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Vaccine efficacy and effectiveness (VE) are generally measured as 1 minus some measure of relative risk 
(FIR) in the vaccinated group compared with the unvaccinated group (VE = 1 - RR). In designing a study to 
evaluate vaccination, the type of effect and the question of interest determine the appropriate choice of 
comparison population and parameter. Possible questions of interest include that of the biologic effect of 
vaccination on susceptibility, on infectiousness, or on progression to disease in individuals. The indirect 
effects, total effects, and overall public health benefits of widespread vaccination of individuals within the 
context of a vaccination program might also be of primary concern. The change in behavior induced by belief 
in the protective effects of vaccination might influence the estimates of these effects or might itself be of 
interest. In this paper, the authors present a framework of study designs that relates the scientific question of 
interest to the choice of comparison groups, the unit of observation, the level of information available for 
analysis, and the parameter of effect. Am J Epidemiol 1997;146:789-803. 
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Vaccine efficacy and effectiveness (VE) are gener- 
ally measured as 1 minus some measure o f  relative 
risk (RR) in the vaccinated group compared with the 
unvaccinated group: 

Vaccination can produce several different kinds o f  
effects, both at the individual level and at the popula- 
tion level, and the groups in the comparisons could be 
composed o f  individuals, populations, or communi- 
ties. Vaccination can induce a biologically protective 
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response in a vaccinated individual or reduce the de- 
gree or duration o f  infectiousness. Widespread vacci- 
nation in a population can reduce transmission and 
produce indirect effects, even in individuals who were 
not vaccinated. Vaccinated people might change their 
rate o f  making contacts wi th potentially infectious 
sources, and thereby counterbalance the biologic pro- 
tective effects or alter the overall public health benefits 
of vaccination. I n  designing a study for evaluating the 
effects o f  vaccination, the question o f  interest guides 
the choice o f  unit o f  observation, comparison groups, 
parameter o f  effect, and level o f  information required. 

In this paper, we present a systematic overview 
(table 1) o f  study designs for evaluating various effects 
o f  vaccination and vaccination programs based on the 
choice o f  comparison groups, the unit o f  observation, 
the choice o f  parameter, and the level o f  information 
required. The expression VE = 1 - RR i s  o f  the form 
o f  the prevented fraction in the exposed, and thus 
belongs to the family o f  parameters o f  attributable, or 
prevented, risk. We take as our point o f  departure the 



TABLE 1. Parameters used for measuring various effects of vaccination* 

Comparison groups and effect 
Level Parameter choice 

Susceptibility Infectiousness Combined change in susce~tlbilitv and ~nfect~ousness 

Conditional on 
exposure to infection: 

I Transmission 
probability, p POI Pi0 P1i VE,,,t = 1 - - VE,,, = 1 - - VE,, = 1 - - 

Secondary attack Pw Po0 POO 
rate (SAR) 

Study design 

I 
direct 

IIA 
indirect 

118 
total 

Ill 
overall 

Unconditional: 

~RAI IRAQ 
iI Incidence rate (IR) VE,,,, = 1 - - VE,M,,R = I - - 

lR*o I Rm 

Hazard. A 

x 
rn 111 ~roponlonal VE,,,, = 1 - eP' 

2. hazards (PH) 

c l ~ l  CIAO -. IV Cumulative VE,,,, = 1 - - VE,M,cl = I - - 
0 incidence (CI) CIAO CIm 

4 
0 Attack rates (AR) 

A The subscripts 0 and 1 denote unvaccinated and vaccinated people, respectively. Population A contains bath vaccinated and unvaccinated people. Ail people in population Bare 
unvaccinated (see figure 2). The subscripts S, I, and Tdenote susceptibility, infectiousness, and combined effects, respectively. The Cox proportional hazards estimator is denoted 
by eB'. Time has been omitted from the table for notational clarity. 

Z 
? t VE, vaccine efficacy/effectiveness; NA, not applicable. 
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parameters of attributable or prevented risk, which . . . . . . . . . . .  
susceptible . . .  primarily pertained to noninfectious diseases. The two 

main aarameters in this family that Greenland and . . . .  ~ o b i n s  considered are the prevented hazard fraction, w 
contact 

hased on the incidence or hazard rate ratio. and the . ~~~ ~ ~ . 
prevented fraction, based on the cumulative incidence 
ratio with the unit of observation being the individual. 
These two parameters have their analogies in the fam- 
ily of vaccine efficacy and effectiveness parameters. 
However, because of the dependent happenings (3) 
and the indirect effects of intervention in infections 
diseases, several more measures are relevant for esti- 
mating the various prevented risk vaccine efficacy and 
effectiveness parameters. 

In the conceptual framework we present, we expand 
the family of prevented risk parameters discussed by 
Greenland and Robiis in two dimensions. In the first 
dimension, we add the transmission probability or 
secondaq attack rate, a parameter that conditions on 
actual exposure to infection, to the incidence or hazard 
and cumulative incidence (4), parameters that do not 
condition on exposure to infection. The transmission 
probability is fundamental to infectious disease epide- 
miology. We also show that in this direction, the 
family of vaccine efficacy parameters form a hierarchy 
ordered by the amount of information required for 
their estimation. In the second dimension, to estimate 
the indirect and overall effects of widespread vaccina- 
tion, we enrich the choice of comparison populations 
by comparing different populations or communities in 
the study designs for dependent happenings (5, 6). In 
these studies, the community or a subpopnlation of the 
community becomes the main unit of comparison. 

We also discuss the behavioral and exposure effica- 
cies of interventions which often occur through 
changes in the rates and types of contacts with poten- 
tially infective sources (7). We emphasize that a study 
can be designed to evaluate several different types of 
effects at the same time. We also emphasize the im- 
portance of distinguishing risk factors for exposure to 
infection from risk factors for susceptibility. These 
concepts and study designs are applicable to risk fac- 
tors and interventions other than vaccination against 
infectious diseases. We have found this conceptual 
framework useful to us in ordering our own thoughts 
and in discussions with other colleagues on evaluating 
vaccine effects. We present it here in the hope that it 
will provide a basis for further developments in the 
rational and complex design of vaccine evaluation. 

BIOLOGIC EFFICACY 

Transmission probability depends on 
- infectious host 
-susceptible host 
-contact definition 
- parasite 

FIGURE I. Schematic diagram of transmission of an infectious 
agent as an infectious host makes contact with a susceptible host. 

contact with one another. The transmission probabil- 
ity, p ,  is the probability that, conditional upon a 
contact between an infective source with covariate 
status i and a susceptible host with covariate status j, 
successful transfer and establishment of the infectious 
agent will occur. A related concept is the secondary 
attack rate, SARij, defined as the proportion of sus- 
ceptible~ with covariate status j making contact with 
an infectious pekon of covariate status i who become 
infected. The probability of transmission depends on 
the characteristics of the infective source i, the infec- 
tious agent, the susceptible host j, and the type and 
definition of contact. For example, if 0 and 1 denote 
unvaccinated and vaccinated status, respectively, then 
p,, denotes the transmission probability per contact 
from an unvaccinated infective person to a vaccinated 
uninfected person. Similarly, SARIo denotes the sec- 
ondary attack rate from a vaccinated infective to the 
unvaccinated susceptibles with whom they make con- 
tact. The biologic effects of vaccination of an individ- 
ual can reduce 1) the probability of infection given a 
specified exposure to an infectious agent, 2) the pro- 
gression to, degree, or duration of disease, once the 
individual becomes infected, and/or 3) the degree or 
duration of infectiousness for other individuals. We 
consider estimation of the different types of effects 
below. 

VACCINE EFFECT ON SUSCEPTIBILITY (VE,) 

The first question of interest is how vaccination 
protects individuals against either infection or disease. 
In table 1, the vaccine efficacy measures for how well 
the vaccine reduces susceptibility, VE,, are given in 
the third column. The top row contains the conditional 
parameters, such as the transmission probability or 
secondarv attack rate. The bottom rows contain the 
unconditional parameters incidence (hazard) rate and 
cumulative incidence (attack rate). Under the assumv- 

Figure 1 illustrates transmission between an infec- tion of equal exposure to the infectious agent in 
tious source and a susceptible person who are making the vaccinated and unvaccinated groups (X), valid 
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estimates of VE, are obtained from VE, = 1 - 
[R(vaccinated people)lR(unvaccinated people)], where 
R denotes one of the measures of risk. We show below 
that the conditional and unconditional parameters form 
a hierarchy requiring different levels of information 
about the transmission system. They are also differ- 
ently affected by potential sources of bias. Interpreta- 
tion of the estimated VE, as the level of biologic 
protection conferred by the vaccine is generally com- 
plicated, as discussed briefly below and elsewhere. 

Transmission probability or secondary attack rate 

An epidemiologic measure of the biologically pro- 
tective effect of vaccination is the reduction in the 
probability of infection or disease conditional on a 
certain level of exposure to the infectious agent, given 
a certain type of contact. Thus, in the absence of 
controlled challenge experiments, the first choice for 
epidemiologically estimating the biologic protective 
effect of vaccination is based on the transmission 
probability ratio, or any similar parameter that condi- 
tions on actual contact between an infectious source 
and a susceptible person. The concept of a "contactnis 
very broad and must be defined in each particular 
study. In a study of sexually transmitted disease, the 
contact could be defined per sex act or per partnership. 
In a study of pertussis, a contact could be defined as 
attending school on the same day as an infectious 
person or as living in the same household during the 
entire period of infectiousness of a case. The mode of 
transmkion of a parasite determines which types of 
contacts are potentially infectious. ' 

The transmission probability is estimated in two 
main ways. The first method, called the secondary 
attack rate (9-12) or case-contact rate method, has 
been used to estimate vaccine efficacy since the per- 
tussis vaccine trials were carried out in the 1930s (13). 
The vaccine efficacy measure is based on the SAR,, in 
the vaccinated susceptibles who were exposed to in- 
fection compared with the SAR, in unvaccinated sus- 
ceptible~ who had a similar exposure, where the dot in 
the subscript can denote any vaccine status for the 
infective or an average across the population. Second- 
ary attack rate studies are commonly used for directly 
transmitted infectious agents with high transmission 
probabilities, such as measles, chickenpox, mumps, 
pertussis, and tuberculosis. Another method of esti- 
mating the transmission probability is based on the 
binomial model. In this case, we observe susceptible 
people, count the number of contacts they make with 
infectives, and count the number of these susceptible 
people who become infected. The binomial model is 
commonly used in studies with low transmission prob- 

abilities, such as studies of human immunodeficiency 
virus, in which susceptibles often make more than one 
contact before becoming infected. The ascertainment 
of the susceptibles or infectives can occur prospec- 
tively or retrospectively, depending on the design of 
the study. 

Letp andp., denote the probability of transmission 
to unvaccinated and vaccinated susceptibles, respec- 
tively. Analogously, let SAR, and SAR, denote the 
secondary attack rates for unvaccinated and vaccinated 
susceptibles, respectively. The dot denotes the infec- 
tious contacts, which are assumed to be equal for the 
vaccinated and unvaccinated susceptibles. VE,,p, 
based on the transmission probability or secondary 
attack rate, i s  estimated from 

vaccinated infections 
= I - (  

vaccinated exposures 

- unvaccinated infections 
' unvaccinated exposures 

Estimating vaccine efficacy from the transmission 
probability ratios requires information on who is in- 
fectious and when, and on whom they contact and 
how. Because this method generally requires the most 
information, Rhodes et al. (14) call the conditional 
measure a level I parameter (table 1, top row). 

Hierarchy of VE, parameters 

Gathering information on exposure to infection and 
on contacts between infective and susceptible people 
in a vaccine study is often expensive, difficult, or even 
impossible. Thus, quite often vaccine efficacy studies 
rely on time-to-infection or time-to-disease data or 
simply on final value data. The analysis may be strat- 
ified according to variables believed to correlate with 
exposure to infection. If time-to-event data are col- 
lected, VE, can be estimated from the incidence or 
hazard rate ratio; Rhodes et al. (14) called this level I1 
information. For the Cox proportional hazards model 
(15), a special hazard rate ratio that assumes the same 
baseline hazard in both the vaccinated and unvacci- 
nated groups is used. Then only the ordering of the 
events is needed; this is called level III information. If 
only final value data, called level IV data, are col- 
lected, VE, is based on the cumulative incidence or 
attack rate ratio. 

The transmission probability, incidence rate, and 
cumulative incidence have a fundamental relation to 
one another because of the dependent happening stmc- 
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ture of infectious diseases. The incidence rate and 
cumulative incidence can be thought of as functions of 
the underlying transmission process, even if we do not 
measure the components. The components include the 
rate of contacts in the population, the probability that 
a contact between an infective and a susceptible will 
result in transmission, and the probability that any 
contact a susceptible makes is with an infectious 
source. Quite simply, the number of infection events 
per person-time equals the number of contacts per unit 
of time X the transmission probability per infectious 
contact X the probability that the contact is infectious. 
If co is the baseline contact rate, p, is the average 
transmission probability from an infectious person to 
an unvaccinated susceptible person, and Po@) is the 

.. 

prevalence of infection in people with whom the un- 
vaccinated people make contact at time t, the hazard 
A,@) or incidence rate IRo(t) in the unvaccinated 
population can be expressed as Ao(t) = IRo(t) = 
~ ~ p . ~ P ~ ( t ) .  The term Po(t) could also represent the 
probability that an environmental exposure is contam- 
inated with the infectious agent, such as cholera bac- 
teria in drinking water. In the vaccinated group, the 
incidence IRl( t )  or hazard rate A,(t) of infection is the 
product of the contact rate in the vaccinated group, c,, 
the average transmission probability from an infec- 
tious person to a vaccinated susceptible, p,,, and PI(?), 
the prevalence of infection in people with whom the 
vaccinated people make contact at time t :  A,(t) = 

If the contact rates in the two groups are equal and the prevalences of infection and infectiousness in the groups 
with whom they mix are equal, perhaps through randomization, then vaccine efficacy based on the incidence 
VE,,,(t) or hazard rate ratio VE,,,(t) can be thought of as 

vaccinated eventslperson-time Ai(t) c1 P . I P ~ ( ~ )  P.1 
= 1 -- V%,A(~) = 1 - 2 1 - -  

unvaccinated eventslperson-time A,(t). = - co P.$o(~) - Po 

Generally, simple cancellation of the contact rates and the prevalence of infection is not possible because of 
heterogeneities in the vaccinated and unvaccinated groups. Therefore, estimation of vaccine efficacy from 
time-to-event data would not generally yield the same estimate as that based on the transmission probability. The 
estimated epidemiologic efficacy often differs from the biologic efficacy measure of interest. However, it is 
useful to think of the transmission probability and incidence rates as intrinsically related to each other. In the Cox 
proportional hazards model (PH), the estimate is based on the paaial likelihood and requires data on the order 
of events, wH = 1 - eP', where eP' would be estimated by the hazard ratio (14). 

Similarly, the cumulative incidence, CI(T), at some time Tis a function of the hazard rate during the follow-up 
period, and thus also a function of the transmission probability, contact rate, and prevalence of infection in the 
contacts 

CIl(13 1 - exp(-$: Al(t)dt) vaccinated infection eventslpersons-at-risk 
= 1 -- VEs,a(T) = - unvaccinated infection eventslpersons-at-risk c b ( n  = 

- 
1 - exp(-$: Ao(t)dt)' 

, .. 
Even though the cumulative incidence estimate is a soa of black-box estimator, it is useful in vaccine studies to 
think about the underlying transmission system that would produce the observed final values. 

Example 

It is possible to combine different levels of information within the same study by the use of appropriate 
probability models or by collection of different levels of data. Sometimes both a conditional and an unconditional 
estimate of vaccine efficacy are given from the analysis of a single study. For those study subjects who had a 
putative exposure to the infectious agent, the conditional estimate is given. The unconditional estimate using all 
eligible study subjects is also provided. An early example is the study of pertussis vaccine carried out in the 1930s 
(13), which reported both the proportion of people exposed to infection who developed pertussis and the number 
of cases per person-time. The vaccinated and control groups had 1,815 and 2,397 children, respectively, who 
contributed 4,575 and 2,268 person-years at risk, respectively. There were 52 cases in the vaccinated group and 
348 cases in the control group, so 

52 cases12,268 person-years 
mssm(t) = - 348 cases/2,307 person-years 

= 0.85. 
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The study also had information on children who had been exposed to pertussis within their own households. In 
the vaccinated group, 29 of 83 exposed children developed pertussis, while 143 of 160 exposed children in the 
nnvaccinated group developed pertussis. Thus, 

29 cases183 vaccinated exposed 
ms,p = - 143 cases/l60 unvaccinated exposed 

= 0.61. 

Fine et al. (12) review several studies of pertussis vaccines and discuss some possible biologic reasons for 
difering values of the conditional estimates versus the unconditional estimates. 

Example 

Greenwood and Yule (8) used the cumulative incidence, or attack rates, in studying the efficacy of typhoid 
vaccination among troops in the early part of the 20th century. In one of their studies, use of the attack rates was 
complicated because vaccine continued to be administered to the troops until the end of the study. Thus, the 
denominators for the vaccinated and unvaccinated groups were changing over the course of the study. Greenwood 
and Yule provided two analyses, one assuming that all of the denominators were based on the vaccinated and 
nnvaccinated groups at the beginning of the study and the other based on who was vaccinated or unvaccinated 

) , at the end of the study. Here we show the analysis using denominators based on the beginning of the study. 
, , ,  

1 1 ,  , , 
Greenwood and Yule had 56 cases of typhoid in 10,378 vaccinated soldiers and 272 cases in 8,936 unvaccinated 
soldiers. The estimated efficacy based on these numbers is I :is 

56 cases/10,378 at risk 
ms~ci(n = - ?J2 cases/8,936 at risk 

= 0.82, 

1 215,; 
: 5;:: Example 

We compare the conditional estimators with the 
unconditional estimators in a simple example. Con- , 
sider a 1-year, randomized, double-blinded, placebo- 
controlled trial with 5,000 people each in the vacci- 
nated and unvaccinated arms of the study. Suppose 
that the incidence rate in the unvaccinated group is 2.0 
percent, and that the vaccine reduces susceptibility to 
infection equally and multiplicatively ip all vaccinated 
persons by 0.50. Ignoring indirect effects, and assum- 
ing only one contact per person (16), after 1 y e a  the 

- expected data would be those shown in table 2. After 
1 year (t  = I), the estimated efficacy is 

If we were able to identify all contacts with infectives, 
as in the hypothetical study shown in table 3, we could 
estimate vaccine efficacy using the transmission prob- 
ability. Under randomization and double-blinding, we 
assume that the number of potentially infective con- 

TABLE 2. Expected data from a study collecting information 
on person-time at risk* 

status NO. of NO. of 
participants infmions Dears) 

! ; .  Vaccinated 5,000 50 1 
, , Unvaccinated 5,000 100 1 

*The incidence rate in the unvaccinated group is 2.0 percent per 
year. 

tacts in each group is the same. The estimated vaccine 
efficacy based on the transmission probability would 
be 

Complex considerations 

We chose this simple example to demonstrate the 
relations among the dierent  levels of parameters. 
Generally things are not this simple. By conditioning 
on contacts with inFectives, comparison of the trans- 
mission probabilities to vaccinated susceptibles versus 
unvaccinated snsceptibles is the most likely of i?~e 
vaccine efficacy measures to give meaningful infor- 
mation about the biologic protective effect of the vac- 
cine. Estimates of vaccine efficacy based on the inci- 
dence rate ratio or cumulative incidence ratio can be 
interpreted under certain assumptions about equal ex- 
posure to infection in the comparison groups (8), how 
the vaccine works, and the distribution of its effects in 
the population (16-20). Even under the assumption of 

TABLE 3. Expected data from a study collecting information 
on number of exposures to an infectious agent 

NO. Of 
NO. of Time 

exposures to inktizLs participants infection 

Vaccinated 5,000 1.000 50 1 
Unvaccinated 5.000 1,000 100 1 
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equal exposure to infection in the vaccinated and un- 
vaccinated groups, VE,,, and VE,,, can give very 
biased estimates of the effect of vaccination on the 
transmission probability (17, 19-21). 

Several complicating factors in the evaluation of 
vaccine efficacy go beyond the four levels of infor- 
mation and their respective parameters presented here. 
Some vaccines made of live, attenuated infectious 
agents can spread from the vaccinees to people who 
have not been vaccinated, a phenomenon referred to 
as "contagious treatment" (6). If the vaccine virus 
spreads to a substantial number of nnvaccinated study 
subjects, the efficacy of the vaccine could be under- 
estimated. 

Another complicating factor is how to interpret 
time-varying vaccine efficacy estimates. Vaccine eff- 
cacy estimates can vary over time because of hetero- 
gcileity in susceptibility, rates of exposure to infec- 
iious agents, or the protection conferred by the vaccine 
(17, 19.20). They could also vary because the efficacy 
of the vaccine actually wanes over time (22). The 
efficacy could also increase with time if the level of 
efficacy depends on boosting by natural infection (6). 
Common to all of these effects is the fact that they can 
be captured only if time-to-event data are available. 
Although heterogeneities can be taken into account 
with frailty models (19, 20) and waning can be esti- 
mated with parametric or nonparametric models (22). 
designing studies to estimate changes in efficacy due, 
to natural boosting remains a challenge. Another open 
challenge is that of distinguishing among the possible 
causes of time-varying estimates. The overall, long- 
term effects of vaccination in a population depend on 
these characteristics (23-25), so study designs and 
methods of analysis for evaluating them are important 
areas for further development. 

Practical choice of estimators 

The amount of mformation gathered-that is, from 
the most (level I) to the least (level IV)-will be 
determined by many practical considerations that we 
cannot consider in deml here. The choice of estima- 
tors can be driven by the type and duration of the 
study. Postlicensure evaluation of a vaccine after an 
acute outbreak of an infectious agent often must be 
carried out using only information on whether people 
became infected or developed the disease during the 
period of the outbreak, since time-to-event or exposure 
data are not available. In this case, estimation of vac- 
cine efficacy will be based on the cumulative inci- 
dence, or attack rates. If time-to-event data were aval- 
able, relative incidence rates or relative hazards could 
be used. If the study occurred over a longer period of 
time, with the risk set also changing over time, then 
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the relative incidence or relative hazard rates would be 
, . 

Knowledge of being vaccinated could alter the con- 
tact rate of a vaccinated person or the contact pattern 
in a vaccinated population. With interventions other 
than vaccines, the primary goal of an intervention may 
be change in exposure to infection. "Contact rate ef- 
ficacy" is the relative change in the contact rates due 
to an intervention. "Exposure efficacy" or "behavior 
efficacy" is the relative increase or decrease in the risk 
of infection or disease due to the change in exposure to 
the infectious agent, depending on the outcome mea- 
sure chosen (7). For example, if we consider the com- 
ponents of the hazard rate as discussed above, changes 
in exposure to the infectious agent can occur in the rate 
of contact, in the prevalence of infection in the contact 
groups, or in the transmission probability through a 
change in the type of contact. In nomandomized or 
observational'studies, the vaccinated and unvaccinated 
groups often differ in their exposure to infection with- 
out changing their behavior. Unequal exposure to in- 
fection in the two comparison groups can bias esti- 
mates of the efficacy measures of interest. Although 
vaccine efficacy estimates based on the transmission 
probability require more information than those based 
on the unconditional parameters, they are less sensi- 
tive to bias from unequal exposure to infection in the 
two groups. 

a more appropriate choice for the dynamic cohort that 
would be under observation. 

, 
i 

Example (continued) 

, .- , .$ .,$ 
.> . . ..2 

, j , -  .* ~ . .,' ..~- 
:j :$ .. 

TABLE 4. Expected data in an unblinded, randomized study I,:/ 
in which all vaccinated individuals double their contacts by a I I!!; 

.,. 
factor of 2 after randomization ,,: 

i I:!;! 
, ,... 

Continuing the example from above, suppose that 
the study were randomized but not blinded and that the 
vaccinated individuals all doubled their rate of contact ;:! 

NO. Of Of N a  of Tme 
status paniaipanh exposures to infections (years) 

infection 
1 ,i' 

by a factor of 2, so that c ,  = 2c0. The expected data ' ,  

from such a study are shown in table 4. After 1 year ) 
( t  = I), the unconditional estimated efficacy would he 

; 1, 
, 

Vaccinated 5,000 2,000 100 1 , , \ : I ;  
: .; 

1,000 100 1 
, . 

Unvaccinated 5,000 , , I ,. i. 

I , !  
, :  1 : ;  

1;: , d 
!;I 
21 ,:, . 



The efficacy estimate based on the number of infec- 
tions conditional on the number of exposures to infec- 
tion would be 
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Using the unconditional estimates, with no knowledge 
of the change in exposure to infection, we would 
believe the protective effect of the vaccine to be zero, 
while, using the conditional estimates, we correctly 
estimate the protective efficacy to be 0.50. A similar 
result would occur if vaccinated people made contact 
with people who were more infectious or with groups 
in which the prevalence of infection was twice as high. 
Such a result would also occur if the vaccinated people 
changed the type of contact they made to one that had 
a higher baseline transmission probability. 

The combined effect of the change in exposure to 
infection and the biologic protective effect of the vac- 
cine is an important public health measure of interest. 
Indeed, an increase in the contact rate or other source 
of increased exposure to infection could outweigh any 
biologic protection conferred by the vaccine. Thus, a 
biologically protective vaccine could have detrimental 
public health effects. Whether the biologic protective 
efficacy or overall efficacy for an individual is of 
interest depends on the question underlying the study. 
The study design must be chosen to ensure that the 
question or questions of interest will be answered. In 
general, it is important to differentiate risk factors for 
exposure to infection from risk factors for biologic 
susceptibility. Stratification by surrogates for amount 
of exposure to infection could help to reduce potential 

T'.- 

bias in unconditional estimators. 
It is possible to design studies to examine several 

questions at the same time and to estimate more than 
one parameter from the data. In the last example, if the 
number of exposures to infection were ascertained, 
then both VE,, and VESA could be estimated, giving 
an estimate of both the biologic protective efficacy and 
the effect of the combined reduction in susceptibility 
with increased exposure. 

VACCINE EFFECT ON INFECTIOUSNESS WE,) 

The biologic effect of the vaccine in reducing infec- 
tiousness, YE,, can be estimated epidemiologically by 
comparing the per-contact transmission probability 
from vaccinated people who become infected with the 
transmission probability from unvaccinated people 
who become infected. In contrast to VE,, which is 
estimated using either conditional or unconditional 
parameters, VE, can generally be estimated only using 
conditional measures such as the transmission proba- 
bility or the secondary attack rate (4, 26-28). To 
estimate the biologic effect of the vaccine in reducing 
infectiousness (4), the relative risk cornpatison groups 
are defined according to the vaccination status of the 
infectious person contacting the susceptible person. In 
fable 1, the VE, estimate is shown in the second 
column of the top row of conditional parameters. For 
completeness, the third column of parameters contains 
the estimate of the combined effects of the vaccine in 
reducing the transmission probability if both the in- 
fectious person and the susceptible person in the con- 
tact are vaccinated (VET). 

Example 

Suppose that the goal of a study were to estimate the efficacy of a pertussis vaccine in reducing susceptibility 
and infectiousness. In addition to the number of potentially infectious contacts and the vaccine status of the 
exposed susceptibles, we also record the vaccine status of the infectious contact, possibly the primary case in the 
household. The data from such a hypothetical study are shown in table 5. For example, there are 44 infections 
in vaccinated people who had a total of 800 exposures to unvaccinated infective people. The estimate of S&, 
is 441800. The effect of the vaccine in reduclng susceptibility and infectiousness and the combined effects on both 
are estimated by 
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TABLE 5. Expected data from a study using the household Secondary attack rate to estimate both vaccine efficacy for 
susceptibility (YE,) and vaccine efficacy for infectiousness (VE,) 

status No. of infectious No. of exposures No, of 
~af l ic i~ants  contact to infMion infections Time (years) 

- - - 

Vaccinated 5,000 Vaccinated 200 
Unvacc~nated 800 

Unvaccinated 5,000 Vaccinated 200 
I lnvlrnnet.4 RrUl 

This is interpreted to mean that vaccination reduces the per-contact susceptibility by 0.50 and reduces infec- 
tiousness (once a vaccinee becomes infected) by 0.45 percent, and the combined reduction in susceptibility and 
infectiousness reduces the transmission probability by 0.73. 

Generally, contact information is required to estimate the effect of the vaccine in reducing infectiousness. By 
making strong modeling assumptions, Longini et al. (29) suggest a method for estimating the effect of the vaccine 
on infectiousness using time-to-event data from studies in multiple populations. 

Effect on progression (VEJ 

Evaluation of the effect of prophylactic vaccination 
on progression to disease, VE,, requires comparison 
of morbidity in vaccinated people who have become 
infected with that in infected unvaccinated people. 
Estimation of the effect of vaccination on progression 
would generally require observation of the infected 
individuals over time. Problems of interval censoring 
are important, because often the time of infection 
would not be observed accurately. 

INDIRECT AND TOTAL EFFECTS WE,, AND VE,,$ . 
While the parameters in the third column of table 1 

provide estimates of the protective efficacy for indi- 
viduals and the conditional parameters in the top row 
also provide estimates of the effect of the vaccine on 
infectiousness, none of these parameters produce 
estimates of the indirect or overall public health effects 
of vaccination in a population under dependent hap- 
penings (5, 6) .  The effects of a vaccination program 
could be quite different for people not receiving a 
vaccine than for those who receive the vaccine. The 
population-level effects of vaccination depend on the 
coverage and distribution of the vaccine, as well as on 
how the different groups mix with each other. These 
effects could result from the biologic effects as well as 
the behavioral effects of vaccination. The overall pub- 
lic health effects of a vaccination program depend on 
the effects in both the vaccinated people and the un- 
vaccinated. Thus, it is important to differentiate among 
three main types of population-level effects. The indi- 
rect effects are the population-level effects of wide- 
spread vaccination on people not receiving the vac- 
cine. The combination of the population-level effects 
of widespread vaccination in the individuals receiving 
the vaccine we call the total effects of vaccination and 
the vaccination program. The overall public health 

Am J Epidemiol Vol. 146, No. 10, 1997 

effects of the vaccination program depend on the 
weighted average of indirect effects on the individuals 
not receiving the intervention and the total effect on 
the individuals receiving the intervention. 

To emphasize the difference between indirect and 
totaleffects, we consider a study in which change in 
average age a t  infection is an outcome measure of 
interest. Assume that the vaccine reduces the proba- 
bility of becoming infected upon exposure to an in- 
fectious agent but does not completely protect against 
infection. Widespread vaccination would reduce the 
level of transmission and result in an increase in the 
average age at first infection for both the unvaccinated 
individuals and the vaccinated inhividuals. The in- 
crease in average age at firstinfection would be even 
greater in those who were vaccinated than in those 
who were not, however, since they would need to be 
exposed to infection more often, on average, to be- 
come infected than those people who did not get 
vaccinated. Thus, the indirect effect of the vaccination 
program would be less than the total effect of the 
vaccination program. The distinction between these 
two types of effects is not made often enough. The 
overall change in age of infection would be a weighted 
average of the increase in the two groups. Even if the 
overall benefits of vaccination in a population are 
positive, subgroups of the population may actually 
suffer; thus, such distinctions must be made. 

The indirect, total, and overall effects are defined 
within the context of a particular intervention program 
in a population. A vaccination program or other 
kind of intervention program depends on the level of 
coverage and distribution of the vaccine or other 
intervention within the population. To estimate the 
indirect, total, or overall effects of vaccination, we 
need to compare different populations or communities 
with and without the intervention program; or with 
differing types of intervention programs. The three 
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t 
P ,  

!.! different kinds of population-level effects-indirect, 
$ 
i. total, and overall-motivate three types of study de- 

signs depending on the choice of comparison popula- 
tions. In the expression VE = 1 - RR, the estimate of 
relative risk is derived from comparing different pop- 
ulations. Together with the study designs for individ- 
ual effects presented above, these are the four study 
designs for dependent happenings (5, 6) (figure 2). In 
table 1, the study designs for population-level effects 
are shown in the right three columns and include study 
designs IIA, IIB, and 111 from figure 2. The parameters 
discussed above are study designs of type I, shown in 
the third column of the table. 

Since the population-level effects of interest are 
def ied  within the context of a particular intervention 
program, the unit of inference is the population, and 
several populations might be included in the study. 
The issues raised are similar to those in community 
trials of interventions against noninfectious diseases. It 
is important in designing such studies that the popu- 
lations or communities chosen as the unit of observa- 
tion be separated as much as possible in every way that 
is relevant for transmission of the infection under 
study. The separation could be geographic, cultural, or 
temporal. We could compare neighboring villages, 
different cities, or child-care centers with different 
levels and distributions of vaccination. If there is 
transmission-relevant mixing among the population 
units, this could bias the estimates of effectiveness. 
One population could be the preintervention popula- 
tion while the other population was the postinterven- 
tion population, raising problems of historical con- 
trols. Studies comparing interventions in different 
populations can be done either as part of phase 111 
trials or as part of postlicensure surveillance. Increas- 
ing interest is being shown in evaluation of potential 
indirect and overall effects of vaccination strategies 
before licensure. 

To illustrate the choice of comparison populations 
or subpopulations for estimation of the three different 
effects, assume for simplicity as in figure 2 that there 
are two populations, A and B. Assume that a vaccina- 
tion program is implemented in population A so that 
some, but not necessarily all, of the individuals are 
vaccinated. No one is vaccinated in population B. To 
estimate the indirect effects of the vaccination pro- 
gram, we compare the average outcome in the indi- 

POPULATION A POPULATION B 

Nonvac (3 

DESIGN IIb 
d k t  + indirect 

FIGURE 2. Types of effects of vaccination and different study 
designs for their evaluation based on choice of comparison popu- 
lations. Populations A and B are separated in every way relevant to 
transmission dynamics. in population A, some but not necessarily 
ail of the people are vaccinated. In population B, no one is vacci- 
nated. (Adapted from Halloran and Stmchiner (6)). 

viduals who did not receive the vaccine in the vacci- 
nated population A with the average outcome in 
unvaccinated individuals in population B. These are 
study designs of type IIA, represented by the fourth 
column in table 1. For estimation of the total effect of 
vaccination, the average outcome in vaccinated people 
in population A is compared with the average outcome 
of unvaccinated people in population B. This is rep- 
resented in the fifth column of table 1. Somewhat 
more formal definitions of the indirect and total effects 
are provided elsewhere (4). The effect parameters are 
distinguished by the subscript specifying the study 
design and the measure of relative risk. For example, 
an estimate of the indiiect effect of vaccination based 
on the cumulative incidence at some time T is denoted 
% , c I ( ~ .  

Subpopulations of the communities could also be 
compared. For example, the populations could be fur- 
ther stratified by age, sex, receipt of behavioral inter- 
ventions, or any other risk factor of interest. For a 
valid comparison, the analogous subpopulation from 
each community must be included. 

Example 

As an example, consider using the hazard rate ratio as the measure of the indirect and total effects of the 
vaccination program. Let AO, A l ,  and BO denote the unvaccinated and vaccinated people in population A and the 

I unvaccinated people in population B, respectively, and let c, p, and P(t) be the contact rate, transmission 
probability, and prevalence, as defined above. Suppose that the estimated hazard rates in the unvaccinated and 
vaccinated portions of population A at some time tare  A,,(t) = 0.08 and A,,(t) = 0.06, respectively, and the 
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estimated hazard rate in the unvaccinated population B is X,;(t) = 0.12. Then the estimated indirect and total 
effects of the vaccination program in population A on the incidence rate compared with no program in population 
B would be:. 

These expressions show that the indirect or total effects result not only from the change in the transmission 
probability induced by the direct biologic effects of the vaccination but also from the change induced by the 
indirect effects. Vaccination would be expected to reduce the prevalence of infective persons in population A. 
However, mixing patterns might change because of belief in the protective effect of the vaccine. The prevalence 
of infection in the contacts of vaccinated people in population A, PA,(t), might be higher than the prevalence of 
infectives among the contacts of the unvaccinated people in population A, PA,(t). Similarly, the contact rates 
might change in the people wha are vaccinated. Thus, the estimated indirect and total effects based on the 
unconditional parameters can summarize several different consequences of vaccination beyond the biologic 
consequences. 

Note that conducting a trial that includes several Although the direct protective efficacy is only 0.25, 
different populations or communities does not pre- the combined effect of vaccination and the distribution 
clude studying the efficacy of the vaccines within of vaccinations in the population produces the total 
populations. A phase 111 vaccine trial can be designed protective effect relative to the unvaccinated popula- 
to answer several questions at the same time. Random- tion of 0.50. 
ization within a population can be used to answer 
efficacy questions, while comparison across popula- ~ ~ , ~ , , i ~ ~ ~  with prevented fractions in 
tions can be used to evaluate the indirect and overall noninfectious diseases 
effects of vaccination. Consider a study of vaccination . 
in several populations designed to measure the indirect 
and overall effects of vaccination with different levels 
of coverage in each population. Within each popula- 
tion, a comparison can be made of the vaccinated 
portions of the population with the unvaccinated. If 
information is gathered within the populations on ac- 
tual contacts, the effect of the vaccine on infectious- 
ness as well as on susceptibility could be evaluated. 
The most important consideration in designing a vac- 
cine study is to be clear about the effect(s) or ques- 
tion(~) of interest and the level of information that can 
be gathered. Then the parameter of interest and the 
comparison populations should be chosen to provide 
the effect measures of interest. 

In the preceding example, within population A, we 
could have been conducting a randomized phase 111 
vaccine trial and used the relative hazards in the vac- 
cinated and unvaccinated portions of the population to 
estimate vaccine efficacy, assuming that the exposure 
to infection in the two groups remained equal after 
randomization: 
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The unconditional vaccine effect parameters dis- 
cussed above are analogous to the family of prevented 
fraction parameters discussed by Greenland and 
Robins (1, 2), with some essential differences. In the 
work of Greenland and Robins, the prevented fraction 
in the exposed is estimated by comparing the cumu- 
lative incidence in the exposed individuals with the 
cumulative incidence in the unexposed individuals in a 
study design similar to study design I with level IV 
information. The unexposed group is supposed to rep- 
resent what would have happened to the exposed 
group had it not been exposed. The number of pre- 
vented cases in the exposed can be estimated from the 
prevented fraction based on the cumulative incidence, 
if it is known how many people were exposed. A 
similar argument can be made for the prevented hazard 
fraction, though the number of cases prevented is not 
so easily estimated. Under dependent happenings, 
however, in study design I, in population A, for ex- 
ample, the number of cases in the unvaccinated indi- 
viduals does not represent the number of cases that 
would have occurred in the unvaccinated individuals 
had the vaccination program not been implemented. If 
vaccination is widespread enough, the cumulative in- 
cidence in the unvaccinated group will usually be 
lower in the presence of the vaccination program than 
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it would be if no one had been vaccinated. Thus, the 
estimated number of cases prevented generally will 
underestimate the actual number of cases prevented in 
the vaccinated group if this figure is calculated using 
methods designed for noninfectious diseases, as in 
study design I and in Greenland and Robins (1, 2). 

The comparison needs to be made between the cu- 
mulative incidence in the vaccinated group and what 
the cumulative incidence would have been in the un- 
vaccinated group if no vaccination program had been 
in place, as in study design IIB. A similar argument 
applies to estimation of the prevented hazard fraction. 
Thus, the conceptual framework of the table goes 
beyond simply extending the family of parameters 
discussed by Greenland and Robins (1, 2) in two 
dimensions; it also helps to clarify the similarities and 
differences between the families of prevented fraction 
parameters in infectious diseases versus noninfectious 
diseases. 

Reduction in individual infectiousness versus 
indirect effects 

There is an important difference between estimating 
the reduction in individual infectiousness based on the 
transmission probability and estimating the indirect 
effects based on unconditional parameters such as 
hazard rates or cumulative incidence. The uncondi- 
tional indirect effect in study design IIA results from 
the decrease in the exposure to the infectious agent, 
because 1) fewer people are infected due to reduced 
transmission and 2) those vaccinated people who be- 
come infected might be less infectious. The reduction 
in infectiousness as estimated using the per-contact 
reduction in transmission probability does not take 
into account the lack of infectiousness in people who 
did not become infected at all because of vaccination. 
We cannot know who would have become infected 
without the vaccination program. Thus, with the trans- 
mission probability, we obtain a truncated estimate of 
the reduction in infectiousness, while the indirect ef- 
fect estimate takes decreased exposure to the infec- 
tious agent for a combination of reasons into account. 

OVERALL EFFECTIVENESS OF VACCINATION 
PROGRAMS WE,,,) 

Considering further the study designs for dependent 
happenings (figure 2), the overall public health benefit 
of a vaccination program in a population compared 
with no vaccination is the weighted average of the 
outcomes in the vaccinated and unvaccinated persons 
at risk in population A compared with the outcomes in 
persons at risk in population B. The overall effect 
depends on the fraction f that is vaccinated in popula- 

tion A. These study designs of type III are represented 
by the sixth column in table 1. Suppose, in the above 
example where AAi(t) = 0.06 and AA,(t) = 0.08, that 
75 percent of the people are vaccinated. The overall 
estimated incidence in population A would be 0.065. 
The overall public health effectiveness of the vaccina- 
tion program in reducing the incidence of infection is 

The estimated overall effect lies between the indirect 
(IIA) and total (IIB) effects of the vaccination pro- 
gram. Halloran and Struchiner (6) discuss the study 
designs for dependent happenings in more detail. 

Note that it would be possible to estimate the overall 
incidence in population A without having to establish 
who or what fraction had been vaccinated or estimat- 
ing the indirect or total effects in the  vaccinated and 
unvaccinated subpopulations. Evaluation of the over- 
all effects of a vaccination program in a population 
does not necessarily depend on the mixing patterns 
within the population, if just the effectiveness in the 
entire population is of interest. However, the actual 
overall effectiveness of a program will depend heavily 
on the mixing patterns and the allocation of the vac- 
cine among the different groups. Generally, targeting 
vaccination to high-transmission groups will have a 
greater effect. In addition, if one of the measures of 
interest during a vaccine trial is the overall effective- 
ness of vaccination, the design of the trial could de- 
pend on the mixing patterns and the ultimate question 
of interest. For example, suppose a trial is designed to 
estimate the efficacy of a vaccine in preschool-age 
children but the overall effects of the vaccination are 
also to be evaluated. If most transmission occurs 
among school-age children and from school-age chil- 
dren to preschool-age children, then, to evaluate the 
maximum overall effects or to understand the long- 
term potential overall effects of vaccination, the 
school-age children might need to be vaccinated even 
though they are not part of the efficacy trial. If most 
transmission occurs among preschool-age children, 
this would not be important. On the other hand, vac- 
cination of either the school-age children or the 
preschool-age children might reduce the number of 
events substantially, impairing evaluation of the effi- 
cacy. This and many other tradeoffs must be made 
when designing trials to answer more than one ques- 
tion at a time. Disentangling the direct effects from the 
indirect effects of vaccines will not always be straight- 
forward. 
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Example 

Monto et al. (30) estimated both the protective ef- 
ficacy and the overall effect of an influenza vaccina- 
tion program. They vaccinated 85 percent of the 
school-age children in Tecumseh, Michigan, against 
Hong Kong influenza just before the epidemic of 
1968. The 10-week epidemic period was November 
17, 1968, to January 26, 1969. The weekly mean 
~nflueuza illness rates in vaccinated and unvaccinated 
children were 0.072 and 0.090, respectively. This 1 yields an approximate estimate of vaccine efficacy of 
0.20 (i.e., VE, - 1 - (0.07U0.090) = 0.20), which is 
rather low. The overall influenza illness attack rate in 
Tecumseh for the epidemic period was 0.14, while the 
adjusted overall influenza attack rate in unvaccinated, 
neighboring Adrian, Michigan, was 0.42 for the same 
period. Using the methods of study design JII, the 

I oirerall effectiveness of vaccinating 85 percent of 
I Tecumseh's schoolchildren is estimated to have been 

0.57. 
The use of study designs similar to design III, com- 

paring the overall effects of interventions across pop- 
~:lations, has been common in infectious disease epi- 

1 demiology for a long time, but it is becoming more 
widespread with the integration of more current epi- 
demiologic and statistical methods (31-33). Hayes et 1 al. (34) discuss matching on communities for the ran- 
domization and analysis scheme. A design similar to , 1 that of study design 1II is being used cuqently in a 
cholera vaccine effectiveness trial in more than 20 
communities (J. Clemens, National Institutes of 
Health, personal communication, 1997) by dividing 
each community in half geographically and vaccinat- 
ing all of the individuals in just one half. A similar 
design will soon be used in community trials of influ- 
enza vaccines in matched day-care centers. Evaluation 
of malaria transmission-blocking vaccines that have 
only indirect effects in humans will require evaluation 
comparing separate populations. Many of the lessons 
from group-randomized designs will be applicable, 
with special consideration of the dependence of events 
in infectious diseases. Study designs 11.4 and IIB, 
which examine the effects in the vaccinated or unvac- 
cinated subpopulations, have been less common. 
Hopefully they will become an integral part of vaccine 
evaluation as investigators become more aware of the 
differences among the population-level effects in the 
different groups and combine efficacy and effective- 
ness evaluation in the same study. 

Basic reproductive number (Rd 

Another important parameter of infectious disease 
epidemiology is the basic reproductive number, R,. 
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With microparasitic infectious agents, such as viruses, 
bacteria, and small parasites, the R, is the number of 
new infectives produced by one infectious person in a 
completely susceptible population during his or her 
period of infectiousness (35). Similar to the hazard 
rate, it can be thought of as the product of several 
components of the transmission system, including the 
transmission probability, the rate of contact, and the 
duration of infectiousness. The duration of infectious- 
ness in the expression for R, replaces the prevalenceof 
infectives in the expression for the hazard rate. Al- 
though it is not included in table l ,  R, is important in 
understanding the population dynamics of an infec- 
tious agent and the public health effects of interven- 
tion. Since a vaccinated person has only a fraction of 
the transmission probability and possibly a shorter 
duration of infectiousness, a vaccinated person would 
not be transmission-dynamically equivalent to a na- 
ively susceptible person. The fractional contribution of 
a vaccinated person to Ro compared with the conti- 
bution of an unvaccinated individual is called the 
"naive susceptible equivalent" (25). The biologic ef- - - 
feet of the vatcine can reduce either the transmission 

5 

probability per contact or the duration of infectious- 3 ) 
uess. Thus, estimates of the effect of vaccination on 
infectiousness, susceptibility, or changes in the dura- z 
tion of infectiousness could provide some information I 

on the effect of vaccination on R,. For example, if ! 

everyone. in a population were vaccinated and the 
reduction in susceptibility were 0.50, the reduction in 
infectiousness were 0.30, and the reduction in the 
duration of infectiousness were 0.60, a vaccinated 
person would be the naive susceptible equivalent of 
0.09 of an unvaccinated person. The reproductive 
number in the vaccinated population would he 0.09 
times the original R,. A vaccine effectiveness measure 
can also be based on 1 minus the relative basic repro- 
ductive numbers in two groups, depending on the 
choice of comparison populations. 

SUMMARY 

We have presented a systematic framework of study 
designs for evaluating different effects of vaccination 
and vaccination programs depending on the choice of 
comparison groups and parameter of effect (table 1). 
We have found this framework useful in organizing 
our own thoughts and in discussions with other col- 
leagues in designing studies to evaluate vaccination. 
We hope that others find it useful and that it can 
contribute to more clarity in the design and analysis of 
studies of the effects of vaccination on individuals and 
in populations. Although there are several similarities 
to the family of prevented risk parameters discussed 
by Greenland and Robins (1, 2), the dependent hap- 
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pening structure of infectious diseases adds more lev- 
els and types of parameters. 

In the third column of table 1, the aim of the studies 
is to estimate the protective efficacy of vaccination in 
individuals. This column is divided into two parts, 
with the amount of information required for estimation 
increasing from bottom to top (14). This column pro- 
vides an overview of what is estimable based on the 
type of data collected in the study. The lower part 
contains vaccine efficacy based on the unconditional 
parameters incidence rate ratio (VE,,), hazard rate 
ratio (VE,,a, and cumulative incidence ratio (VE,,,), 
which do not require information on actual exposure to 
infection. These are study designs of type I. If expo- 
sure to infection is not equal in the two comparison 
groups, these designs estimate the combined effects of 
unequal exposure and the direct biologic protective 
effects of vaccination. The top row represents the 
conditional parameters, such as the transmission prob- 
ability or secondary attack rate. While the third col- 
umn represents the design needed to estimate the vac- 
cine's effect on susceptibility, VE,,,, the fourth and 
fifth columns represent designs for the effect on in- 
fectiousness, VE,,,, and the combined effects on the 
two, VG,,, respectively. 

To measure the indirect, total, or overall public 
health effects of widespread vaccination, it is neces- 
sary to compare the effects of vaccination programs in 
different populations on the parameters of interest. 
The choice of subpopulations within the different pop- 
ulations determines whether one is measuring the in- 
direct effects, VE, (study design IIA), the total ef- 
fects, VE, (study design IIB), or the overall effects 
VE, (study design 110 of the vaccination program. 
We have emphasized that studies can be designed to 
answer more than one question at a time. 

The fundamental relation between the aspects of 
exposure to infection and susceptibility to the rate of 
events clarifies the difference between biologic as- 
pects of the transmission process and the contact as- 
pects. The hierarchy of parameters also provides a 
framework for thinking about vaccine efficacy studies 
based on different parameters, especially the condi- 
tional versus unconditional parameters, as a missing- 
data or errors-in-variables problem (4, 7, 36). 

We have not discussed vaccine efficacy based on 
difference parameters here. These were considered by 
Greenwood and Yule (8) as early as 1915. Difference 
estimates depend on the absolute incidence in the 
unvaccinated group, and provide more evidence of the 
possible public health relevance of vaccines, even 
when measured within a single population. Table 1 
could be entirely rewritten for difference parameters. 
The parameters listed in table 1 are not exhaustive, but 

they represent several of the commonly used mea- 
sures. Many other outcome measures could be used t~ 
estimate the effects of a vaccine or a vaccination 
program. These include average age of f r s t  infection 
and time-to-event as in accelerated failure time mod- 
els, both of which are related to the hazard rate. 
Case-control studies are represented by the framework 
shown here whenever the odds ratio estimator is an 
approximation of one of the relative risk parameters of 
table 1. 

Increased attention is being given to the design and 
analysis of vaccine evaluation studies, both pre- and 
postlicensure. This framework should prove useful in 
providing a wider and more precise vocabulary for 
expressing the various kinds of effects being measured 
and the types of studies needed to estimate the vacci- 
nation effects of interest. 
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