimator and the CDW esti-
mator have the same limiting distributions if the model for the
distribution of Z given W is correctly specified. If this model
is incorrect, then the variance of both estimators will increase,
but the relative ordering is unclear. Both estimators have an up-
per bound for the asymptotic variance: for RRZ, the variance is
never larger than that for the estimator that weights by the true
sampling probabilities (RRZ, prop. 6.1). For CDW, the variance
is never larger than that for the stratified BII estimator (which is
more efficient than the estimator using the true sampling prob-
abilities). This suggests that the CDW estimator may be more
efficient than the RRZ estimator when the model for missing
covariates is badly misspecified.

The CDW estimator can be calculated according to the fol-
lowing algorithm:

1. Obtain the covariate predictions Ẑki.
2. Find β̂B and calculate ZB.
3. Evaluate all Aki(t).
4. Estimate �DW, �B, and �DB at β̂B and evaluate �̂0.
5. Iteratively solve UCW(β) = 0 starting at β̂B based on the

Aki’s and �̂0 calculated at steps 3 and 4.

5. SIMULATION STUDIES

We conducted extensive simulation studies to evaluate the
finite-sample properties of the CDW estimator. For compari-
son, we also evaluated the nonstratified Self–Prentice estimator
(SP), the stratified BII estimator, and, as a benchmark, the full-
data Cox estimator (F). The DW part of the CDW estimator per-
tains to a dynamically stratified DW estimator with estimated
plug-in weights Aki given by (13). Once the number of controls
at risk in a stratum drops below 5, the weights Aki in the stra-
tum are kept constant for all the subsequent failure times. This
adjustment prevents aberrations in the weights as the risk sets
get small.

We report here two sets of studies involving three covari-
ates, a binary Z1 with Pr(Z1 = 1) = p, Z2 ∼ N(0, .52), and
log(Z3) ∼ N(cz2, .52) conditional on Z2 = z2. The failure times
are exponentially distributed, and the censoring times are uni-
form. The study cohort consists of 3,000 subjects. The sub-
cohort was drawn from the whole cohort regardless of failure
status. Stratified sampling was done so that subcohort subjects
were about equally distributed between the predefined strata.
A total of 1,000 simulation runs were generated for each set-
ting.

First, we set p = .5 and c = .2, and assumed that Z1 and Z3
were observed at the first phase, while Z2 was observed only
at the second phase. A surrogate Z̃2 ≡ Z2 + ε was available for
every subject, where ε was normal with mean 0, independent
of Z2. The correlation between Z2 and Z̃2 was equal to either
.71 or .93. Eight strata were defined based on Z1 and on the me-
dians of Z̃2 and Z3. The estimated covariate Ẑ2 in (13) was ob-
tained from a linear model regressing Z2 on Z1, Z̃2, log(Z3), and

Table 1. Summary Statistics for the Simulation Studies With a
Continuous Surrogate Covariate

corr (Z2, Z̃2) = .93 corr (Z2, Z̃2 ) = .71

Method EST SE SEE CP RE EST SE SEE CP RE

β1 = .3
F .304 .117 .117 .95 1.00 .299 .120 .117 .94 1.00
S–P .313 .198 .188 .94 .39 .306 .192 .188 .96 .39
BII .308 .132 .131 .95 .80 .301 .139 .135 .94 .75
CDW .304 .123 .121 .94 .93 .300 .132 .128 .94 .83

β2 = 1.2
F 1.197 .122 .120 .95 1.00 1.203 .121 .120 .95 1.00
S–P 1.230 .220 .206 .93 .34 1.242 .210 .207 .95 .33
BII 1.220 .194 .176 .93 .46 1.238 .191 .181 .94 .44
CDW 1.187 .148 .135 .92 .78 1.225 .189 .161 .91 .55

β3 = .2
F .204 .082 .081 .96 1.00 .206 .083 .081 .95 1.00
S–P .232 .160 .146 .94 .31 .233 .158 .147 .93 .30
BII .218 .129 .121 .93 .45 .223 .132 .122 .92 .44
CDW .189 .094 .086 .93 .88 .190 .101 .091 .93 .79

NOTE: EST, SE, SEE, CP, and RE represent the sampling mean of the estimator, sampling
standard error of the estimator, sampling mean of the standard error estimator, coverage prob-
ability of the 95% Wald-type confidence interval, and the estimated efficiency of the estimator
relative to the full-data estimator. The first-phase data consist of censoring time, Z1, Z3, and a
surrogate, Z̃2 , for Z2. The subcohort includes 300 controls.

the censoring time C, based on subcohort controls. The gener-
ated datasets included on average about 300 cases and 300 sub-
cohort controls.

The results, given in Table 1, show that the CDW estima-
tor can have much higher efficiency than the other case-cohort
estimators. The efficiency gain of the CDW estimator depends
on whether the covariate is binary or continuous and on the in-
formation about the covariate contained in the first phase data.
Parameter estimates for fully observed continuous covariates
show impressive efficiency gains. Estimates for fully observed
binary covariates show smaller efficiency gains compared with
BII, but have the highest overall efficiency. The efficiency
gain of CDW for incompletely observed continuous covariates
ranges from substantial to negligible, depending on the quality
of the surrogate information.

In this set of studies, all case-cohort estimators exhibit a
small bias, and standard errors tend to be underestimated. The
bias arises with all case-cohort estimators when the subcohort
proportion is lower than .1 and increases as the proportion tends
to 0.

In the second set of studies, we let c = .6 and logit(p) =
−1.5 + .8Z2 − .50 logZ3. Unconditionally, Pr(Z1 = 1) = .19.
Covariates Z2 and Z3 were observed at the first phase, but
Z1 was observed only at the second phase. We generated two
surrogates for Z1, one with sensitivity .9 and specificity .7 and
the other with sensitivity and specificity both equal to .6. Eight
strata were defined based on a surrogate for Z1, and the medi-
ans of Z2 and Z3. The generated datasets included on average
about 260 cases and 250 or 500 subcohort controls. The plug-in
weights in the CDW estimator used fitted values from a logistic
regression model for Z1 with Z2, log Z3, the surrogate for Z1,
and the censoring time as covariates. The logistic model was
fitted to data on subcohort controls.

As shown in Table 2, the efficiency gain of CDW over BII
was very substantial for both β2 and β3, regardless of the sensi-
tivity and specificity of the surrogate for Z1. In contrast, almost
no efficiency was gained for β1. This is not surprising, because
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Table 2. Estimated Efficiencies of BII and CDW Estimators
Relative to the Full-Data Partial Likelihood Estimator Under
the Model λ(t |Z ) = Z1 + .8Z2 − .5Z3 With Binary Z1 and

Binary Surrogates W1 or W2 for Z1

NC = 250 NC = 500

Parameter Method W1 W2 W1 W2

β1 BII .42 .35 .61 .54
CDW .45 .36 .63 .54

β2 BII .50 .48 .68 .66
CDW .83 .78 .91 .87

β3 BII .58 .55 .75 .73
CDW .84 .79 .92 .89

NOTE: NC is the mean number of subcohort controls. The first-phase data consist of
censoring time, Z2 , Z3, and surrogates W1 or W2 for Z1. (W1 has sensitivity .9 and
specificity .7; W2 has sensitivity and specificity .6.)

stratification on a surrogate for β1 already accounts for most of
the information on β1 contained in the first-phase data.

6. WILMS’ TUMOR STUDIES

To illustrate the use of the CDW estimator in practice, we an-
alyzed data collected in two randomized studies in Wilms’ tu-
mor patients. Wilms’ tumor is a rare kidney cancer occurring in
young children. Factors that affect survival and relapse include
the histological type of the tumor, classified as favorable versus
unfavorable, stage (I–IV), age at diagnosis, and tumor diame-
ter. The National Wilms’ Tumor Study Group (NWTSG) con-
ducted several randomized studies to test different treatments in
Wilms’ tumor patients. We used data on 3,915 subjects partici-
pating in two of the NWTSG trials (D’Angio et al. 1989; Green
et al. 1998) to evaluate the joint effect of histological type and
other covariates on relapse-free survival.

In the NWTSG studies, histological type was assessed in
two ways. Pathologists at the individual sites analyzed a tumor
sample and determined a preliminary “local” histological type.
Each sample was then sent to a central facility, where an ex-
perienced pathologist reevaluated it. This reevaluation was an
expensive and time-consuming process. The central assessment
can be considered the “true” histological type, and the local
assessment can be considered an imprecise surrogate. About
11% patients had unfavorable central histology. The sensitiv-
ity of unfavorable local histology was 74%, and the specificity
was 98%. In the NWTSG studies, central histology was eval-
uated for all patients. If a case-control design had been used,
however, the cost of central histology assessments would have
been dramatically reduced.

We took advantage of the full data to investigate different
methods of parameter estimation under case-cohort sampling.
We pretended that true histology was evaluated only on the
cases and the subcohort, while all of the other covariates, in-
cluding local histology, were available for the whole cohort.
The case-cohort design was in fact used in recent NWTSG stud-
ies, although it was set up differently than it was in our example.

Before simulating the case-cohort design, we built a model
for relapse-free survival based on the full data. Because the ef-
fect of age at diagnosis was nonmonotone, we included a con-
tinuous piecewise-linear age effect in the linear predictor. Thus
there were two separate age effects, one for age up to 1 year and
one for age 1 year and older. The final model contained eight
parameters: one for histology (unfavorable vs. favorable), two

for age at diagnosis, one for stage (III–IV vs. I–II), one for tu-
mor diameter (in cm), two for the interaction of histology and
age, and one for the interaction of stage and tumor diameter. All
the terms included in the model were highly significant.

We also built a logistic model to predict true histology from
local histology, stage (IV vs. I–III), age at diagnosis (over
10 years vs. under 10 years), and study (indicating in which
of the two studies the subjects were participating). There were
six parameters in this model: the intercept, one parameter for
each covariate, and one parameter for the interaction of local
histology and stage. As expected, the estimated parameter for
local histology had the largest absolute value (not considering
the intercept). The other parameter estimates suggested that in-
stitutional pathologists were more likely to misclassify favor-
able histology in stage IV patients and unfavorable histology
in patients over age 10 years. In practice, of course, both mod-
els would be built based on the case-cohort data. However, we
focus here on the performance of the estimators rather than on
the issues related to model selection under the case-cohort de-
sign. The fact that we built the logistic model on the full data
rather than on the case-cohort data generated at each simulation
is unlikely to have had any effect on the CDW estimator. The
predictions of true histology are driven almost entirely by local
histology and its interactions, which were so highly significant
that they would be included even if the model were built on a
small subsample of the data.

The subjects were divided into eight strata according to lo-
cal histology, stage (stage III–IV vs. I–II), and age (1 year or
older vs. younger than 1 year). All 260 control subjects from the
five smallest strata were always included in the subcohort; we
sampled about 120 control subjects from two larger strata with
400–1,000 control subjects and about 160 subjects from the
largest stratum, which included over 1,600 controls. The subco-
hort was drawn 1,000 times and included on average 662 con-
trol subjects. The number of deaths and relapses in the cohort
was 669. Overall, about one-third of the study subjects were in
the second-phase sample.

The probability of true unfavorable histology given institu-
tional histology and other covariates was estimated from the
logistic model and substituted for true unfavorable histology in
the second-level weight. The logistic model was fitted using the
cases and the subcohort subjects only.

Estimated standard errors, given in Table 3, show that the
CDW estimator exhibits large efficiency gains over the BII es-
timator for the main effects of histology, age, tumor diameter,
and stage, and for the diameter–stage interaction. The table also
displays square roots of empirical mean squared errors (SMSE)
centered at the full-data estimate, which capture both extra vari-
ability of the case-cohort estimators and their potential biases.
For the completely observed covariates, the SMSEs of the CDW
estimator are tiny, which means that it achieves almost full effi-
ciency. This is not the case for the BII estimator. The efficiency
gains achieved by the CDW estimator for the age–histology in-
teraction parameters are more modest. Both are slightly more
biased than is the case with the BII estimator. However, the
SMSE for the interaction with age under 1 year still favors the
CDW estimator over the BII estimator. The other interaction
is estimated with nearly equal standard errors and SMSEs by
the two estimators. Overall, however, the CDW estimator works
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Table 3. Analysis of the Wilms’ Tumor Data

Full data BII CDW

Parameter Estimate SE Estimatea SEb SMSEc Estimatea SEb SMSEc

UH 4.041 .413 4.043 .452 .187 4.047 .432 .137
UH∗Age1 −2.634 .464 −2.645 .533 .280 −2.651 .512 .242
UH∗Age2 −.058 .034 −.053 .052 .045 −.049 .051 .046
Age1 −.661 .326 −.673 .363 .162 −.659 .331 .044
Age2 .104 .017 .106 .026 .021 .102 .018 .007
Stage 1.346 .244 1.343 .333 .227 1.345 .255 .126
Diam .069 .014 .070 .020 .015 .070 .015 .007
Stage∗Diam −.076 .019 −.076 .028 .020 −.076 .020 .011

NOTE: UH, unfavorable true histology; Age1, slope for <1 year; Age2, slope for ≥1 year.
aMean estimated parameter over 1,000 simulated subcohorts.
bMean estimated standard error over 1,000 simulated subcohorts.
cSquare root of the empirical MSE conditional on the full-data estimate.

well for this problem. It achieves high efficiency in most para-
meters even though true histology is evaluated for just one-third
of the whole cohort.

7. DISCUSSION

The proposed CDW estimator is asymptotically efficient
within the broad DW class of case-cohort estimators provided
that the model for Ek{Rki(t)|Wki} in the second-level weights is
correct. In particular, the CDW estimator is more efficient than
the estimators proposed by Chen and Lo (1999), Borgan et al.
(2000), and Chen (2001) and is asymptotically equivalent to the
efficient augmented estimator of Robins et al. (1994). The first-
order approximation to Ek{Rki(t)|Wki} that we advocated for
practical use entails only a minor efficiency loss.

For completely observed continuous covariates, the effi-
ciency gain of the CDW estimator over other stratified estima-
tors is substantial; for completely observed binary covariates,
the gain is smaller but still appreciable. The efficiency for in-
completely observed covariates depends on the ability of the
first-phase data to predict the true values of the covariate. It is
not surprising that the CDW estimator gains more efficiency
for continuous covariates. If all fully observed covariates are
binary, then the estimator proposed by Chen and Lo (1999)
and Borgan et al. (2000, est. II with constant weights) is effi-
cient within the DW class provided that it is stratified on all
combinations of the binary covariates. If the censoring time is
also available at the first phase, and censoring is independent of
the covariates, then the BII estimator is efficient within the DW
class. These results follow from Section 4.1.

Although the CDW estimator is efficient within the DW
class, it does not reach the semiparametric efficiency bound.
Efficient estimation in case-cohort design has been studied by
Nan, Emond, and Wellner (2004) and by Nan (unpublished
data). The manuscript by Nan implements the fully efficient es-
timator when all covariates and surrogates are discrete. Nan’s
estimator requires estimation of the conditional distributions of
censoring times given covariates. As a result, it can handle only
a small number of discrete covariates.

The idea of adaptively combining the DW and BII pseudo-
scores achieves two different objectives. First, it ensures that
the efficiency of the CDW estimator is never smaller than that
of the BII estimator, even if the model for Ek{Rki(t)|Wki} is
seriously misspecified and/or the first-phase data are of poor
quality. Second, it is a reliable method for calculating the DW

estimator in finite samples. The asymptotic theory for the DW
estimator assumes that the number of subcohort controls who
are at risk in a given stratum increases to infinity at each failure
time. In practice, the risk sets can get very small at the largest
failure times, which leads to computational problems and unre-
liable approximations of the distribution of β̂DW by its limit in
law. Note that large sample sizes at time t = 0 do not preclude
problems with small risk sets at t close to τ .

There are several ways to reduce the susceptibility of the DW
estimator to small risk sets in finite samples. One is to artifi-
cially censor the data when the risk sets are still sufficiently
large. However, this method may severely reduce efficiency.
Another possibility is to stabilize the weights once the risk sets
get too small. This may help, but it will not resolve the problem
entirely. Among the approaches that we tested, the combined
estimator with weights stabilized over small risk sets performed
best in finite samples. In our simulation studies, the combina-
tion matrix put on average more than .95 of the weight on the
DW component, as would be expected in cases where the DW
estimator is efficient, yet the CDW estimator had smaller bias
and better confidence interval coverage that the DW estima-
tor alone. Given the additional advantage of protection against
badly misspecified models for missing covariates, we recom-
mend the CDW estimator. Our simulation studies show that it
performs well whenever the number of failures is at least 200,
the subcohort sampling fraction is at least 5–10%, and each
stratum contains at least 30 controls (unless the whole stratum
is sampled).

Throughout this article, we have assumed that the subcohort
is selected by Bernoulli sampling. In practice, this is often done
by simple random sampling of a fixed number of subjects in
each stratum. However, the key asymptotic results of Theorems
1 and 2 apply to simple random sampling without any modifi-
cation. This follows from the fact that the integrals in (8) have
mean 0 conditionally on the stratum. The tightness required in
the proofs follows from example 3.6.14 of van der Vaart and
Wellner (1996). The results can be also extended to the general
multiplicative intensity model (Andersen and Gill 1982) with
arbitrary counting processes N(·) (including recurrent events)
and general at-risk processes Y(t) (including left truncation),
as well as to multiple endpoints and/or competing risks. As
pointed out by Prentice (1986), an attractive feature of the case-
cohort design is that the same subcohort can be used for several
different endpoints.
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The sampling and stratification schemes were set in Sec-
tion 2.1 and kept fixed throughout the rest of the article. An
important open question is how to choose strata and set sam-
pling probabilities to maximize efficiency.

APPENDIX: PROOFS

To simplify notation, we sometimes drop the time argument of ran-
dom processes. For the same reason, the proofs presented in Sections
A.1–A.3 pertain to a single covariate. Their extensions to multiple co-
variates are straightforward. The following proposition is used repeat-
edly.

Proposition A.1. Let Bi(t), i = 1, . . . ,n, be independent and identi-
cally distributed real-valued random processes on [0, τ ] with
EBi(t) ≡ µB(t), var Bi(0) < ∞, and var Bi(τ) < ∞. Suppose that al-
most all paths of Bi(t) have finite variation. Then n−1/2 ∑

i{Bi(t) −
µB(t)} converges weakly in �∞[0, τ ] to a mean-0 Gaussian process,
and n−1 ∑

i Bi(t) converges in probability to µB(t) uniformly in t.

Proof. Suppose first that the Bi(t)’s have nondecreasing sample
paths. Then, by example 2.11.16 of van der Vaart and Wellner (1996),
n−1/2 ∑

i{Bi(t) − µB(t)} converges weakly to a mean-0 Gaussian
process. In the general case, almost every path b(t) of Bi(t) can be
written as b+(t) − b−(t), where b+ and b− are nondecreasing in t.
Hence Bi(t) = B+

i (t) − B−
i (t), where B+

i (t) and B−
i (t) meet the con-

ditions of example 2.11.16. This implies that they are jointly tight.
The joint finite-dimensional convergence of the normalized B+

i (t) and

B−
i (t) follows from the multivariate central limit theorem.

A.1 Asymptotic Expansion of Weights

We first investigate the properties of the time-varying sampling
probability estimator α̂k(t) under Condition 1. For a given k, define

Bn(t) ≡ n−1
k

nk∑

i=1

(
ξki(1 − �ki)Aki(t)
(1 − �ki)Aki(t)

)

and

µ(t) ≡ EBn(t) = µk(t)

(
αk
1

)

.

Note that we used Condition 1(b) to calculate µ(t). By Condition 1(a)
and Proposition A.1,

√
nk{Bn(t) − µ(t)} converges weakly to a bi-

variate mean-0 Gaussian process. This implies that supt∈[0,τ ] |Bn(t)−
µ(t)| P−→ 0.

We can write α̂k(t) and α̂−1
k (t) as ratios of the two components

of Bn(t), and write αk and α−1
k as ratios of the two components

of µ(t). The ratios are continuous transformations as long as αk > 0
and |µk(t)| > ε for some ε > 0 and all t ∈ [0, τ ] [Condition 1(c)].
Hence, under these conditions, α̂k(t) converges to αk and α̂−1

k (t) con-
verges to α−1

k , both uniformly over t ∈ [0, τ ]. It then follows from the
functional delta method that, uniformly in t,

√
n{̂α−1

k (t) − α−1
k }

= {αkµk(t)}−1 1√
nk

×
nk∑

i=1

(1 − ξki/αk)(1 − �ki)Aki(t) + oP(1). (A.1)

A.2 Convergence of the At-Risk Average Process

We prove that, under Condition 1, supt∈[0,τ ],β∈B |ZDW(t, β) −
z(t, β)| P−→ 0. It suffices to show that supt∈[0,τ ],β∈B |S(l)

DW(t, β) −

S(l)
F (t, β)| P−→ 0 uniformly in t for l = 0,1. Clearly,

S(l)
DW(t, β) − S(l)

F (t, β)

= n−1
∑

k,i

(1 − ξki/αk)(1 − �ki)Z
l
ki exp(βZki)Yki(t)

− n−1
∑

k,i

{̂α−1
k (t) − α−1

k }(1 − �ki)ξkiZ
l
ki exp(βZki)Yki(t).

(A.2)

Thus
∣
∣S(l)

DW(t, β) − S(l)
F (t, β)

∣
∣

≤
∣
∣
∣
∣n

−1
∑

k,i

(1 − ξki/αk)(1 − �ki)Z
l
ki exp(βZki)Yki(t)

∣
∣
∣
∣

+
∑

k

|̂α−1
k (t) − α−1

k |n−1
∑

i

(1 − �ki)ξki|Zki|l exp(βZki)Yki(t).

Both terms on the right side of the inequality converge to 0 in prob-

ability uniformly in t and β . Because ES(0)
F (t, β) and ES(0)

DW(t, β) are
bounded away from 0 on [0, τ ] × B, the proof is completed.

A.3 Proof of Theorem 1

Note that UDW(β0) = UF(β0)+ ∑

k,i
∫ τ

0 (ZF − ZDW)dNki. We de-
compose Nki(t) as a sum of a martingale Mki(t) and a compensator
∫ t

0 Yki(s) exp(β0Zki)d�0(s) to get

1√
n

∑

k,i

∫ τ

0
(ZF − ZDW)dNki

=
∫ τ

0
(ZF − ZDW)d

{
1√
n

∑

k,i

Mki

}

+ 1√
n

∫ τ

0
(ZF − ZDW)

∑

k,i

Yki exp(β0Zki)d�0.

By the martingale central limit theorem, n−1/2 ∑
Mki(t) converges

weakly to a mean-0 Gaussian process. The Skorokhod strong em-
bedding theorem and Helly’s second theorem imply that the first
term on the right side converges to 0 in probability (Kulich and
Lin 2000, app. 1). The integrand of the second term can be written

as (ZF − ZDW)S(0)
F = (S(1)

F − S(1)
DW) + ZDW(S(0)

DW − S(0)
F ). Because

ZDW converges to z uniformly, we have

1√
n

∑

k,i

∫ τ

0
(ZF − ZDW)dNki

= √
n
∫ τ

0

(
S(1)

F − S(1)
DW

)
d�0 + √

n
∫ τ

0

(
S(0)

DW − S(0)
F

)
z d�0

+ oP(1).

By (A.2),

√
n
∫ τ

0

(
S(1)

F − S(1)
DW

)
d�0

= 1√
n

∑

k,i

(

1 − ξki

αk

)

(1 − �ki)

∫ τ

0
Zki exp(βZki)Yki d�0

− 1√
n

∑

k,i

ξki(1 − �ki)

∫ τ

0
(̂α−1

k − α−1
k )Zki exp(βZki)Yki d�0.
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By (A.1), the second term on the right side can be approximated by

1√
n

∑

k,i

ξki(1 − �ki)

×
∫ τ

0

Zki exp(βZki)Yki

αkµk

×
{

1

nk

∑

j

(

1 − ξkj

αk

)

(1 − �kj)Akj

}

d�0

= 1√
n

∑

k,j

(

1 − ξkj

αk

)

(1 − �kj)

×
∫ τ

0

Akj

µk

{
1

nk

∑

i

ξki

αk
(1 − �ki)Zki exp(βZki)Yki

}

d�0.

Thus

√
n
∫ τ

0

(
S(1)

F − S(1)
DW

)
d�0

= 1√
n

∑

k,i

(

1 − ξki

αk

)

(1 − �ki)

×
∫ τ

0

[

Zki exp(βZki)Yki

− Aki

µk

{
1

nk

∑

j

ξkj

αk
(1 − �kj)Zkj exp(βZkj)Ykj

}]

d�0

+ oP(1).

Likewise,

√
n
∫ τ

0

(
S(0)

DW − S(0)
F

)
z d�0

= − 1√
n

∑

k,i

(

1 − ξki

αk

)

(1 − �ki)

×
∫ τ

0

[

z exp(βZki)Yki

− Aki

µk

{
1

nk

∑

j

ξkj

αk
(1 − �kj)z exp(βZkj)Ykj

}]

d�0

+ oP(1).

It follows that

1√
n

∑

k,i

∫ τ

0
(ZF − ZDW)dNki

= 1√
n

∑

k,i

(

1 − ξki

αk

)

(1 − �ki)

∫ τ

0

(

Rki − Aki

µk
R̃k

)

d�0 + oP(1),

where Rki(t) is defined in Theorem 1 and

R̃k(t) = 1

nkαk

∑

i

ξki(1 − �ki){Zki(t) − z(t)} exp{βZki(t)}Yki(t).

By Proposition A.1, R̃k(t) converges to ψk(t) ≡ Ek(1 − �ki)Rki(t) in
probability uniformly in t. This completes the proof.

A.4 Proof of Theorem 2

We first show that β̂DW is consistent. This follows from the
consistency of β̂F and the fact that the DW pseudoscore approxi-
mates the partial likelihood score. To be specific, |n−1UDW(β) −
n−1UF(β)| ≤ supt∈[0,τ ],β∈B |ZF − ZDW|, which converges to 0 in

probability uniformly in a neighborhood of β0. By the Taylor ex-
pansions of UDW(β̂DW) and UF(β̂F) around β0, we have (β0 −
β̂F)n−1{DDW(β∗

DW) − DF(β∗
F)} = (β̂DW − β̂F)n−1DDW(β∗

DW),
where DX is the derivative of UX with respect to β , and β∗

X lies on
the line segment between β0 and β̂X . Because β̂F is consistent and
the DX’s are bounded in probability, the left side converges to 0. Thus
β̂DW converges in probability to the same limit as β̂F, that is, β0.

By Theorem 1,

n−1/2UDW(β0)

= n−1/2UF(β0) + n−1/2
∑

k,i

(1 − ξki/αk)ηki + oP(1), (A.3)

where ηki ≡ (1 − �ki)
∫ τ

0 {Rki(t) − µ−1
k (t)Aki(t)ψk(t)}d�0(t) are

independent and identically distributed. Clearly, n−1/2UDW(β0) is
asymptotically normal with mean 0. Conditioning on everything
but ξki, we get vark(1 − ξki/αk)ηki = Ek{η⊗2 vark(1 − ξki/αk)} =
(1 − αk)/αkEkη

⊗2. Thus n−1/2 ∑

k,i(1 − ξki/αk)ηki converges to

N(0,�DW), where �DW = ∑

k qk(1 − αk)/αkEkη
⊗2
ki . Furthermore,

the two terms on the right side of (A.3) are asymptotically indepen-
dent, because the (k, i)th contributions to the two terms are uncorre-

lated. This implies that n−1/2UDW(β0)
D−→ N(0,IF +�DW). It then

follows from the Taylor expansion and the convergence of β̂DW and
n−1DDW(β0) that

√
n(β̂DW − β0) = I−1

F n−1/2UDW(β0) + oP(1).

A.5 Estimated Cumulative Baseline Hazard

We assume that β̂� is a DW estimator [with weight matrix Aki(t)]
that satisfies
√

n(β̂� − β0)

= I−1
F

{
1√
n

UF(β0) + 1√
n

∑

k,i

(1 − ξki/αk)ηki

}

+ oP(1).

We show that
√

n{�̂DW(t) − �0(t)} converges weakly to a mean-0
Gaussian process whose covariance function at (t, s) is

hT(t)(I−1
F + I−1

F �DWI−1
F )h(s)

+
∫ min(t,s)

0

d�0(u)

s(0)(u,β0)
+ C1(t, s) − C2(t, s) − C2(s, t),

where h(t) = ∫ t
0 z(u)d�0(u),

C1(t, s) =
K∑

k=1

qk
1 − αk

αk

× Ek

[

(1 − �ki)

∫ t

0

{

R�
ki (u) − A�

ki (u)

µ�
k (u)

ψ�
k (u)

}
d�0(u)

s(0)(u,β0)

×
∫ s

0

{

R�
ki (v) − A�

ki (v)

µ�
k (v)

ψ�
k (v)

}
d�0(v)

s(0)(v,β0)

]

,

C2(t, s) = hT(t)I−1
F

K∑

k=1

qk
1 − αk

αk

× Ek

[

(1 − �ki)

×
∫ t

0

{

Rki(u) − µ−1
k (u)Aki(u)ψk(u)

}

d�0(u)

×
∫ s

0

{

R�
ki (v) − A�

ki (v)

µ�
k (v)

ψ�
k (v)

}
d�0(v)

s(0)(v,β0)

]

,
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R�
ki (u) = exp{βT

0 Zki(u)}Yki(u), ψ�
k (u) = Ek(1 − �ki)R

�
ki (u), and

µ�
k (u) = Ek(1 − �ki)A

�
ki (u).

We make the decomposition
√

n{�̂DW(t) − �0(t)}

= √
n
∫ t

0

[{
nS(0)

� (u, β̂�)
}−1

(A.4)

− {
nS(0)

� (u,β0)
}−1]

d
∑

k,i

Nki(u)

+
∫ t

0

{
S(0)
� (u,β0)

}−1 d
1√
n

∑

k,i

Mki(u) (A.5)

+
∫ t

0

√
n

S(0)
F (u,β0) − S(0)

� (u,β0)

S(0)
� (u,β0)

d�0(u). (A.6)

By the Taylor series expansion,

{
nS(0)

� (β̂�)
}−1 − {

nS(0)
� (β0)

}−1

= −n−1{
S(0)
� (β∗)

}−2S(1)
� (β∗)T(β̂� − β0),

where S(1)
� has an obvious definition and β∗ lies on the line segment

between β0 and β̂�. By the consistency of β̂�, the continuity of

S(0)
� (β) and S(1)

� (β) and their uniform convergence to s(0) and s(1),
and by the martingale decomposition of Nki(t), (A.4) can be written
as −√

n(β̂� − β0)
T ∫ t

0 z(u,β0)d�0(u) + oP(1). Hence (A.4) con-
verges weakly to a mean-0 Gaussian process with covariance function
h(t)T(I−1

F + I−1
F �DWI−1

F )h(s) at (t, s).
By the arguments of Section A.3, the integrand in (A.5) can

be replaced by its uniform limit {s(0)(u,β0)}−1. It then follows
from the martingale central limit theorem that (A.5) converges
weakly to a mean-0 Gaussian process with covariance function
∫ min(t,s)

0 {s(0)(u,β0)}−1 d�0(u) at (t, s).

With β̂� replaced by β̂F in (A.4), the sum of (A.4) and (A.5) would
be an asymptotic decomposition of the full-data Breslow estimator
of �0(t); in that case, the two terms would be uncorrelated (Andersen
and Gill 1982). However, the difference between β̂� and β̂F can be ap-
proximated by I−1

F n−1/2 ∑

k,i(1 − ξki/αk)ηki, which is uncorrelated
with Mki(t). Thus (A.4) and (A.5) are uncorrelated in our case as well.

Following the arguments of Section A.3, we can show that (A.6) is
asymptotically equivalent to n−1/2 ∑

k,i(1 − ξki/αk)η
�
ki (t), where

η�
ki (t) = (1 − �ki)

∫ t

0

{

R�
ki (u) − A�

ki (u)

µ�
k (u)

ψ�
k (u)

}
d�0(u)

s(0)(u,β0)
.

Because almost all paths of R�
ki (u) and A�

ki (u) have finite variations,
(A.6) converges weakly to a mean-0 Gaussian process with covariance
function C1(t, s) at (t, s).

Because both (A.4) and (A.6) involve subcohort sampling indica-
tors, they are not uncorrelated. Using the iid representations of these
two terms, we can show that the asymptotic covariance of (A.4) eval-
uated at t and (A.6) evaluated at s is −C2(t, s). On the other hand,
(A.6) is obviously uncorrelated with (A.5). This completes the proof.

A.6 Weights With Estimated Parameters

In Section 4.3 we claimed that substituting estimated parameters
in Aki(t) does not affect the asymptotic distribution of β̂DW. In this
section we outline a proof for m = 1.

Suppose that the second-level weights follow the functional form
Aki(t) = a(Qki(t), θ0(t)), where Qki(t) are iid processes measured
on individual subjects, θ0(t) is an unknown parameter, and a is a

known real function. Specifically, Qki consists of the completely ob-
served covariates, predictors for the expensive covariates, and the at-
risk process, and θ0(t) includes the true β0, z(t), and the parameters
for predicting the expensive covariate given the cheap covariates. Sup-
pose that θ̂(t) is a uniformly consistent estimator of θ0(t) such that

sup
t

∣
∣a

(
Qki(t), θ̂(t)

) − a
(
Qki(t), θ0(t)

)

−{̂θ(t) − θ0(t)}g(
Qki(t), θ0(t)

)∣
∣ = oP(1), (A.7)

where g(q, ζ ) = ∂a(q, ζ )/∂ζ . We assume that g(q, ζ ) is continuous
in ζ , that g(Qki(t), ζ ) has a finite expectation for all t and ζ , and that
almost all paths of g(Qki(t), θ0(t)) have finite variation.

We need to show that
√

nk {̂α−1
k (t, θ̂(t)) − α̂−1

k (t, θ0(t))} is oP(1)

uniformly in t, where

α̂k
(
t, θ(t)

) = n−1
k

∑nk
i=1 ξki(1 − �ki)a(Qki(t), θ(t))

n−1
k

∑nk
i=1(1 − �ki)a(Qki(t), θ(t))

.

We can write

α̂−1
k

(
t, θ̂(t)

) − α̂−1
k

(
t, θ0(t)

)

= n−1
k

∑

i(1 − �ki)a(Qki(t), θ̂(t))

n−1
k

∑

i ξki(1 − �ki)a(Qki(t), θ̂(t))

− n−1
k

∑

i(1 − �ki)a(Qki(t), θ0(t))

n−1
k

∑

i ξki(1 − �ki)a(Qki(t), θ0(t))
.

Using the identity xu−1 − yv−1 = v−1{(x − y) − xu−1(u − v)}, we get

α̂−1
k

(
t, θ̂(t)

) − α̂−1
k

(
t, θ0(t)

)

= 1

n−1
k

∑

i ξki(1 − �ki)a(Qki(t), θ0(t))

×
{

n−1
k

∑

i

(1 − �ki)a
(
Qki(t), θ̂(t)

)

− n−1
k

∑

i

(1 − �ki)a
(
Qki(t), θ0(t)

)
}

− n−1
k

∑

i(1 − �ki)a(Qki(t), θ̂(t))

n−1
k

∑

i ξki(1 − �ki)a(Qki(t), θ̂(t))

× 1

n−1
k

∑

i ξki(1 − �ki)a(Qki(t), θ0(t))

×
{

n−1
k

∑

i

ξki(1 − �ki)a
(
Qki(t), θ̂(t)

)

− n−1
k

∑

i

ξki(1 − �ki)a
(
Qki(t), θ0(t)

)
}

.

By consistency of θ̂(t) and continuity of a(t, ·), n−1
k

∑

i ξki(1 −
�ki)a(Qki(t), θ̂(t)) converges to αkµk(t) uniformly in t and n−1

k ×
∑

i(1 − �ki)a(Qki(t), θ̂(t)) converges to µk(t) uniformly in t. Thus,

√
nk

{
α̂−1

k

(
t, θ̂(t)

) − α̂−1
k

(
t, θ0(t)

)}

= 1

αkµk(t)

1√
nk

×
nk∑

i=1

(

1 − ξki

αk

)

(1 − �ki)
{
a
(
Qki(t), θ̂(t)

) − a
(
Qki(t), θ0(t)

)}

+ oP(1). (A.8)



844 Journal of the American Statistical Association, September 2004

In view of (A.7), the right side of (A.8) can be approximated by

θ̂(t) − θ0(t)

αkµk(t)

1√
nk

∑

i

(

1 − ξki

αk

)

(1 − �ki)g
(
Qki(t), θ0(t)

)
.

Disregarding constants, this is a product of θ̂(t) − θ0(t), which is a
uniform oP(1) term, and

1√
nk

∑

i

(

1 − ξki

αk

)

(1 − �ki)g
(
Qki(t), θ0(t)

)
,

which is a normalized sum of smooth independent and identically dis-
tributed processes with mean 0 and therefore is uniformly bounded in
probability. Hence (A.8) converges to 0 in probability uniformly in t.
This completes the proof.

[Received August 2002. Revised April 2004.]
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