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In this paper we discuss statistical considerations regarding endpoints in preventive vaccine trials. Brief
discussion is given to preclinical, Phase I, and Phase II trials, with the bulk of attention paid to endpoint
choice and analysis in Phase III efficacy trials. In addition to traditional efficacy measures of vaccine effects
for immunized individuals, consideration is given to waning, strain specific efficacy, correlates of protective
immunity, post-infection endpoints, and cluster randomized trials.

1 Introduction

Vaccines are widely considered one of the greatest achievements in public health,
having had a dramatic impact on the prevalence of several infectious diseases including
smallpox, poliomyelitis, and measles. Since the 1940s, clinical trials have become
critical for evaluating new vaccines as well as other prevention and treatment strategies
in combating human diseases. Today the randomized, controlled trial is the gold
standard for providing scientific evidence regarding the efficacy of a candidate vaccine.1

In general, vaccine clinical trials proceed in an ordered sequence of studies denoted as
Phases I, II, and III. Phase I trials typically involve a small number of participants
(n� 10–100) and seek to evaluate vaccine safety and tolerability over different dosages
or regimens. Preliminary assessment of vaccine immunogenicity (that is, the vaccine’s
ability to stimulate an immune response) may also be possible in a Phase I trial. Phase II
trials are usually larger (n� 100–500), allowing more accurate characterization of
safety and immunogenicity. For vaccine candidates that are safe and immunogenic in
Phase I and II trials, Phase III trials (n� 1000–100000) are employed to evaluate
efficacy of the vaccine within the population of interest. Vaccines that prove to be safe
and efficacious in Phase III trials may be licensed by the appropriate regulatory agency.
Given licensure, nonrandomized observational studies, sometimes called Phase IV
studies, are typically employed to assess vaccine effectiveness and safety in the field.
In this paper we discuss statistical considerations regarding endpoints in vaccine

trials. An endpoint is generally defined as a measurement determined by a trial objective
that is evaluated in each study subject.2 Like all clinical trials, careful definition of
endpoints prior to study initiation aids in trial design and hypothesis formulation,
provides guidance in the analysis of the data upon trial completion, and enhances the
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credibility of the results.3,4 Considerations regarding the selection of endpoints should
include 1) the rate of occurrence of the endpoints in the population under consideration,
2) the relevance of the vaccine effect on the endpoint, and 3) reliability in measuring the
endpoint.5 Thus the available sample size is critical to endpoint choice. As such, the
remainder of the paper is organized by trial phase. Emphasis is given solely to endpoints
in preventive vaccine trials, recognizing that therapeutical vaccines can require a
different set of considerations.6,7 Some attention is also given to estimands, estimators,
and analysis methods corresponding to the endpoints under discussion.

2 Preclinical studies

The earliest phases of vaccine development begin with investigation of candidate
vaccines in animals (in vivo) and in laboratories (in vitro).8 Animal studies are designed
to assess safety, immunogenicity and, provided an appropriate challenge model exists,
efficacy.9 In these studies, the assessments are typically viewed as tests of biological
concepts with attention paid more to qualitative than quantitative outcomes. For
example, preliminary tests of the concept of a live attenuated HIV vaccine in macaques
have clearly demonstrated the reality of reversion of attenuated virus to pathogenic
strains, although few would attempt to infer specific kinetics of reversion in humans
from those in macaques. With respect to immunogenicity outcomes, animal models
played a key role in determining the existence of three serotypes of polio virus.

In some circumstances, animal models may be used to compare or rank different
vaccine regimens by their immunogenicity or efficacy profiles and to select the higher
ranking regimens for clinical evaluation in humans. This more demanding use of animal
models is analogous in some respects to the statistical problem of surrogate endpoints in
that rankings in animals are used as surrogates of (or predictors for) corresponding
rankings in humans. This use of animal models may be considered when the number of
vaccine regimens to be screened is so large that evaluation in humans is impractical.
This can occur when screening large numbers of candidate antigens derived from
different regions of the pathogen’s genome10 or when considering vaccine regimens
formed from combinations of a number of component antigens. Challenges of
manufacturing the multiplicity of reagents that are suitable for human testing may
also motivate this use of animal models for ranking and selection. Just as in the classical
surrogate endpoint problem, there is uncertainty as to how well the ranking of vaccine
candidates in animal models is preserved in humans. However, unlike the classical
problem, there is greater potential to assess accuracy of predictions in this setting.
Multiple candidate regimens can be selected for evaluation in human trials providing a
direct assessment of how well rankings in animals correspond to those in humans
within the ‘population of vaccine regimens’ considered.

Preclinical vaccine development also entails in vitro studies, such as assessment of
quality control of the manufacturing process (for example, lot-to-lot variability,
stability and sterility testing) and validation of immunogencity assays to be used in
subsequent clinical trials. In vitro studies are also a fundamental component of vaccine
design. For example, neutralization assays are employed in the serotypical characteri-
zation of new circulating strains of influenza, which in turn affects vaccine formulation.
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Limitations of the animal model, such as differences in susceptibility to the pathogen of
interest and in the major histocompatibility complex (MHC) compared to humans, can
render in vitro studies critical to vaccine design. In this regard, epitope-driven vaccine
development11 relies on sensitive and specific in vitro T-cell assays to confirm predicted
epitopes from bioinformatics mining of pathogen genomes for vaccine components.

3 Phase I trials

Phase I vaccine studies can range from small trials involving the first use of a vaccine
candidate in humans to larger trials ranging over different doses, immunogens,
constructs, or administrative schedules. Assessment of safety is often the primary
objective, such that participants are usually healthy adults at low risk of acquiring
the infection or disease of interest. Depending on the setting, enrolment may be limited
to include only ‘naive’ volunteers (as determined by serology), or, conversely, only
individuals having prior infection with the pathogen of interest. Vaccine-induced
immunogenicity typically constitutes a secondary objective. These trials are often
open-label and nonrandomized;8,12 moreover, strict double-blinding may not be
feasible due to operational constraints such as staggered enrolment in dose ranging
studies or different delivery mechanisms.
Safety endpoints are typically classified into reactogenicity and vaccine-related

adverse experiences (AEs), of which the most severe are reported as serious adverse
experiences (SAEs). Reactogenicity is often further divided into systemic (for example,
fever, malaise, myalgia) and local (for example, pain, tenderness, induration at the
injection site) symptoms. Given the number of potential safety endpoints, a multiplicity
adjustment might be considered13 for confidence intervals or tests of differences in rates
from a comparable control group14,15 (for example, a placebo arm if present). On the
other hand, since the outcomes pertain to safety, in the interest of sensitivity one may
want to proceed conservatively by avoiding a multiple comparisons adjustment and
accepting the possibility of an inflated false positive rate.4,8 In this case, good clinical
and statistical judgement should be employed in weighing the unadjusted p-values such
that an innocuous vaccine is not incorrectly deemed unsafe. Mehrotra and Heyse14

suggest a two-step false discovery rate (FDR) approach that offers a balance between no
adjustment and ‘over’ adjustment, and illustrate the methodology with application to
adverse event data from three vaccine trials.
Owing to the small sample sizes of early vaccine trials, the novel statistical issues

regarding immunogenicity may pertain more to rapidly evolving measurement technol-
ogy rather than to trial design. For example, in the development of an HIV vaccine,
induction of a strong and durable CD8þ CTL response to HIV-1 has become an
important immunogenicity outcome. Historically, CTL activity has been measured by a
51Cr chromium release cytotoxicity assay;16–20 more recently the ELISpot assay has
begun to play a critical role in the assessment of immunogenicity.21,22 For either assay,
methods for assessing whether a participant has a positive qualitative response are
usually based on reasonable but ad hoc approaches. Recently Self et al.23 considered
statistical methods that are helpful in the analysis of ELISpot data as well as the design
of the assay. Improvement over ad hoc positive criteria using statistical methods has
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also been proposed24 for analysis of a proliferation assay in the context of developing a
vaccine for herpes simplex virus type 2. In general, the employed statistical methodol-
ogy in this setting strives to minimize false positives and negatives while facilitating
investigator control of these two error rates. In addition to functioning as vaccine trial
endpoints, assays measuring immune response are critical for mechanistic studies and as
potential correlates of protection (see section 5.6 below).

4 Phase II trials

The primary objectives of Phase II trials entail further characterization of safety and
immunogenicity,8,25,26 usually in order to attain the broader goal of identifying the
most promising preparation, dose, and schedule to be tested in Phase III trials. Typically
randomized, double-blind, and placebo-controlled Phase II trials enrol individuals from
the target population for whom the vaccine candidate was developed.8,26,27 By virtue of
these differences and an increase in sample size, Phase II trials allow more precise
characterization of safety and immunogenicity than do Phase I trials. These trials are
usually powered to test for or rule out putative or known clinically meaningful
differences in the distributions of immunogenicity and safety endpoints26 such that
information on background rates and variability of endpoints is needed for sample size
calculations. Note that evaluation of safety in Phase I and II trials is limited to detection
of relatively common endpoints; rare adverse experiences, such as febrile convulsions
following measles vaccination, often can only be detected in large, post-licensure Phase
IV observational studies.27

Immunogenicity endpoints require careful consideration of several factors.
Determination must be made as to which types of immune responses (for example,
humoral, cellular, mucosal, and so on) are of interest and at which time points they are
measured. Antibody response to the target pathogen usually constitutes the primary
immunogenicity endpoint of Phase I and II vaccine trials. A quantitative assay such as
the enzyme-linked immunosorbent assay is employed to measure antibody response,
with comparisons between unvaccinated and vaccinated groups entailing contrasts in
proportions responding (using a pre-determined threshold believed to correlate with
protection28) or geometric means (often assuming log-normality). Regression methods
can be employed to examine relevant covariates as potential effect modifiers of the
antibody response to vaccine (for example, age or pre-existing immunity) and to control
for confounding. For example, Moulton et al.29–31 suggest using percentile regression
techniques or a mixture gamma model approach that allows for left censored observa-
tions below the assay’s limit of detection as well as a subpopulation of nonresponders.

While historically immunogenicity endpoints have been defined solely in terms of
antibody, presently it is possible to measure additional immune responses (for example,
mucosal or cellular) such that, like safety, the issue of multiplicity arises. At a
minimum, one might argue that multiple measurements of a specific type of immune
response constitute a family of hypotheses that warrants a multiplicity adjustment. For
example, cellular immune responses are often measured by the ELISpot assay where
cytokine release to several different peptide pools of the antigen of interest (say HIV)
is evaluated; here an adjustment should be made for the multiple peptide pools
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considered.21 On the other hand, endpoints reflecting the different components of the
immune system might be considered separately without a multiplicity adjustment (for
example, prime=boost HIV vaccine regimens that attempt to induce both cellular and
humoral responses). Depending on the number of genotypes or serotypes of the
pathogen, similar considerations apply to the analysis of immune responses measured
to several strains of the pathogen. The purpose of an analysis and the number of
endpoints affect the choice of multiple comparisons adjustment procedure. Methods
that control the familywise error rate (FWER) may be preferable when the goal is to
identify any vaccine effect (for example, the ELISpot example cited above), whereas
methods that control the FDR may be more suitable when the goal is to identify the set
of endpoints on which there is a vaccine effect (for example, to characterize the specific
pathogen strains to which the vaccine responds). When the number of endpoints is
large, FWER-controlling methods are usually highly conservative; in this case FDR-
controlling methods are more powerful and control Type I and II errors in a more
balanced manner.
Typically, immune response endpoints are defined at some fixed time point after the

last vaccination. An alternative is to define an endpoint that summarizes several
longitudinal immunogenicity responses. For example, one of the primary endpoints
in AVEG 202=HIVNET 014,16 a Phase II trial of a canarypox vector based HIV vaccine
candidate, was defined as having at least one CD8þ CTL response at either day 98 or
182 post-randomization. In the presence of ignorable missingness, maximum likelihood
methods can be employed to analyze such an endpoint.32

Phase II trials may also provide partial information on vaccine efficacy, in which case
the moniker ‘Phase IIb’ may be used.25 In settings where an infectious disease occurs
with sufficiently high incidence (for example, rotavirus33,34), Phase IIb trials can
provide a preliminary assessment of efficacy. In this case, endpoint considerations are
similar to those of a Phase III trial (section 5). Estimates of vaccine efficacy may also be
gleaned from challenge studies wherein volunteers are deliberately inoculated with
the target pathogen; such an approach has been employed in testing vaccines for
cholera, malaria, influenza, and typhoid fever.25 Because exposure is under the control
of investigators, these trials can use classical experimental designs35 to assess directly
many vaccine effects of interest that cannot be observed in typical Phase III efficacy
trials. In particular, using infection or disease as the endpoint, challenge studies can
provide estimates of strain-specific efficacy. For example, Levine et al.36 describe a
challenge study designed to assess the efficacy of recombinant live oral cholera vaccines
to different biotypes and serotypes using diarrhoea as the endpoint. Additional
endpoints reported include shedding of the challenge and vaccine strains, which
could be considered surrogate markers of secondary transmission of the virus and
vaccine, respectively. Immune responses can also be measured closely prior to infection
in these trials, providing important information regarding the establishment of an
immune correlate of protection (see section 5.6 for further discussion).
Phase II trials may also provide sufficient evidence of efficacy if a correlate has

previously been established as a valid surrogate endpoint for infection or disease. This
approach might be employed when introducing an efficacious vaccine into a new
population37 or when combining two or more existing vaccines.38 Even if such a
correlate exists and provides adequate evidence to substantiate efficacy, a large Phase III
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safety trial may still be necessary since the usual extensive clinical safety data from a
well-controlled Phase III efficacy trial will not exist.38

5 Phase III trials

Typically the primary objective of a Phase III trial is to estimate efficacy of a candidate
vaccine in the population of interest. Like Phase II trials, efficacy trials are usually
randomized, double-blind, and placebo-controlled. The ability to randomize partici-
pants to a placebo group is dictated by ethical considerations; in particular, whether or
not an efficacious vaccine already exists. Unless otherwise specified, we assume a two-
arm trial with one arm randomized to the vaccine of interest and the other arm
randomized to placebo (typically a vaccine for another disease).

Continuing to assess safety and tolerability of a vaccine candidate is also an objective
in Phase III trials. Given the intensive evaluation of reactogenicities and adverse events
in earlier trials, safety monitoring tends to be more passive in Phase III trials. Inference
concerning safety can be challenging even in large efficacy trials since the goal is to
demonstrate a lack of association between safety outcomes and the candidate vaccine.8

Even if an association is detected, the potential public and individual health benefits of
the vaccine require a risk–benefit assessment. As a result, an equivalency or noninfer-
iority approach might be employed wherein one tests the hypothesis that no more than
a specified difference in safety profiles exists between placebo and vaccine arms.26 For
rare events, sufficient power for noninferiority will not be feasible, such that subsequent
large, simple safety trials or Phase IV observational studies (see section 7) will be
necessary. With regard to the former, Horne et al.8 recommend that common, less
serious adverse events be monitored in only a subset of participants, while the incidence
of SAEs should be closely monitored in all individuals.

The remainder of this section pertains to the evaluation of efficacy in Phase III trials.

5.1 Disease as the primary endpoint
The definition of trial endpoints with respect to efficacy depends on characteristics of

the disease and the candidate vaccine. In general, the goal of vaccination is to prevent or
ameliorate disease, and not necessarily to prevent infection. For example, vaccines for
rubella, mumps, measles, and polio have been shown to prevent disease, but not
infection.9 Therefore, the primary efficacy endpoint of Phase III vaccine trials is usually
defined with respect to clinically significant disease morbidity or mortality. While the
wide range of clinical outcomes from infection may necessitate assessing vaccine
efficacy on several endpoints (potentially requiring multiplicity adjustment), we will
assume for now that there exists a sole endpoint that measures clinically significant
disease.

Vaccine efficacy typically has the form VE¼ 17RR where RR denotes the relative
risk of disease in vaccinees compared to placebo recipients, that is, RR¼RV=RP where
RV and RP denote the risk in the vaccine and placebo arms respectively. Given that a
risk ratio must be non-negative, it follows that VE 2 (�1, 1] with a value of 1
indicating complete protection, 0 representing no effect, and a negative value conveying
an increase in risk due to vaccination. Vaccine efficacy is usually defined in terms of
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relative attack rates or hazard functions.37,39 The cumulative incidence or attack rate
estimand is defined by

VECI ¼ 1�
CIV
CIP

(1)

where CIV (CIP) is the cumulative incidence or probability of disease over the course of
a trial of duration t in the vaccine (placebo) arm. This measure of vaccine efficacy
(�100%) indicates the percent reduction in the risk of developing disease during the
trial attributable to vaccination. Measuring efficacy by VECI is appropriate if it is
believed that the vaccine has an ‘all-or-nothing’ mode of action whereby the effect of the
vaccine is to render some proportion of those vaccinated completely immune while
offering the remainder no protection.39 Alternatively, vaccine efficacy can be defined in
terms of the hazard or incidence ratio,

VEl ¼ 1�
lV
lP

(2)

where lV and lP are the incidence of disease in the vaccine and placebo groups,
respectively; time-dependent generalizations of VEl are discussed in section 5.8. This
measure of vaccine efficacy is appropriate if it is believed the vaccine is ‘leaky,’ that is,
vaccination reduces the hazard of disease by a constant, multiplicative factor that is
equal for all vaccinees.37,39 For a time-constant incidence rate, the two vaccine efficacy
measures VECI and VEl are related by the equation CI ¼ 1� exp (� lt), and are
approximately equal for small values of lt.37 It follows that for rare diseases, use of
either estimand VECI and VEl is approximately correct for both all-or-nothing and
leaky vaccines, a useful fact since the vaccine mechanism is frequently unknown.37 Note
that both VECI and VEl are relative risk measures and, as such, will not necessarily
capture all of the information pertaining to the effect of the vaccine. Moreover, absolute
differences in attack or hazard rates should also be considered and, in some settings,
may provide more practical information from a public health policy perspective.40

Regarding estimation of vaccine efficacy, rates of disease in the vaccine and placebo
arms can be used to estimate VECI in the absence of censoring. Specifically, let nV (nP) be
the number of disease cases in the vaccine (placebo) arm and NV (NP) be the number of
volunteers randomized to vaccine (placebo), such that

cVEVECI ¼ 1�
p̂pV
p̂pP

(3)

where p̂pV ¼ nV=NV and p̂pP ¼ nP=NP are the attack rates. Given an all-or-nothing
mechanism and no censoring, the estimator cVEVECI can be viewed as a consistent but
biased maximum likelihood estimator (MLE) of VECI since it is nonlinear in the MLEs
p̂pV and p̂pP.

41 Several bias corrected estimators have been proposed, but in general the

bias of cVEVECI(T) is of concern only for smaller (for example, Phase IIb) trials.41 In the
presence of right or interval censoring, lifetable (for example, see Szmuness et al.42) or
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nonparametric maximum likelihood43,44 estimators of CIV and CIP at time t can be
substituted into Equation (1) to obtain an estimator of VECI. While likely not an
important factor in the analysis of trials with relatively short follow-up, failure to
properly account for censoring in vaccine trials requiring longer follow-up (for
example, for diseases such as hepatitis B, HIV, cholera) can lead to biased estimators
of VECI. For VEl, empirical estimators are typically employed by using the number of
disease cases per person-time follow-up. Under a proportional hazards assumption, VEl
can be estimated by

cVEVEl ¼ 1� eb̂b (4)

where b̂b is the partial likelihood estimate of the log hazard ratio.45 Standard methods
for dichotomous or survival outcomes can be employed for confidence interval
estimation, testing, and covariate adjustment of VECI and VEl. For example, Szmuness
et al.42 use the logrank test to detect differences in endpoint rates from a hepatitis
B efficacy trial. Similarly, in a malaria vaccine efficacy trial, Alonso et al.46 use Cox
regression models to adjust the estimated efficacy against infection by age and distance
between home and dispensary.

5.2 Infection as the primary endpoint
For diseases with long incubation times such as HIV and tuberculosis, the traditional

endpoint of clinical disease morbidity or mortality may not be feasible due to the
required duration of follow-up. Thus the more proximal endpoint of infection may be
designated primary.47,48 In this case, VEl and VECI are defined in terms of infection
instead of disease with analysis proceeding accordingly. Additionally, a third measure
of VE can be defined as

VEr ¼ 1�
rV
rP

(5)

where r is the probability of infection given a specified exposure to infection or
inoculum.49 VEr is often referred to as biological efficacy.48,50 By assuming a particular
underlying epidemic model, Haber et al.49 propose estimating VEr by Equation (3) if
the vaccine modality is all-or-nothing, and by

cVEVEr ¼ 1�
ln (1� p̂pV)

ln (1� p̂pP)
(6)

if the vaccine is believed to be leaky. Bias corrected variations of Equation (6) given by
Chick et al.41 should be considered for smaller trials.

5.3 Post-infection endpoints
In settings where infection is a primary endpoint, also assessing vaccine efficacy

against disease is critical. Considering vaccine effects on infection only allows for the
possibility of failing to identify vaccines that protect against or enhance disease. Note,
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however, that for vaccines against chronic infections assessing effects on disease may
require long-term follow-up such that a more immediate analysis might consider
vaccine effects on a surrogate endpoint for onset of disease.50–52 For example, in the
first two HIV vaccine efficacy trials, the primary endpoint is HIV infection, while the
secondary endpoint focuses on the extent and duration of viremia in infected partici-
pants,53 a putative surrogate marker of progression to AIDS. Issues of validating a
surrogate endpoint aside (see section 5.6), analysis of vaccine effects on disease in the
context of infection as the primary endpoint presents several statistical challenges.
First, if effective treatments are available for the disease of interest, any vaccine effect

on disease progression (or a surrogate marker thereof) may be confounded by providing
such treatments to infected trial participants. Fine54 makes this point in the context of
evaluating efficacy of acellular pertussis vaccines. Another example occurs when
assessing rotavirus vaccine efficacy to prevent severe childhood diarrhoea in trials
where effective oral rehydration therapy is commonly administered at the first symptom
of diarrhoea (Jorge Flores, personal communication). Continuing with the HIV
example, infected participants may begin antiretroviral therapy (ART), which is
known to lower viral load. The problem of confounding can be alleviated by
considering a composite endpoint of time until virologic failure above some pre-set
threshold or initiation of ART,55 or by focusing on pretreatment viral load only and
employing methods designed to correct for potentially dependent censoring induced
by ART. For example, the semiparametric approaches of Rotnitzky et al.56 might
be employed wherein the probability of censoring (that is, ART initiation) is modeled as
a function of viral load and other factors using logistic regression.
Secondly, one must decide whether the analysis of disease should include all

participants or only those who are infected. The former approach enjoys the statistical
validity associated with an intent-to-treat (ITT) analysis; see section 5.4 below. Chang
et al.57 explore this approach by assigning disease severity scores (for example, see
Flores et al.33) to each incident case and then considering differences in sums of scores
for vaccine and placebo arms as a burden-of-illness efficacy measure. Specifically,
let Sp1, . . . , SpnP and Sv1, . . . , SvnV be the severity scores for the nP and nV infected
individuals in the trial. Then Chang et al.57 consider

T ¼

PnP
i¼1 Spi
NP

�

PnV
i¼1 Svi
NV

(7)

as an estimator of the net reduction in morbidity per randomized subject. In a similar
fashion, one could consider a more traditional, relative risk-based estimator such as

cVEVEseverity ¼ 1�

PnV
i¼1 Svi=NPPnP
i¼1 Spi=NV

(8)

that is, the percent reduction in morbidity score. Note that by choosing severity scores
all equal to one, Equation (8) is equivalent to the attack rate estimator (3). That
Equations (7) and (8) have an ITT interpretation follows by noting that uninfected
individuals are effectively being assigned a score of zero. This approach is also
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appealing in that the estimator provides an overall measure of the net benefit of a
vaccine on incidence and disease that avoids issues of multiplicity and selection bias (as
discussed further in the following paragraph). On the other hand, potential drawbacks
of this approach include not clearly differentiating vaccine effects on infection and
pathogenesis as well as the challenge of choosing the severity scores in a meaningful
fashion.

As an alternative to an ITT-based approach, one might consider an analysis that
contrasts disease severity or progression rates in infected vaccinees and infected placebo
recipients only. For example, Vesikari et al.58 present results from a rhesus rotavirus
vaccine trial where vaccine efficacy was based on the endpoint of rotavirus diarrhoea.
Additionally, the effect of the vaccine on the clinical course of infection was considered
by comparing severity (mild, moderate, or severe) between vaccinees and placebo-
treated individuals with confirmed rotavirus diarrhoea using Fisher’s exact test. Such a
comparison using infected participants only should be interpreted with caution since
contrasts are being made between two subsets of the original randomization groups
whose membership has been determined by a post-randomization event, namely
infection, and thus are subject to selection bias. Procedures to test for vaccine effects
on disease progression in infected individuals that account for selection bias have been
proposed recently in the context of viral load analysis in HIV vaccine trials.51,52 In
particular, selection models can be formulated using a causal inference framework that
allows testing for a causal effect of the vaccine on viral load in the basic principal
stratum59 of individuals who would have been infected regardless of randomization
assignment. Employing such selection models is especially important in testing for
vaccine harm in infected individuals, a phenomenon for which there is Q1precedence and
concern.60–63 Net comparisons of infected vaccinees and placebo recipients that do not
account for selection bias could erroneously suggest vaccine-enhanced pathogenesis
when in actuality the vaccine is simply protecting individuals with stronger immune
systems from infection, against infection with relatively innocuous viral strains, or by
some other selective mechanism.

In addition to dealing with selection bias, an analysis of vaccine effects on infection
and disease must consider whether these endpoints are co-primary or designated as
primary and secondary. A co-primary scenario might entail a joint analysis of both
effects while a primary–secondary approach might consider effects on infection and
disease separately with due attention paid to the overall significance level a of the
trial.64

5.4 Intent-to-treat versus per-protocol
The intent-to-treat (ITT) principle generally refers to analysing all randomized

participants according to randomization assignment regardless of treatment received
or compliance, with follow-up measured from the time of randomization.7 In general,
ITT has become the gold standard in clinical trials since it ensures the validity of testing
the null hypothesis of no treatment effect and helps minimize bias such that differences
in outcomes between the groups can be attributed to the treatment under study. While
therapeutical vaccine trials have typically employed an ITT analysis per FDA
recommendation,7 the norm for preventive vaccine trials has been to take a per-
protocol or as-treated approach wherein only fully compliant volunteers with respect to
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immunization are included in the analysis of efficacy. Additionally, the endpoint is often
defined as disease (or infection) only after some suitable time lag beyond completion of
the immunization series to allow for optimal immunity. Such per-protocol analyses
have been advocated on the basis of providing information on the intrinsic40 efficacy of
the vaccine after completion of the prescribed regimen. However, like the post-infection
endpoint analysis described above, a per-protocol analysis entails comparison of
subgroups selected post-randomization, and thus is subject to bias. On the other
hand, the ITT approach has been advocated in general65 as well as within the context
of preventive vaccine trials7,40 for rendering results that are more readily applicable to
the population of interest.
Despite differences in these two approaches, Horne et al.7 generally found little

difference in ITT and per-protocol vaccine efficacy estimates from several trials reported
in the last 20 years. This concordance was attributed to excellent compliance and few
endpoints occurring during the period of immunization typical of the preventive vaccine
trials analysed. However, there are examples where efficacy estimates under the two
approaches could lead to different scientific conclusions. For example, using published
data from a formalin-inactivated hepatitis A vaccine trial, Horne et al.7 calculated a
per-protocol efficacy estimate of 1.00 with corresponding 95% confidence interval (CI)
of [0.84, 1.00] while the ITT approach yielded an efficacy estimate of 0.81 [0.58, 0.92].
Another example is given by a malaria vaccine trial in children in southern Tanzania
for which Alonso et al.46 reported a primary vaccine efficacy estimate of 0.31 [0.00,
0.52] and p-value of 0.046. This primary analysis only considered children of a certain
age who received all three doses of the vaccine. Further, a first clinical episode of
malaria constituted an endpoint only if it occurred after the third vaccine dose. On the
other hand, including all children randomized at first dose and malaria episodes
occurring four weeks after the second dose resulted in an estimate of only 0.23 efficacy
with 95% CI of [�0.02, 0.42], that is, a nonsignificant result for a ¼ 0:05. Even though
this second analysis is not strictly ITT according to the definition above, it does
illustrate that per-protocol and ITT analysis may give discordant results.
While there is general agreement that some form of an ITT analysis should be per-

formed in clinical trials,66 the principle is subject to much discussion and alternative
approaches remain an active area of research.67 Ultimately, endpoint data should be
collected on all participants whenever feasible regardless of compliance or other
circumstances, thus allowing for both ITT and per-protocol analyses.7 The utility of
performing both analyses can be illustrated by considering evaluation of a vaccine’s
safety profile. Since per-protocol analyses can miss harmful effects of a vaccine in the
beginning of the immunization schedule, safety assessment should include an ITT
analysis. On the other hand, if a volunteer randomized to control accidently receives
vaccine and subsequently develops a serious adverse event, an as-treated analysis
including the volunteer in the vaccine arm would provide a more biologically
interpretable assessment of safety.

5.5 Case ascertainment and validation
Particular care and consideration should be given to the clinical case definition of

the endpoint. For example, it is well known that nonspecific case definitions can lead
to attenuated estimates of vaccine efficacy.8,68,69 Using maximum likelihood based
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arguments, Lachenbruch69 showed that both sensitivity and specificity less than 100%
can lead to underestimates of VE, with specificity having a greater impact, especially in
rare disease settings. Halloran and Longini68 suggest that differential endpoint speci-
ficity may explain disparate results arising from different randomized controlled trials
of comparable live attenuated influenza vaccines. Similarly, Fine and Clarkson70 note
that the variation in estimates of whole-cell pertussis vaccine efficacy may be at least
partially attributable to the non-specific nature of clinical criteria in defining pertussis.
For example, they note that studies using only bacteriologically confirmed cases yielded
higher estimated vaccine efficacies than reported elsewhere.

Given the infeasibility of employing the most specific (and sensitive) case definitions
in mass, a few solutions have been suggested to account for misdiagnosed cases in
estimating vaccine efficacy. Lachenbruch69 derived an adjusted VE based on known
(or previously estimated) sensitivity and specificity that leads to an increase in the
variance estimate of VE and hence requires larger sample sizes to maintain com-
parable power. Alternatively, Halloran and Longini68 propose using validation sets
wherein the more specific case definition is applied to a randomly selected subset of
the participants. The disease or infection rate in the validation sets along with the
sampling proportion can be used to adjust the estimate of vaccine efficacy; the mean
score method is then employed to obtain confidence intervals.71 Caution should be
exercised when employing this approach in settings where the validation set is not
selected by random sampling since further biases can be introduced.68

One should also be mindful of the potential for different sensitivity and specificity
between vaccine and placebo recipients. For example, Farrington and Miller27 report
some evidence that isolation of B. pertussis bacteria is lower in vaccinated individuals
exhibiting clinical symptoms compared to placebo recipients, which could result in
overestimates of VE.

5.6 Surrogate endpoints
A surrogate endpoint is generally defined as a biomarker that can substitute for a

clinically meaningful endpoint for the purpose of comparing specific interventions.72–74

As mentioned earlier in section 5.3, an example of a surrogate endpoint arises when
assessing vaccine effects on post-infection endpoints. In this case, one might consider
certain proximal biomarkers in infected participants as surrogate endpoints for the
temporally distal disease endpoint of interest. Surrogate endpoints also arise in vaccine
efficacy trials within the context of correlates of protective immunity, that is, biomar-
kers that are associated with the level of protection from infection or disease due to
vaccination.9,75 Correlates of protection usually entail vaccine-induced immune
responses, which, historically, have been defined in terms of antibody titres,76,77

although current technology allows consideration of cell-mediated, mucosal, and
memory-based immune responses as well.75 In a broader sense, animal model endpoints
(as discussed earlier in section 2) might also serve as correlates of protective immunity;9

for example, attempts have been made to associate efficacy of pertussis vaccines with a
mouse model.78

From a statistical viewpoint, establishing a putative surrogate endpoint as a valid
replacement for the clinical endpoint of interest is challenging since simply demonstrat-
ing association is not sufficient. Moreover, we require that the effect of treatment on the
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biomarker reliably predicts the treatment’s effect on the clinical outcome of interest.73

In the context of correlates of protective immunity, knowledge of a correlate does not
necessarily imply that a vaccine’s effect on that particular biomarker will predict
efficacy. For example, disease morbidity may be associated with a post-vaccination
humoral response even though the true mechanism of protection is cellular-based,
simply because humoral and cellular responses are correlated.75,77 In this case, another
vaccine could enhance antibody response levels without improving disease prognosis.
Continuing with the post-infection example of HIV, although plasma viral load has
been shown to be prognostic for AIDS (and secondary transmission) in natural history
studies,79–82 it remains to be shown that vaccine-induced changes in viral load predict
changes in disease progression. A correlate of protection that does indeed predict a
vaccine effect on infection or disease is appropriately described as a surrogate or
determinant of protection.
Establishing a surrogate of protective immunity is especially important for future

trials where the existence of an efficacious vaccine may result in reduced incidence and
preclude the ability to randomize to placebo. Evaluation of combination vaccines,
addition of new antigens to or changes in immunization schedules of existing efficacious
vaccines, and alteration in manufacturing are all examples in which knowledge of a
surrogate of protection is important.38 Multivalent vaccines present another example
where the existence of an established surrogate of protection is critical in that low
incidence of certain serotypes may prohibit evaluation of serotype-specific efficacy. For
many vaccines, no correlate (much less a surrogate) of protective immunity has been
discovered.9 The elusive search for an immune correlate is illustrated by rotavirus
vaccine development, with several trials providing inconsistent results on the correla-
tion of neutralizing antibody titres and serotype-specific vaccine efficacy.83,84 Even
without an established correlate of protection, new combination vaccines, such as
acellular pertussis vaccines, have achieved licensure via comparative studies.75

Several methods have been proposed for validating a surrogate endpoint.72,85,86

Prentice72 offered the first operational criteria, which included that the true endpoint
rate be independent of treatment conditional on the history of the surrogate biomarker
endpoint. Storsaeter et al.78 employ such an approach in establishing a laboratory
(immune) surrogate of protection for pertussis vaccines. Using logistic regression
models, they found that given antipertussis antibodies, the risk of developing pertussis
does not depend on the type of vaccine received. In some sense, Prentice’s definition does
not directly apply to validating a correlate of protection within the context of placebo-
controlled vaccine trials since vaccine-induced immune responses, by definition, do not
exist for the placebo arm. Chan et al.77 make a similar point in an analysis of correlates
of protection from a varicella vaccine trial. In general, several proposed methods
for validating surrogate endpoints have been met with skepticism59,74 such that further
statistical research is clearly needed. Whatever method is employed, ultimately a clear
understanding of the mechanism of protection and disease pathogenesis75 may likely be
required for establishing a valid surrogate endpoint of infection or disease.

5.7 Strain-speci¢c analysis
Many infectious pathogens exhibit considerable genetic and antigenic diversity.

Vaccines for such pathogens often contain multiple immunogens, matched to the
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major prevalent circulating antigen types (usually serotypes) of the pathogen. In efficacy
trials of multivalent vaccines, the primary endpoint has often been disease with
any strain homologous (or closely related) to one of the strains contained in the
vaccine.38 For example, this primary endpoint was used in a series of trials of
pneumococcal polysaccharide vaccines containing between 6 and 23 serotypes of
Streptococcus pneumonia.87,88 The estimate of vaccine efficacy to prevent this endpoint
can overestimate field efficacy due to the circulation of heterologous strains that evade
vaccine-induced immunity. Accordingly, a secondary analysis of vaccine efficacy to
prevent disease with any strain can be useful, and in some trials it is warranted to power
the trial for detecting vaccine efficacy against both the ‘homologous strain’ endpoint
and the ‘all strain’ endpoint. In addition, since the level of protective efficacy can
vary by strain, a secondary endpoint in many efficacy trials is strain-specific disease.
In this section, we discuss some statistical issues in estimating strain-specific vaccine
efficacy. Gilbert et al.89 provide a start toward statistical methods with this purpose.

For vaccines with a known correlate of protective immunity, strain-specific vaccine
efficacy can be evaluated quickly in Phase II trials based on an immune response
primary endpoint. For example, hemagglutinin-inhibition serological antibody titres
to certain influenza strains above a threshold accurately predict protection against
influenza infection and illness for certain vaccines, such that vaccine efficacy against a
panel of prototype influenza strains can be reliably estimated from a moderate sample of
vaccinees.90,91 In the absence of a known immune correlate, Phase III trials are required
for estimating strain-specific vaccine efficacy directly. In such trials, vaccine efficacy
against a particular strain has been estimated based on the strain-specific relative
cumulative incidence rate (Equation 3) with numerators equal to the number of cases
with the particular strain or by a mixed effects logistic regression model92 for trials with
short disease monitoring period, and by a cause-specific Cox proportional hazards
model93 for trials with multiyear follow-up. The former approaches have been used for
influenza vaccines, which have shown a pattern of high protective efficacy against
influenza strains identical (or nearly so) to a vaccine strain, partial efficacy against
strains with minor antigenic changes (for example, due to antigenic drift), and no
efficacy against strains with major antigenic changes (for example, due to antigenic
shift)94 (see Sugaya et al.95 for an exception to this pattern). The latter Cox modeling
approach has been applied to a large efficacy trial of two cholera vaccines vs. placebo;
for each vaccine the method showed superior protection against Classical biotype
cholera disease vs. El Tor biotype cholera disease.96

An important consideration in assessing strain-specific vaccine efficacy is whether
multiple distinct disease events for a subject are counted. For several pathogens,
including Streptococcus pneumoniae88 and rotavirus,97 multiple infection is common
and data support that the first infection does not modify the risk of a second infection.
For such pathogens, estimation of strain-specific vaccine efficacy is relatively simple: all
events are counted and the methods described in section 5.1 can be used with a strain-
specific case definition. For other pathogens, however, infection with one strain protects
partially or fully against subsequent infection with the same strain or divergent strains
(so-called ‘interference’); examples include influenza,92,98 cholera,99 and HIV.100 In
these cases, partial vaccine efficacy against a strain A can bias the estimate of vaccine
efficacy against another strain B, because those ‘saved’ by vaccine from A disease are
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retained in the pool of subjects susceptible to B disease, so that total exposure to B
disease is expected to be greater in the vaccine group compared to the placebo group.
Competing risks methods that only count first disease episodes have been used when
interference is in play. For example, the cause-specific proportional hazards model
provides for unbiased estimation of a strain-specific vaccine efficacy parameter under
assumptions including that the distribution of exposure to the strain at each follow-up
time is the same whether assigned vaccine or placebo.101 However, substantial vaccine
efficacy against a strain A would predict violation of this assumption for another
strain B, by creating differential exposure between groups as described above. New
statistical methods are needed for correcting strain-specific vaccine efficacy estimates
for this potential bias, with important application to HIV vaccine trials.102,103

Where vaccine efficacy is inferred to vary by pathogen strain in an efficacy trial,
explanatory analyses should be conducted to evaluate if strain-specific vaccine failure is
associated with the lack of full immunization, an insufficient immune response to vaccine,
or a host characteristic such as age, immune competence, or genotype.46,104–106 In
addition, for assessment of the impact of pathogen type on post-infection endpoints as
discussed in section 5.2, the infecting strain can be treated as a covariate, and stratifica-
tion or regression techniques can be used to estimate strain-specific vaccine efficacy
parameters. As discussed earlier, the problems of selection bias and dependent censoring
by treatment pose challenges to making these inferences.

5.8 Waning
For most vaccines, durability of efficacy is essential for a vaccination program to

control disease in a population,107,108 although for some vaccines, short-term efficacy
is sufficient to control disease (for example, vaccines for travelers and for infants against
diseases restricted to early childhood). Vaccine efficacy may wane with time due to
declining immunologic memory or to changing antigenicity of the pathogen. If an
immune correlate of protection is known, then Phase IV post-licensure studies can be
used to track when immune response levels decline below protective levels. (Moulton
and Halsey29 provide a statistical method for this purpose, applied by Mossong et al.109

to demonstrate declining measles antibody titres in children.) There are many examples
of vaccines for which evolution of predominant serotypes led to diminished vaccine
efficacy, including whole-cell pertussis vaccines110 and influenza vaccines. The predo-
minant influenza strain changes so rapidly that a new matched immunogen is usually
required for the distributed vaccine each year.111

For Phase III trials with extensive follow-up, waning has been assessed by estimating
the hazard ratio-based vaccine efficacy parameter over time. The methods of Durham
et al.112,113 allow for time-varying covariate effects within a Cox-model framework
while the method of Gilbert et al.114 provides simultaneous inference on the vaccine
efficacy parameter over the duration of the trial. To provide unbiased estimation, these
methods rely on an equal exposure assumption in the vaccine and placebo groups at
each follow-up time, which is increasingly open to violation as time since randomiza-
tion increases. In particular, partial vaccine efficacy at intermediate time points can
induce bias at future time points by leading to retention of relatively highly exposed
vaccine recipients in the risk-set. This problem can be addressed by adjusting for time-
dependent covariates predictive of exposure; for example, for sexually transmitted
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diseases (STDs) candidate predictor variables include risk behavioral data, STDs from
other pathogens, and pathogen-specific CTL responses.115

If vaccine efficacy is found to wane in a Phase III trial, then declining immune
responses may be suggested as causative if the responses correlate with protection.
Changing antigenicity of the pathogen in the geographic region of the trial may be
implicated if the infecting strains in the placebo group tend to increase in divergence
from vaccine strain(s) over time, and estimates of strain-specific vaccine efficacy decline
with the extent of divergence of the exposing strain. A difficult challenge to providing
an explanation of waning is that waning is confounded with the mechanism of
vaccine protection.37 To illustrate this problem, note that if a vaccine protects by an
all-or-nothing mechanism, then the ‘wrong’ vaccine efficacy estimator [for example, a
proportional-hazards based estimator such as (4)] will be increasingly negatively biased
with time; similarly if a vaccine protects by a leaky mechanism, then an attack-rate
based estimator such as in expression (3) will tend to be increasingly negatively biased
with time. Thus, if the chosen vaccine efficacy estimator is biased for the vaccine efficacy
parameter reflecting the ‘true’ protective mechanism, then efficacy can appear to wane
even though it is steady. This problem is difficult to solve because the mechanism of
protection is rarely known and is difficult to diagnose.37 The problem is mitigated for
pathogens with relatively low incidence, because in this case both proportional hazards-
based and attack-rate-based vaccine efficacy estimators are approximately unbiased
regardless of the true protective mechanism.39,116

In newer trial designs such as those for HIV vaccines, waning protective efficacy to
control viremia or other post-infection endpoints may occur due to development of
vaccine resistance, for example due to pathogen mutations in antibody-binding sites,
CTL epitopes, or T-helper epitopes.102,103 Collecting data on genotypic=phenotypic
characteristics of the infecting pathogen and on immune responses to autologous
pathogen targets over time in infected trial participants will be important for verifying
that emergent vaccine resistant mutations lead to loss of protective efficacy.

5.9 Beyond direct e⁄cacy
Heretofore our discussion has focused on endpoints pertaining to the direct effect of

a vaccine on the immunized individual. However, from a public health perspective, a
vaccine can potentially have other beneficial effects beyond the direct effects of
vaccination. For example, vaccinated individuals who become infected may be less
likely to transmit the disease to other susceptible individuals. By increasing the degree
of a population’s immunity to a specific pathogen (or herd immunity117), widespread
vaccination can also benefit unvaccinated individuals by reducing the probability of
contact with an infected individual.118 Assessing such indirect effects usually entails
cluster randomized vaccine trials (CRVTs),119 with clusters potentially defined by
steady sexual partnerships,120 families, households,121 schools,122 clinics,123 commu-
nities,124 or villages. In simplest form, clusters are randomized to vaccine or placebo
wherein all individuals within a cluster receive the same randomization assign-
ment.122,123,125 Alternatively, a two-step or split-plot randomization scheme119 could
be employed wherein first clusters are randomized not simply to vaccine or placebo,
but rather to different vaccination fractions.118,126 Individual randomization within
cluster then follows according to the cluster’s randomization assignment. For example,
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a cluster might be randomized to a vaccination fraction of 1=3, such that individuals
within that cluster are randomized to receive vaccine with probability 1=3 or placebo
with probability 2=3. In actuality, some individuals within a cluster might not enrol in
the trial, such that a cluster could potentially be partitioned into three subsets:
participants randomized to vaccine, participants randomized to placebo, and nonparti-
cipants. Different measures of vaccine efficacy (direct, indirect, total, and overall) can
then be estimated via endpoint attack or incidence rate ratios between different subsets
of the clusters. These types of efficacy are described briefly below; more thorough
treatments are given by Halloran et al.50,126–131

Direct efficacy refers to the traditional measure of a vaccine’s effect as discussed
earlier in sections 5.1 and 5.2. Within the context of CRVTs, direct efficacy can be
estimated by contrasting attack or incidence rates between participants randomized to
vaccine and participants randomized to placebo within a cluster, that is, estimation of
direct efficacy within the context of CRVT generally requires a second level of
randomization within cluster.119 Without split-plot randomization, estimates of direct
efficacy are subject to bias and should be interpreted with caution.131 For example,
Moulton et al.125 describe design considerations of a CRVT targeting Streptococcus
pneumoniae in American Indian populations in the southwestern USA. Stratifying by
population and geography, approximately 9000 infants within 38 distinct clusters were
randomized by cluster to the study or control vaccine. Since within each cluster either
all participants were assigned study vaccine or all were assigned the control vaccine,
estimation of direct efficacy was not a trial objective given the potential confounding
inherent in comparing participants and nonparticipants within a cluster.
Defining other types of efficacy is simplest if we do not consider split-plot randomi-

zation. Indirect efficacy125 can be defined as the percent reduction in risk for
nonparticipants within a cluster randomized to vaccine compared to nonparticipants
within a cluster randomized to placebo. Defined this way, indirect efficacy is less
susceptible to the biases of direct efficacy discussed above since comparisons are being
made across the same subsets of randomized units (that is, nonparticipants). Total
efficacy, which incorporates both direct and indirect effects, contrasts endpoint rates in
participants within clusters randomized to vaccine and participants within clusters
randomized to placebo.Overall efficacy compares rates in all individuals within clusters
randomized to vaccine and all individuals within clusters randomized to placebo. In
other words, total efficacy compares endpoint rates in participants only whereas overall
efficacy considers endpoint rates in all individuals within a cluster. Thus, should all
individuals in a cluster participate in a CRVT (that is, all individuals in some clusters
receive vaccine while all individuals in the remaining clusters receive placebo), the
overall and total effects would be the same. Note that these definitions require endpoint
ascertainment in nonparticipants; see the last paragraph of this section for further
discussion on this point. For split-plot randomized CRVTs, definitions of indirect, total,
and overall efficacy can be adapted from Longini et al.126

More recently, Halloran et al.131 introduce the concept of epidemic prevention
proportion (EPP) wherein the endpoint is defined as the occurrence of an epidemic in
the cluster. The EPP is given by the percent reduction in the probability of an epidemic.
As an example, consider the results reported by Bjune et al.122 from a CRVT designed to
assess the efficacy of an outer membrane vesicle vaccine against group B meningococcal
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disease in which 1335 schools in Norway were randomized to vaccine (690) or placebo
(645). The endpoint of interest was an outbreak in the school, defined as at least one
case (subsequent cases within a school, of which there was only one, were not counted).
Cases of group B meningococcal disease were confirmed in 39 students from schools
participating in the study, of which three were excluded due to not meeting the case
definition of disease occurring after 14 days post second injection. The remaining 36
cases occurred in 35 schools (11 vaccine, 24 placebo) such that the estimate of efficacy
(that is, EPP) was reported as 0.57¼ 17 (11=690)=(24=645).

Several statistical issues arise in the context of CRVTs. One of the challenges in the
analysis of CRVTs pertains to combining attack rates from different clusters to estimate
the EPP, direct, indirect, total, and overall efficacy.131 For example, summary measures
across clusters might entail either taking a ratio of weighted averages of attack rates, or
a weighted average of attack rate ratios where the weights are chosen in some optimal
fashion. Another consideration arises if individuals are used as the unit of analysis, in
which case the intracluster correlation must be accounted for in the analysis. For
example, Trach et al.121 report on a trial of a killed, oral cholera vaccine in Vietnam,
where all households in the city of Hue were assigned vaccine or placebo. Using an
endpoint of cholera requiring inpatient care in a hospital or polyclinic, the estimated
protective efficacy was reported in terms of relative attack rates in age-eligible
participants from households assigned to vaccine vs. age-eligible participants from
households assigned to placebo. Generalized estimating equations were then employed
to adjust for possible within-household correlation. Another example is given in Lagos
et al.,132 who report results from a large-scale, post-licensure trial of a conjugate
Haemophilus influenzae type b (Hib) vaccine where 71 urban health centers in
Santiago, Chile, served as the unit of randomization. Comparisons of invasive Hib
cumulative incidence between infants in health centers randomized to the study vaccine
and infants in health centers randomized to the control vaccine were performed using
an adaptation of Pearson’s chi-square test that appropriately compensates for potential
correlation within cluster. Finally, given that CRVTs are usually designed to answer
several questions about the efficacy of a candidate vaccine, multiple comparison
considerations are again appropriate, especially for trials designed for licensure.125

Given that the different measures of efficacy discussed here are unlikely to be
statistically independent, resampling-based multiple comparison procedures13 that
allow for dependent test statistics might be appropriate.

Although primary endpoints used in CRVTs are typically the same as those in
individually- randomized efficacy trials (for example, incidence of infection and=or
associated morbidity and mortality) the methods for ascertainment may be vastly
different. For large clusters such as communities, the problem of endpoint ascertain-
ment is more similar to that of a disease registry in that the ultimate goal is estimation of
population rates. Passive methods of ascertainment (for example, coordinated reporting
through existing medical care infrastructures) often provide the foundation for such
systems but are not by themselves sufficient for complete case ascertainment. Active
methods for case ascertainment may include longitudinal follow-up of defined cohorts
within the referent populations, repeated population-based cross-sectional surveys, or
some combination of the two. In addition, the nature of important secondary endpoints
in CRVTs differs substantially from those in typical individually randomized trials.
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In CRVTs, interpretation of observed vaccine effects may depend strongly on assess-
ments of population rates of immigration and emigration, population coverage of
vaccination, as well as other economic and operational aspects of the vaccination
programme, making accurate measurement of these quantities important.

6 Phase IV studies

For vaccines that prove efficacious in Phase III trials and result in licensure, subsequent
Phase IV or post-licensure studies are typically implemented to look at safety and
vaccine effectiveness. In general, the term effectiveness is used to describe a vaccine’s
effect in the field post-licensure, whereas efficacy pertains to vaccine effect in a well-
controlled clinical trial.12,37,40 An effectiveness trial endpoint typically encompasses all
incident cases of infection or disease for any strain of the targeted pathogen occurring
during the entire time of follow-up. Overall survival might even be used as an endpoint;
for example, Koenig et al.133 report results from a trial showing that measles vaccina-
tion had a significant impact on childhood mortality in Bangladesh. Other aspects of
Phase IV studies affect endpoint considerations as well. For example, unlike the efficacy
trial setting, case validation by collection of appropriate laboratory specimens may not
be possible post-licensure, leading to an increased chance of endpoint misclassification.
The probability of case classification bias is also increased since post-licensure studies
are often not blinded or randomized.27 For vaccines with a known correlate of
protective immunity, endpoints of a Phase IV trial may also include immune response
measurements over time, which help inform whether and when booster immunizations
are needed. If the pathogen is heterogeneous, the trial endpoints may also encompass
monitoring the evolution of the pathogen in a population and expanding the assessment
of strain-specific vaccine effectiveness over time and its relationship with vaccine-
induced immune responses. Operational aspects of vaccination such as uptake and
acceptability might also constitute endpoints in this setting.40 The reader is referred
to Orenstein et al.134 and Clemens et al.40 for further considerations regarding assess-
ment of vaccine effectiveness in the field.

7 Discussion

In this paper we have reviewed endpoint considerations for vaccine trials ranging
from preclinical studies in animals to post-licensure field trials. However, the field of
vaccine research is vast and several important types of trials and endpoints were not
addressed. For example, vaccines motivated by the potential for bioterrorism present
distinct challenges8 since low incidence can often render disease endpoint efficacy trials
in humans infeasible. Ideally, correlates of protection would be available in humans, but
it may be that animal studies provide the only possible means of evaluating efficacy. In
this case, models must be established to bridge results between animal studies and the
putative effects of the vaccine in humans. Other scenarios not discussed include trials
investigating combination vaccines135 or vaccines intended to prevent mother-to-child
transmission.48 Endpoints that measure behavioral changes induced by counseling and
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other factors that likely will accompany vaccination programs also were not
addressed.47,48,50

Whatever the setting, the choice of endpoints is one of the most critical aspects in
clinical trials. Well-defined endpoints chosen prior to a study’s initiation provide
guidance in trial design and data analysis while lending scientific and statistical
credibility to results.4 In the context of vaccine trials, measuring clinically significant
disease endpoints is critical. While this may prove challenging for diseases with long
progression periods, it is essential for understanding clinical vaccine effects and the
relevance of surrogate vaccine effects.
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