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Methods of adjusting for bias in estimates due to mismeasured or missing covariates and outcomes through
the use of validation sets have been developed in many types of health studies. These methods can be
employed for the efficient design and analysis of vaccine studies as well. On the one hand, nonspecific case
definitions can lead to attenuated efficacy and effectiveness estimates, but confirmation by culture or a quick
test of the infectious agent is also expensive and difficult. On the other hand, data on exposure to infection can
influence estimates of vaccine efficacy, but good data on exposure are difficult to obtain. In this paper, the
authors show how use of small validation sets can correct the bias of the estimates obtained from a large main
study while maintaining efficiency. They illustrate the approach for outcomes using the example of influenza
vaccine efficacy and effectiveness trials and illustrate the approach for exposure to infection using the example
of a human immunodeficiency virus vaccine trial. The authors discuss challenges posed by infectious diseases
in the use of currently available methods. Development of these efficient designs and methods of analysis for
vaccine field studies will improve estimation of vaccine efficacy for both susceptibility and infectiousness, as well
as estimation of indirect and overall effects of vaccination in community trials. Am J Epidemiol 2001;154:
391–8.
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Protective vaccine efficacy for susceptibility, VES, is usu-
ally measured as VES � 1 – RR, where RR is some measure
of relative risk in the vaccinated group compared with the
unvaccinated group (1, 2). In many studies of vaccines, such
as vaccines for influenza, rotavirus, pertussis, and cholera,
confirmatory diagnosis of a suspected case is done by cul-
ture or a quick test of a swab, sputum, blood, or stool sam-
ple. If all ascertained cases were actually cases of the 
disease of interest and most of the cases were ascertained,
the estimates would be accurate.

However, samples or cultures are often expensive or dif-
ficult to collect, so a less specific case definition is used.
In an influenza study, a nonspecific case definition might

be “any respiratory illness” (3) or “febrile upper respira-
tory tract illness” (4). Thus, many ascertained cases are not
cases of the disease for which vaccination confers protec-
tion. This severely attenuates efficacy estimates. For
instance, using only culture-confirmed cases, Belshe et al.
(5) estimated the protective efficacy of a live attenuated
influenza vaccine in a randomized controlled trial in chil-
dren to be 0.89 (also see Belshe et al. (6) and Longini et al.
(7)). Using a case definition of “upper respiratory tract ill-
ness with either fever or cough,” Nichol et al. (4) estimated
the protective efficacy of a similar live attenuated
influenza vaccine in a randomized controlled trial in adults
to be only 0.25.

Indirect and overall effectiveness measures are obtained by
comparing the risk of disease in a community that has a vac-
cination program with the risk in a community that has no
vaccination or has a different program. In a group-randomized
influenza vaccine trial for overall effectiveness (3), 30 schools
were randomly assigned to receive either vaccine or placebo.
The outcome was the presence of one or more respiratory ill-
nesses or the absence of such illnesses during the epidemic
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period. The low estimate of overall effectiveness of a live can-
didate vaccine (e.g., 1 – [430/2,525]/[567/2,331] � 0.30 in
one age group) could easily have resulted from the nonspe-
cific case definition. If just half of the respiratory illness in the
placebo group were not influenza, corresponding to 307 non-
influenza cases in the vaccine group, the effectiveness point
estimate would be 0.59 (1 – [127/2,525]/[283/2,331] �
0.59)—a factor of 2 greater.

The efficacy of a vaccine in reducing infectiousness, VEI,
is usually measured by comparing the risk of transmission
from a vaccinated person with the risk of transmission from
an unvaccinated person (2). However, data on exposure to
infection are often difficult or expensive to obtain and are
inherently prone to mismeasurement.

Study designs that combine data of different levels and
quality have been developed in some areas of epidemiol-
ogy, such as nutritional epidemiology and cancer epidemi-
ology. In a small subset of participants, called the valida-
tion sample, a good measurement of the exposure or
outcome of interest is obtained. For each of the participants,
including the validation set, a less accurate or coarser, pos-
sibly cheaper, measure is also obtained. The less accurate
measure is sometimes called a “surrogate.” The better mea-
sure is sometimes called the “good data” or even the “gold
standard.” Estimates based on just the surrogate measure
would usually be biased. Estimates based on just the good
data from the small validation sample would not be very
precise. The general idea is that the good data in the vali-
dation set correct the bias, while the larger main study
increases precision.

In a previous article (8), we suggested that these methods
could be extended to improve the design and analysis of
studies of infectious disease, particularly in vaccine evalua-
tion. In this paper, we show how studies with validation sets
can produce more accurate and efficient estimates in vac-
cine field studies. We discuss challenges posed by infectious
diseases in the use of currently available methods and call
for more methodological developments.

STUDIES WITH VALIDATION SETS

One approach to the validation method is to have a val-
idation sample within a cohort study. A related approach
includes two-stage case-control studies. At the first stage,
information is obtained on the outcome and on a subset of
the covariates. At the second stage, more accurate infor-
mation might be obtained about the outcome or the
already-measured covariates, or additional covariates
might be measured in a subsample of the cases and con-
trols (9–14).

Many statistical methods are available for analyzing stud-
ies with validation sets (12, 15–23). Usually one starts with
a parametric model, such as a likelihood model or an esti-
mating equation, for the people on whom good data are
available. Then one uses some method to combine the peo-
ple on whom coarser data are available into the analysis.
Full likelihood or Bayesian approaches usually model the
relation of the coarser data to the more accurately measured
data and build the model into the analysis. However, the

relation between the good measure and the less accurate
measure is not of any scientific interest. If the model relat-
ing the two measures is wrong, the analysis can be quite
biased.

Semiparametric methods either use a nonparametric
method to estimate the relation or do not estimate it all. By
avoiding parametric specification of the relation between
the good covariate and the surrogate, semiparametric
methods avoid the bias that results from misspecifying the
relation. An example is the semiparametric mean score
method for outcomes (24) and for covariates (23). In the
case of covariates or exposure variables, the score contri-
bution (i.e., the derivative of the log likelihood) for each
main study member on whom only coarse exposure data
are available is estimated from the average score contribu-
tions of the validation sample members with the same
observed covariate and outcome values. The mean score
approach for outcomes is similar in that a surrogate out-
come is measured in everyone, while the accurate outcome
is measured only in the validation sample. The semipara-
metric efficient methods of Robins et al. (20, 21) also
avoid nonparametric estimation of the missing covariate
distribution. However, the semiparametric efficient meth-
ods extract further information from people who are not in
the validation set.

Several approaches have been developed for using valida-
tion sets for outcome data (15, 25–27). In the survival setting,
much work related to missing or mismeasured covariates has
been conducted (28–31), but less work has been done for mis-
classified outcomes.

USING VALIDATION SETS FOR OUTCOMES

Consider estimating protective efficacy for susceptibility,
VES, in a randomized, double-blinded, placebo-controlled
trial of an influenza vaccine in children. Suppose that we
want to estimate VES based on the relative incidence pro-
portion (IP), also known as the attack rate or cumulative
incidence, at the conclusion of the study. Assume that
through our definition of an influenza-like illness, we ascer-
tain every occurrence of true influenza illness in the study
population. We then confirm each suspected illness by per-
forming a culture for influenza. Assume that the sensitivity
and specificity of a culture are both 100 percent. Let N1 and
N0 be the numbers of children in the vaccinated and unvac-
cinated groups, respectively. Let y1 and y0 be the numbers of
influenza cases in the vaccinated and unvaccinated groups,
respectively. Then the efficacy estimate is

where IP1 and IP0 are the incidence proportions in the vac-
cinated and unvaccinated groups, respectively.

Suppose, however, that we do not confirm suspected
cases by culture. The ascertained cases of influenza-like ill-
ness will possibly include many cases that are not influenza
but illnesses caused by other viruses, such as respiratory
syncytial virus or parainfluenza. We will call such illnesses

VES,IP � 1 �
IP1

IP0
� 1 �

y1>N1

y0>N0
,
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“noninfluenza.” The term “influenza-like illness” captures
both the true influenza cases and the noninfluenza cases.
Exactly what the terms include will depend on the defini-
tions used in any particular study.

Suppose that z1 and z0 are the numbers of noninfluenza
cases in the vaccinated and unvaccinated groups, respec-
tively. Then the total number of influenza-like illnesses in
vaccine group v, v � 0, 1, is wv � zv � yv. The efficacy esti-
mate based on the total number of influenza-like illnesses
would be

where a denotes all influenza-like illness.
Consider the example shown in table 1. Our estimate of

VES based on the true influenza cases would be

Our estimate based on all-influenza like illness would be

A simple adjustment using a validation set

How could a validation sample help correct the attenuated
VES estimate obtained using all influenza-like illnesses?
Continuing the above example, assume that the incidence
rates of both influenza and noninfluenza are constant over
time. We randomly sample a fraction of the vaccinated and
the unvaccinated influenza-like cases, and we culture swabs
taken from them to confirm whether they had true influenza.
From the results, we can estimate the probability in each
group that any influenza-like case is true influenza.

We denote the sampling fraction as ρv, the number of
influenza-like cases sampled for the validation set as rv, and
the number of culture-confirmed influenza cases as cv, v �
0, 1. We estimate the proportion πv of the influenza-like

interval: 0.45, 0.712.

 VES,IP,a � 1 �
60>1,000

150>1,000
� 0.60 195 percent confidence

interval: 0.81, 0.952.

 VES,IP � 1 �
10>1,000

100>1,000
� 0.90 195 percent confidence

VES,IP,a � 1 �
IP1,a

IP0,a
� 1 �

w1>N1

w0>N0
,

cases that are true influenza from the ratio of the number of
culture-confirmed cases to the total number of influenza-
like cases in each validation set, i.e., � cv/rv, v � 0, 1.
This estimated proportion is used to adjust the number of
influenza-like illnesses in each vaccine arm to estimate the
number of true influenza cases.

Suppose that the sampling fractions are ρ1 � 0.20 and 
ρ0 � 0.10 in the vaccinated and unvaccinated groups,
respectively. Then we would expect to sample r1 �
0.20(60) � 12 and r0 � 0.10(150) � 15 influenza-like
cases for the vaccinated and unvaccinated validation sam-
ples, respectively. We would expect 10/60 of the cultured
vaccinated cases to be true influenza, or c1 � 2 of the r1 �
12 cases in the validation sample. We estimate �
2/12 � 0.17. Similarly, we would expect 100/150 of the
cultured unvaccinated influenza-like cases to be culture-
confirmed influenza—that is, c0 � 10 of the r0 � 15 cases
in the validation sample. We estimate � 10/15 � 0.67.
We then multiply the observed number of all influenza-like
illnesses in each group by the estimated proportion of true
influenza to obtain

where the subscript v denotes validation set. The approxi-
mate 95 percent confidence interval is based on the point
estimate from the adjusted incidence proportions plus or
minus 1.96 times the standard error obtained using the mean
score method (24) with a logistic model (odds ratio). In this
case, we are using the standard error of an odds ratio as an
approximation for the standard error of a risk ratio. For con-
sistency of comparison, the 95 percent confidence intervals
reported above for vaccine efficacy based on the full data
and all influenza-like illness were also calculated using a
logistic model, while calculating the point estimate using the
relative incidence proportions. In general, approximate stan-
dard errors based on the risk ratios or odds ratios are very
similar. In this case, the confidence intervals based on the
two approaches differed by less than 0.01.

The simple adjustment corrects for the bias resulting from
using influenza-like illness as the outcome without our hav-
ing to culture every suspected case. The main penalty in
using the validation sample rather than culturing everyone is
the increased uncertainty in the estimate. The variability of
the estimate obtained using a validation sample depends on
the size of the validation set. In this example, if the sampling
fraction in each group were doubled, the approximate 95
percent confidence interval would decrease to (0.74, 0.96).

The degree of attenuation of the VES estimates from using
the nonspecific case definition depends on the ratio of true
disease to background nonspecific disease. In the above
example, if instead of 50 there had been 100 noninfluenza

� 0.90 195 percent confidence interval: 0.64, 0.982,

� 1 �
30.171602 4 >1,000

30.6711502 4 >1,000

112VÊS,IP,v � 1 �
1π̂1w12>N1

1π̂0w02>N0

π̂0

π̂1

π̂v

TABLE 1. Results of a hypothetical influenza vaccine trial in
children

Exposure Influenza
(y

v
)

All
influenza-

like
(w

v
=

y
v

+ z
v
)

Non-
influenza

(z
v
)

Vaccinated (v = 1)

Unvaccinated (v = 0)

10

100

50

50

60

150

1,000

1,000

No.
of

children
(N

v
)

Cases
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FIGURE 1. Vaccine efficacy for susceptibility in children as esti-
mated using true influenza cases (top), the validation set approach
(middle), and all influenza-like illness (bottom). Results were based
on 100 simulations. Vaccine efficacy was set to 0.90 using a multi-
plicative (leaky) model. Other simulation parameters are described
in the text.

cases in each group, the estimate based on all influenza-like
illness would have been

an even worse attenuation. However, validation sets would
still be able to adjust this estimate. If a vaccine is highly effi-
cacious, it might be desirable to have a higher sampling
fraction in the vaccinated group. In general, each stratum of
interest could have a different sampling fraction.

Time-varying incidence rates

The incidence of true influenza, as well as the incidence
of other noninfluenza illnesses, varies rapidly during a typi-
cal influenza season. Thus, the ratio of influenza cases to
noninfluenza cases can vary greatly during a study. Any
method of adjustment will need to take this time variability
into account.

For example, suppose that we group the influenza-like
cases within small time intervals τ, such as 1 week: (tτ – 1, tτ],
τ � 1, …, T. If the influenza epidemic or vaccine study lasts
12 weeks, then T � 12. We also group the validation sam-
ples rvτ within time intervals. Then we estimate the propor-
tion πvτ of true influenza cases among the influenza-like ill-
nesses in each vaccine group v, v � 0, 1, from the validation
samples in each time interval τ, τ � 1, …, T; that is, vτ �
cvτ /rvτ. We multiply the number of influenza-like illnesses
ascertained in each week wvτ by the estimated {πvτ} for that
time interval to obtain an adjusted estimate of the number of
influenza cases in each interval. Summing over the adjusted
estimates of the number of true influenza cases in each inter-
val, we obtain an adjusted estimate of the total number of
influenza cases in each group during the study. From this,
we estimate the incidence proportion of true influenza in
each vaccine group, and from that, VES,IP,v:

Smoothing methods (32) could be used on the {πvτ}.
Figure 1 shows the results of 100 simulations for estimating

vaccine efficacy based on 1) true influenza, 2) the use of this
simple validation set approach, and 3) all influenza-like ill-
ness. The influenza epidemic in this example lasted for 12
weeks. The expected incidence in children varied weekly as
(0.014, 0.024, 0.034, 0.05, 0.06, 0.055, 0.05, 0.044, 0.038,
0.024, 0.015, 0.01). The expected incidence rate of 
noninfluenza was set to 0.02 per week. The expected weekly
incidence rates of influenza and noninfluenza were each mul-
tiplied by an independent uniform random number between
0.85 and 1.15. Since both noninfluenza incidence and true
influenza incidence were multiplied by random numbers, the
ratio of true influenza to noninfluenza varied among simula-
tions. The set vaccine efficacy was VES � 0.90 with a multi-
plicative (leaky) effect. In each week, we sampled ρ0 � 0.25
and ρ1 � 0.40 of the influenza-like illnesses in the unvacci-
nated children and the vaccinated children, respectively.

122VÊS,IP,v � 1 �
3�T

τ�1π̂1τw1τ 4 >N1

3�T
τ�1π̂0τw0τ 4 >N0

.

π̂

VÊS,IP,a � 1 �
110 � 1002>1,000

1100 � 1002>1,000
� 0.45,

In figure 1, the VES,IP estimates based on true influenza
cases vary between 0.85 and 0.95, with a median at 0.89,
just below the simulated value of 0.90. However, the VES
estimate based on all influenza-like illness varies between
about 0.40 and 0.60, with a median at 0.47. With the use of
the simple adjustment based on the validation set, the esti-
mates are again centered around 0.89, though the variability
is greater than it would have been if all true influenza cases
had been ascertained.

Validation sets in community trials

The usefulness of validation sets for outcomes may be
even greater in community trials designed to estimate the
indirect and overall effects of vaccination programs. In large
community trials, culturing every suspected case may be
prohibitively expensive, as well as operationally unfeasible.
The purpose of the studies would primarily be to estimate
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FIGURE 2. Estimated indirect effects of vaccination of children
among children in a community trial when the indirect effects are set
to 0.25. Estimates were based on true influenza cases (top), the val-
idation set approach (middle), and all influenza-like illness (bottom),
from 100 simulations. Other simulation parameters are described in
the text.

FIGURE 3. Estimated indirect effects of vaccination of children
among adults in a community trial when the indirect effects are set
to 0.25. Estimates were based on true influenza cases (top), the val-
idation set approach (middle), and all influenza-like illness (bottom),
from 100 simulations. Other simulation parameters are described in
the text.

the indirect effects of vaccination on people who were not
vaccinated and the overall benefit to the community of
widespread vaccination (2, 33, 34). The denominators for
the estimation could be either the number of people in each
relevant stratum in the community as a whole, a health
maintenance organization catchment population, or some
other relevant catchment population for the observed cases.

Many features complicate community-based vaccination
studies. Chief among them is the comparability of the com-
munities included in the study with respect to the baseline
incidence and the background incidence of any disease
included in a nonspecific case definition. Even if the commu-
nities are comparable, however, a nonspecific case definition
can attenuate the estimates of indirect and overall effects.

In figures 2 and 3, we present results of 100 simulated
estimates of the indirect effects of vaccinating 50 percent of
the children in one community as compared with another
community without vaccination. This scenario is similar to
that depicted in figure 1, with 10,000 people in each popu-

lation, half children and half adults. The incidence rate of
true influenza in adults is only half that in children, while
the incidence rate of noninfluenza in adults is the same as
that in children. The baseline incidences of true influenza
and background noninfluenza are multiplied by random
numbers between 0.85 and 1.15, so the baseline incidences
in the two comparison communities are similar but not iden-
tical. To estimate indirect effects in children (figure 2), one
compares the incidence proportion among unvaccinated
children in the community that has the vaccination program
with the incidence proportion among (unvaccinated) chil-
dren in the community without vaccination. A similar com-
parison is made among the adults (figure 3), all of whom are
unvaccinated. We have set the indirect effects to 0.25. The
top histograms of estimates based on ascertainment of all
true influenza cases in children and adults are centered
around 0.25, the set value. However, if we use all influenza-
like illnesses, the estimates are much lower (bottom rows).
The histogram is centered around 0.14 in children and 0.10
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FIGURE 4. Histograms of Monte Carlo estimates of vaccine effica-
cy for infectiousness (VEI), using five different methods of estimation
(see text). The histograms shown are from 200 simulations of a
human immunodeficiency virus vaccine trial with 4,000 primary trial
participants and 2,000 with steady partners (37). The sampling frac-
tion was 0.20 of the partnerships for the validation set. The value of
VEI used for simulation was 0.6. CC, complete cases; surrogate M,
surrogate measure obtained from each partnership’s guess at their
number of sexual contacts. (Adapted from Golm et al. (37).)

in adults. Using the simple time-varying adjustment with
validation sets that was described above (see previous sec-
tion), the adjusted indirect effect estimates are once again
centered more closely around 0.25.

Validation sets as discussed here do not adjust for non-
comparability between communities. However, as figures 2
and 3 illustrate, validation sets can help investigators
retrieve a better estimate of indirect effects than is obtained
by using a nonspecific case definition. For example, in an
influenza vaccine study in Texas designed to evaluate the
indirect effects on adults of vaccinating children (35), the
primary outcome was medically attended acute respiratory
illness during the influenza season. Use of a validation set
could help investigators obtain better estimates of the indi-
rect effects on influenza in adults, even if the comparison
communities were not completely comparable.

USING VALIDATION SETS FOR EXPOSURE TO 
INFECTION

In simulation studies, Golm et al. (36, 37) explored using
validation samples for exposure-to-infection information to
estimate vaccine efficacy for infectiousness, VEI, in trials of
human immunodeficiency virus vaccine. The complete data
in such a trial are based on the augmented vaccine trial
design (38–40). The idea is to recruit and randomize indi-
viduals to the vaccine trial but also try to recruit steady part-
ners of some of the primary participants. The complete
exposure data in the trial would include the number of 
sexual contacts of the primary participants and recruited
partners with people outside the partnership, the number of
sexual contacts within each partnership, and the infection
status of the partners. In this setting, the relative risk esti-
mate for VEI is based on the relative per-contact transmis-
sion probability within each partnership. However, accurate
information on sexual contacts is difficult to collect.

With a focus on the potential for improving estimation of
VEI, Golm et al. (37) assumed that only partnerships were
included in the validation sample. In the validation partner-
ships, information on sexual contacts was assumed to be
gathered without error. Thus, an easy, coarse measure of
exposure consisted of each partnership’s classifying their
number of within-partnership contacts as either high or low
(Hi/Lo). Semiparametric analytical methods (22, 23) were
then applied. A surrogate M was also assumed as measured
from each partnership’s making some guess at their number
of sexual contacts.

Figure 4 illustrates the potential for improving estimates
of VEI. The histograms shown are from 200 simulations of
a human immunodeficiency virus vaccine trial with 4,000
primary trial participants and 2,000 with steady partners.
The sampling fraction was 0.20 of the partnerships for the
validation set. Vaccine efficacy was set to VES � 0.4 and
VEI � 0.6. (For more details, see Golm et al. (37).) The top
histogram presents estimates based on participants and part-
ners for whom complete, good data are available (complete
cases). The estimates for VEI are quite variable, since there
is little information available. In the next two histograms,
the two semiparametric approaches provide much more 
precise estimates than the complete case estimates. These

methods incorporate the information from the main study on
people for whom only coarse exposure data are available.
The surrogate M (fourth histogram) actually performs fairly
well. However, using the coarse data based on Hi/Lo alone
yields a very biased, though precise, estimate of VEI (bot-
tom histogram). The problem of bias is overcome with the
use of the validation set.

DISCUSSION

Validation sets for outcomes and for exposure to infection
have much potential for improving the precision and accuracy
of estimates from field studies of infectious diseases, espe-



Validation Samples in Vaccine Studies 397

Am J Epidemiol Vol. 154, No. 5, 2001

cially in evaluating vaccines and vaccination strategies. For
prelicensure primary efficacy trials, it is less likely that such
methods will replace the current practice of using confirma-
tory laboratory diagnosis. However, in secondary or post-
licensure studies or in large community-level studies, these
methods could be widely applicable and cost-effective.

Several challenges to use of validation sets are posed by
the infectious disease setting. In the simple, time-invariant
influenza example presented above, existing methods could
be applicable. However, the rapidly time-varying incidence
rates of some infectious diseases present new problems. The
probability that any suspected case is a case of the disease of
interest changes rapidly over time. Methods employed must
take this rapid time evolution into account. A person might
have more than one event of misclassified disease during a
study (41–43), but generally a person would have only one
case of the disease of interest. This raises issues related to
the validation sampling scheme. The problem with sampling
individuals when they sometimes present with influenza-
like illness and sometimes do not is that it is possible to miss
sampling them when they have true influenza. Presumably,
then, when they presented again, they actually would no
longer be in the risk set for having influenza. This problem
could be avoided by selecting people for the validation set
before the study begins and culturing them each time they
present with illness fitting the nonspecific case definition.
Such issues require further examination.

Other concerns in selection of the validation sample are
common to the study of noninfectious diseases. The valida-
tion set may not be internal to the actual study but may be
drawn from some other external population. For example,
influenza epidemics are often monitored by culturing people
with suspected influenza cases once the season has begun.
The samples so cultured are usually convenience samples.
Whether a physician decides to take a culture can be heav-
ily influenced by his or her belief as to whether the person
has true influenza. If such convenience samples were used
uncritically to adjust vaccine efficacy or effectiveness esti-
mates, the results could be very biased. However, methods
for using such convenience samples could be developed. If
a physician knows a person’s vaccine status, it might affect
whether he or she takes a sample. People who are vaccinated
may have less serious illness and may tend not to visit a
physician or report symptoms. Optimal sampling strategies
also have yet to be explored in this context. Efficient meth-
ods will probably vary the probability of being selected into
the validation set with time, as well.

Other problems, such as whether the good measure of out-
come is a gold standard or itself is prone to mismeasurement,
need further examination. The probability of obtaining a pos-
itive culture may depend on the vaccination status of an indi-
vidual, because vaccination could shorten the period in
which a positive culture can be obtained or could reduce the
shedding of the infectious agent so that the culture is less
likely to be positive. The choice of the nonspecific case def-
inition is also important in determining the ratio of true cases
of interest to background cases. Similar problems in using
validation sets for exposure to infection remain to be solved.
Of particular importance is the fact that there is really no

gold standard for exposure to infection in any setting. These
and many other issues could be fruitfully examined to
improve vaccine efficacy and effectiveness studies.

Analytical methods for combining participants with differ-
ent levels of data on exposure to infection could also be used
in new approaches for estimating VES. In vaccine trials, the
primary analysis generally uses one of the unconditional esti-
mates of VES. Often information on contact with and expo-
sure to infection is available on some of the participants, more
by happenstance than by design. An example might be a per-
tussis vaccine trial in which information on household expo-
sure to infection is available for some of the participants but
no exposure is observed for most participants. Until now, the
subset of individuals for whom exposure information was
available was analyzed in a second analysis to obtain VES
and, less often, VE

I
estimates based on the transmission prob-

ability or secondary attack rates. However, methods could be
developed to incorporate the different levels of information
into a single analysis to improve estimation of VES as well as
VEI.

In this paper, we have considered separately the use of
validation sets for outcomes and for exposure to infection.
However, it would be possible for studies to use validation
sets for both. Validation sets could be used in other infec-
tious disease studies as well. In malaria studies, exposure to
infection is measured by capturing mosquitoes. Validation
sets for exposure to malaria could be useful in studies on
developing immunity. The potential for using validation sets
in infectious disease field studies has just begun to be
explored. There is room for many new developments to
meet the special challenges of studying infectious diseases.
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