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Summary. Consider a placebo-controlled preventive HIV vaccine efficacy trial. An

HIV amino acid sequence is measured from each volunteer who acquires HIV, and

these sequences are aligned together with the reference HIV sequence represented in

the vaccine. We develop genome scanning methods to identify positions at which the

amino acids in infected vaccine recipient sequences either (A) are more divergent from

the reference amino acid than the amino acids in infected placebo recipient sequences;

or (B) have a different frequency distribution than the placebo sequences, irrespective of

a reference amino acid. We consider t-test-type statistics for problem A and Euclidean,

Mahalanobis, and Kullback-Leibler-type statistics for problem B. The test statistics

incorporate weights to reflect biological information contained in different amino acid

positions and mismatches. Position-specific p-values are obtained by approximating the

null distribution of the statistics either by a permutation procedure or by nonparametric

estimation. A permutation method is used to estimate a cut-off p-value to control

the per comparison error rate at a pre-specified level. The methods are examined in

simulations and are applied to two HIV examples. The methods for problem B address

the general problem of comparing discrete frequency distributions between groups in

a high-dimensional data setting.
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1. Introduction

The extensive genetic diversity of the human immunodeficiency virus (HIV) poses

a formidable challenge to the development of an efficacious preventive HIV vaccine

(HVTN, 2006). An HIV vaccine may prevent infections with viruses genetically simi-

lar to a virus represented in the vaccine, but fail against genetically dissimilar viruses.

Data on the amino acid sequences of the viruses that infect participants in preventive

HIV vaccine efficacy trials can be used to assess how the efficacy of the candidate

vaccine depends on genetic mismatching of exposing viruses. “Sieve analysis” meth-

ods have been developed for this purpose, which are based on comparing the genetic

distances (to the vaccine sequence) of the sequences of infected vaccine recipients to

the genetic distances of the sequences of infected placebo recipients (Gilbert, Self,

and Ashby, 1998). Previously developed sieve analysis methods considered “low di-

mensional” cases in which viruses are classified exhaustively by a small number of

K genotypes/phenotypes, or are ordered by K scalar summary measures of distance.

However, there are many thousands of distinct HIV genotypes as defined by amino

acid sequence. Consequently, the problem of identifying sequence positions that dis-

tinguish the two sets of infecting viruses is a high dimensional data problem, in which

the number of variables (sequence positions) exceeds the number of observations (in-

fected subjects). In a typical efficacy trial, 100-400 subjects are infected and 500-3300

sequence positions are studied.

The data set available from an efficacy trial that we consider is the aligned HIV

amino acid sequences sampled from infected vaccine and placebo recipients, with one
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sequence per subject. We develop techniques for “genome scanning,” whereby at each

position, the amino acids in the two aligned sequence sets are compared to the amino

acid at the corresponding position in the reference sequence, and the goal is to identify

“signature positions” (see Figure 1). A signature position is a position at which vac-

cinee sequences exhibit significantly greater divergence from the reference amino acid

than placebo sequences. Identifying a signature position may suggest that amino acid

changes in that position were required in order for HIV to elude the vaccine-induced

immune response and hence establish infection. For example, certain N-linked glycosy-

lation positions in the glycoprotein 120 (gp120) region of HIV (gp120 is composed of a

protein and a carbohydrate and is exposed on the surface of the HIV envelope), appear

critically important for HIV to evade neutralization (Wei et al., 2003), and the vaccine

may fail to protect against viruses with certain mutant amino acids in these positions.

Finding a signature position could imply the necessity to insert multiple different HIV

strains into the vaccine, with amino acid sequences that match contemporary circulat-

ing HIV strains, in order for the vaccine to protect broadly. Therefore the results of

genome scanning analyses can guide the design of new vaccines.

A “signature position” may alternatively be defined as a position at which the

amino acid frequency distributions differ among the two sequence sets, irrespective

of any reference amino acid. We develop methodology for detecting both types of

signature positions. Henceforth we refer to signature positions involving (not involving)

a reference amino acid as type A (type B) signatures.

The data set we analyze derives from the first HIV vaccine efficacy trial (Flynn

et al., 2005). Healthy HIV uninfected volunteers were randomized to receive vac-

cine (Nv = 3598) or placebo (Np = 1805) and were tested for HIV infection every 6

months for 36 months. The vaccine was a recombinant envelope gp120 subunit vaccine,
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designed to prevent acquisition of HIV by inducing antibodies that could bind to neu-

tralizing epitopes on HIV gp120 and destroy the virus before it infects host cells. The

vaccine did not prevent HIV infection, with a similar rate of infection in the vaccine

(241/3598 = 6.7%) and placebo (127/1805 = 7.0%) groups. For 336 of the 368 infected

participants three HIV isolates were sampled at the time of HIV infection detection,

and the amino acid sequence of gp120 was determined by direct translation of the DNA

sequence for each isolate. Sequences from the same individual were highly similar, and

we considered one randomly selected sequence from each subject. The 336 gp120 se-

quences were aligned together with the two gp120 sequences that were represented in

the vaccine construct, named MN and GNE8. The alignment was constructed using

ClustalX v.1.81 (Thompson et al., 1997) and manually edited. Since GNE8 was sam-

pled more recently and was closer genetically to the infecting sequences, it was used

as the reference sequence in all analyses. There are n1 = 217 vaccine group sequences

and n2 = 119 placebo group sequences, each of length p = 581.

Consideration of one of the most commonly used methods for studying HIV signa-

ture positions, VESPA (Korber and Myers, 1992; http://hiv-web.lanl.gov/content/hiv-

db/mainpage.html), demonstrates the need for new methodology. VESPA is purely

descriptive- it evaluates potential type B signatures by comparing the frequency of the

most common amino acid at positions between two sequence sets, without considering

the particular amino acids involved, and without using a probabilistic framework to

control error rates. Our approach to the scanning analysis divides into three parts:

1. For each position, construct a two-sample test statistic that compares amino acid

divergences (type A) or frequencies (type B) between the two sequence sets;

2. Approximate the null distribution of the test statistics across the set of studied

amino acid positions, and obtain position-specific p-values;
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3. Determine the set of signature positions as those with p-value less than a cut-off

pcut, estimated to control a false positive error rate at a pre-specified level.

For 1., various statistics for evaluating amino acid sequence differences have re-

cently been proposed, based on standardized Euclidean distance and Kullback-Leibler

discrepency (Wu, Hsieh, and Li, 2001), and Mahalanobis distance (Kowalski, Pagano,

and DeGruttola, 2002). These metrics/discrepencies were developed in different con-

texts than genome scanning analysis, so their relative utility for our application is

unknown. Accordingly we develop and compare test statistics based on all three of

these approaches, and for problem A, generalize the Euclidean-type statistics to in-

corporate weight functions that can make amino acid distances more immunologically

relevant and thus potentially more predictive of vaccine efficacy.

For 2., we consider two approaches to approximating the null distributions. The

first is a permutation procedure that only uses information at individual positions.

The second approach, following Pan (2003), pools information across all positions and

estimates the null distributions of the test statistics directly and nonparametrically.

Efron (2004) also pointed out that a large number of tests presents an opportunity to

estimate the null distribution directly as an approach to coping with high dimensional

data. We apply both approaches to obtain unadjusted p-values for each of the positions.

For 3., we apply a permutation method to estimate the cut-off p-value pcut.

This article is organized as follows. Section 2 develops four new test statistics

for identifying type B signature positions and two new test statistics for identifying

type A signature positions. Section 3 describes the procedures for obtaining p-values

and the method for estimating the cut-off p-value, and describes four slightly modified

test statistics that are suitable for use with the nonparametric estimation method for

deriving p-values. Section 4 compares the performance of the various tests in numerical
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studies, Section 5 presents two examples, and Section 6 gives concluding remarks.

2. Genome Scanning Methods for Identifying Signature Positions

2.1 Preliminaries

The data available for genome scanning analysis are n1 + n2 aligned amino acid

sequences, one from each infected trial participant (n1 vaccine arm; n2 placebo arm),

all of which are p amino acids long. For problem A the alignment also includes the

reference sequence, which is the HIV sequence represented in the vaccine construct.

The amino acids compose HIV proteins, and the analysis considers the set of positions

that constitute the HIV proteins expressed by the tested vaccine. Current vaccine

candidates express proteins spanning p ∼ 500 − 2600 positions (HVTN, 2006).

For the ith position and the jth sequence in the kth group, k = 1, 2, we define a

vector of indicators to represent the 20 amino acids possible at position i, including the

possibility of a gap which may have arisen in the alignment. Specifically, let Ykj(i) =

(Ykj(i, 1), · · · , Ykj(i, 21))T , where Ykj(i, a) is 1 if amino acid a is at position i and 0

otherwise, a = 1, · · · , 20 (a = 1 represents A, Alanine; a = 2 represents C, Cysteine;

and so on in the standard order), and a = 21 represents a gap. Similarly define

Yref(i) = (Yref(i, 1), · · · , Yref(i, 21))T for the reference sequence, and let r(i) denote the

amino acid at position i in the reference sequence. The vector Ykj(i) is a 21-nomial

random variable with response probability vector pk(i) = (pk(i, 1), · · · , pk(i, 21))T . The

MLE of pk(i) is p̂k(i) = (Ȳk(i, 1), · · · , Ȳk(i, 21))T , where Ȳk(i, a) = n−1
k

∑nk
j=1 Ykj(i, a).

The biological significance of a difference in two amino acids at a position depends

on the particular amino acids being compared (e.g., T vs Y). There is a vast literature

on how to weight the 20 × 19 = 380 different amino acid mismatches, by physico-

chemical or evolutionary properties, and for problem A our methods incorporate a

weight matrix to reflect such information. Let M be a 21×21 matrix with nonnegative
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entries, with (a, a′)th element the weight/score summarizing dissimilarity of amino

acids a and a′. The distance between the amino acid at position i in the jth sequence

of group k to the amino acid at position i in the reference sequence is the appropriate

element of M , computed as dkj(i) = Ykj(i)
T MYref(i). The simplest matrix M = J − I,

with J the 21 by 21 matrix of ones and I the identity matrix; with this matrix dkj(i) =

0 (1) if the two amino acids under comparison are the same (different).

2.2 Two-sample Test Statistics for Problem B (No Reference Sequence)

For each position i, test statistics are developed to evaluate HB
0 (i) : p1(i) = p2(i)

versus HB
1 (i) : p1(i) �= p2(i). Testing HB

0 (i) is equivalent to the well-known problem

of testing for independence in a two-way (2 × 21) contingency table. Fisher’s exact

test applies to this problem. However, it may not be most powerful for sequence data

sets collected in practice, and the simulations verify that some of the new tests provide

greater power than Fisher’s exact test.

Our first three proposed test statistics are based on summing weighted differences

{p̂1(i, a) − p̂2(i, a)}2 over a = 1, · · · , 21, with three different approaches to standardiz-

ing/studentizing the summands. The first two statistics are related to Wu, Hsieh, and

Li’s (2001) Euclidean-distance based statistics; the first is unstandardized (a numer-

ator statistic) and the second divides each summand by its estimated variance. For

high-dimensional data sets with small sample sizes the noise in variance estimation can

erode power, potentially rendering the simpler numerator statistic more powerful (c.f.,

Pollard and van der Laan, 2003). Related to Wu, Hsieh, and Li’s (2001) Mahalanobis-

distance based statistic, the third “fully standardized” statistic standardizes using the

inverse of a nonparametric estimate of the 21 × 21 covariance matrix of p̂1(i) − p̂2(i).

Heuristically these three statistics incorporate a hierarchy of degrees of regularization

to dampen noise due to variance-covariance estimation: the first statistic employs full
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regularization (no variance estimation), the third statistic employs no regularization

(estimate the entire variance-covariance matrix), and the second statistic employs in-

termediate regularization (estimate the variances but set all covariances to zero). For

HIV sequence data sets it is unknown which test performs best, and accordingly our

simulations are designed to address this question.

In addition, we consider a test statistic based on Kullback-Leibler discrepency,

which is approximately an expected weighted log likelihood ratio comparing p̂1(i) and

p̂2(i). The Kullback-Leibler discrepency has been widely studied and has well-known

optimality properties closely related to those of likelihood ratio tests (c.f., Eguchi and

Copas, 2002), which raises the conjecture that it will provide relatively high power.

For problem B our Euclidian-type statistics are defined by

ZB
E1(i) ≡

21∑
a=1

{p̂1(i, a) − p̂2(i, a)}2 I(v̂(i, a) > 0),

ZB
E2(i) ≡

21∑
a=1

{(p̂1(i, a) − p̂2(i, a))/v̂(i, a)}2 I(v̂(i, a) > 0), (1)

where v̂(i, a)2 estimates V ar(p̂1(i, a) − p̂2(i, a)):

v̂(i, a)2 =
(n1 − 1)

(n − 2)
V̂ ar(p̂1(i, a) +

(n2 − 1)

(n − 2)
V̂ ar(p̂2(i, a)),

with V̂ ar(p̂k(i, a)) = p̂k(i, a)(1 − p̂k(i, a))/nk, k = 1, 2.

The third statistic is given by

ZB
M(i) ≡ (p̂1(i) − p̂2(i))

T Ŝ−(i)(p̂1(i) − p̂2(i)), (2)

where Ŝ−(i) is the Moore-Penrose generalized inverse of Ŝ(i) = [(n1 − 1)Ŝ1(i) + (n2 −
1)Ŝ2(i)]/(n − 2). Here Ŝk(i) = diag(p̂k(i)) − p̂k(i)p̂k(i)

T is the multinomial MLE of

the 21× 21 covariance matrix Sk(i) = diag(pk(i))− pk(i)pk(i)
T . The matrix Ŝ−(i) can

be computed by the following steps: (1) Calculate the singular value decomposition
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of Ŝ(i), Ŝ(i) = Udiag(d)V T , where U and V are orthogonal matrices and diag(d) is a

diagonal matrix with diagonal vector d; (2) Set d∗(a) = I(d(a) > 0)/d(a), a = 1, · · · , 21;

(3) Set Ŝ−(i) = V diag(d∗)UT . The statistic ZB
M(i) is the Mahalanobis statistic that has

been used extensively in many applications, although more commonly for quantitative

data, not multinomial data (cf., Rao and Chakraborty, 1991).

The fourth statistic, based on Kullback-Leibler discrepency, is relatively easy to

compute. For position i, let

ZB
KL(i) ≡

21∑
a=1

I(p̂1(i, a)p̂2(i, a) > 0)p̂1(i, a)log

{
p̂1(i, a)

p̂2(i, a)

}
(3)

+
21∑

a=1

I(p̂1(i, a)p̂2(i, a) = 0)
(
p̂1(i, a) + n−1

1

)
log

{
p̂1(i, a) + n−1

1

p̂2(i, a) + n−1
2

}
.

Note that the standard Kullback-Leibler discrepency for comparing p̂1(i) and p̂2(i) is∑21
a=1 p̂1(i, a)log{p̂1(i, a)/p̂2(i, a)}. If all possible amino acids and the gap character are

not represented in group 2 sequences at position i, then this statistic equals infinity.

Following the suggestion of Wu, Hsieh, and Li (2001), our statistic ZB
KL(i) defined in

(3) is modified to keep it finite.

2.3 Two-sample Test Statistics for Problem A (With a Reference Sequence)

To evaluate a type A signature at position i, we develop tests for HA
0 (i) : p1(i, r(i)) =

p2(i, r(i)) versus HA
1 (i) : p1(i, r(i)) �= p2(i, r(i)), which assesses equal frequencies of the

reference amino acid at position i in the two sequence sets. We base tests of HA
0 (i)

on a comparison of average distances dkj(i) = Ykj(i)
T MYref(i) (defined at the end of

Section 2.1) between groups k = 1 and 2, with diag(M) = 0. These averages can be

written as d̄k(i) = n−1
k

∑nk
j=1 dkj(i) =

∑21
a=1 M(a, r(i))p̂k(i, a). Parallel to the type B

statistics ZB
E1(i) and ZB

E2(i), we consider unstandardized and standardized statistics,

ZA
1 (i) ≡ d̄1(i) − d̄2(i),

ZA
2 (i) ≡

{
d̄1(i) − d̄2(i)

}
/s(i), (4)
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where s(i) = [{(n1−1)/(n−2)}s2
1(i)+{(n2−1)/(n−2)}s2

2(i)]
1/2, with s2

k(i) the sample

variance of dkj(i), j = 1, · · · , nk, for k = 1, 2.

3. Judging Statistical Significance

3.1 Permutation-based Unadjusted p-values (Marginal- No Pooling)

To judge statistical significance of the p tests, first nominal (unadjusted) position-

specific p-values are computed. Although analytic p-values can be computed for most

of the test statistics, to avoid the requirement of large sample sizes and to create a

uniform approach for the different statistics, we use a permutation procedure to de-

termine p-values (except for Fisher’s exact test for which we use analytic p-values).

Specifically, Bperm data sets, each of n = n1 + n2 sequences, are generated by indepen-

dently permuting the group membership labels of the whole sequences. The p-value for

position i is calculated as the fraction of the test statistics computed using the Bperm

permuted data sets that equal or exceed the value of the original test statistic.

3.2 Nonparametric Estimated Null Distribution-based Unadjusted p-values (Pooling)

In the second (pooling) approach to computing position-specific p-values, slightly

modified versions of ZB
Em(i) and ZA

m(i) are needed, m = 1, 2, as described below. These

modified statistics incorporate a position-specific weight w1(i), i = 1, · · · , p, which can

be used to reflect biological information. For example, positions could be weighted

by their conservancy (a position is relatively conserved if most sequences contain the

same amino acid at the position), since conserved positions may be more functionally or

structurally important than variable positions. For exploratory analyses, where the aim

is to generate hypotheses about positions that warrant further biological examination,

equal weights w1(i) = 1 may be recommended, because they prevent subjective biases

from influencing the results, and they may be agreed upon broadly among investigators.

For these reasons equal weights are used in the Examples.
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To develop the pooling approach, we follow Pan’s (2003) clever idea for how to

directly nonparametrically estimate the null distribution of hundreds of t-statistics.

Assume that under all H0(i)’s, the test statistics of interest Z(i) have the same distri-

bution for i = 1, · · · , p. For each group of sequences separately, randomly permute the

sequences into two (almost) equally-sized pieces, labeled sets Jk1, Jk2, k = 1, 2. Define

nk2 = nk1 if nk = 2nk1 and nk2 = nk1 + 1 otherwise, k = 1, 2. To evaluate type B

signatures, the test statistic ZB
E1(i) of (1) is modified (slightly) to ZBsplit

E1 (i) = w1(i)×
21∑

a=1

{(p̂11(i, a) + p̂12(i, a))/2 − (p̂21(i, a) + p̂22(i, a))/2}2 I(v̂(i, a) > 0),

where p̂k1(i, a) = n−1
k1

∑nk
j=1 Ykj(i, a)I(j ∈ Jk1) averages the Ykj(·) in the first permuted

half of sample k and similarly p̂k2(i, a) averages the Ykj(·) in the second permuted

half. The statistic ZBsplit
E1 (i) approximately equals ZB

E1(i), and motivates a statistic

that estimates its null distribution: zBsplit
E1 (i) ≡ w1(i)×

21∑
a=1

{(p̂11(i, a) − p̂12(i, a))/2 + (p̂21(i, a) − p̂22(i, a))/2}2 I(v̂(i, a) > 0).

Because the numerator of zBsplit
E1 (i) is the sum of within-sample differences, its mean is

zero, and zBsplit
E1 (i) can be expected to approximate the null distribution of ZBsplit

E1 (i).

Split statistics ZBsplit
E2 (i) and zBsplit

E2 (i) are formed in the same way, with v̂1(i, a)2 +

v̂2(i, a)2 added to the denominator of the summand of each statistic, where

v̂k(i, a)2 =
(nk1 − 1)

(nk − 2)
V̂ ar(p̂k1(i, a) +

(nk2 − 1)

(nk − 2)
V̂ ar(p̂k2(i, a)),

with V̂ ar(p̂kl(i, a)) = p̂kl(i, a)(1 − p̂kl(i, a))/nkl, k = 1, 2; l = 1, 2.

To obtain p-values, once ZBsplit
Em (i) is computed, each group of sequences is again

separately randomly permuted into two halves, and zBsplit
Em (i) is computed. Based on

Bperm
split separate permutations z

Bsplit(b)
Em (i) is computed Bperm

split times, b = 1, · · · , Bperm
split .

For position i the p-value is then pi = Ni/(Bperm
split × p), where Ni is the number of the
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test statistics z
Bsplit(b)
Em (i′) that equal or exceed ZBsplit

Em (i), pooling over i′ = 1, · · · , p and

b = 1, · · · , Bperm
split . We also considered a split-verson of ZB

M(i); however since it performed

poorly in simulations we do not discuss it further. A computational advantage of the

split test statistics is that setting Bperm
split = 5 achieves good performance, as verified

in the simulations. A small number of permutations suffices because of the pooling of

information across positions.

For developing split tests of type A signatures, set d̄k1(i) = n−1
k1

∑nk
j=1 dkj(i)

I(j ∈ Jk1) and d̄k2(i) = n−1
k2

∑nk
j=1 dkj(i)I(j ∈ Jk2), k = 1, 2. Define the test statistic

ZAsplit
1 (i) ≡ w1(i)

{
(d̄11(i) + d̄12(i))/2 − (d̄21(i) + d̄22(i))/2

}
.

The null distribution of ZAsplit
1 (i) can be approximated by

zAsplit
1 (i) ≡ w1(i)

{
(d̄11(i) − d̄12(i))/2 + (d̄21(i) − d̄22(i))/2

}
.

Similar statistics ZAsplit
2 (i) and zAsplit

2 (i) are formed by placing (τ̂1(i)
2 + τ̂2(i)

2)1/2 in the

denominator of each statistic, where τ̂k(i)
2 = {(nk1 − 1)/(nk − 2)}s2

k1(i) + {(nk2 − 1)/

(nk−2)}s2
k2(i), with s2

kl(i) the sample variance of {dkj(i) : j ∈ Jkl}, for k = 1, 2; l = 1, 2.

Note that the position weights w1(i) affect the p-values because the pooling method

is used; weights placed in front of the non-split statistics described in Section 2 would

not affect the permutation-based p-values, because they are computed marginally.

We also studied modified versions of the statistics ZB
E2(i), Z

B
M(i), and ZBsplit

E2 (i) that

incorporate a small positive constant in the denominator to stabilize the statistic (see

Web Appendix A). In simulations these tests had lower power than the tests described

above, and therefore are not considered further.

3.3 Permutation-Based Control of the Per Comparison Error Rate

We use a permutation-based method that requires no distributional assumptions

to estimate the number of false positive rejections V at some pre-fixed number. This
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allows estimating the per comparison error rate (PCER) by V̂ /p, and the false discovery

rate by I(R > 0)V̂ /R, where R is the number of rejections. The estimate V̂ is computed

with the following steps: (1) Construct a permuted data set that satisfies H0(i) for all

i, by permuting whole sequences as described in Section 3.1; (2) Analyze the permuted

data set in the same way as the real data set, yielding unadjusted p-values for this

data set; (3) For a given fixed p-value threshold pcut, count the number of rejections,

which estimates V ; (4) Fine tune the choice of pcut such that V̂ = V ; (5) Reject H0(i)

if pi < pcut. The parameter V can be estimated more precisely by generating Nnull

permuted data sets in Step (1) and estimating V in Step (3) by the average number of

rejections over the Nnull data sets. In the simulations Nnull = 1 gave good performance.

3.4 Screening Out Highly Conserved Positions

There is little or no power to detect signatures at positions with very limited amino

acid variability. Therefore highly conserved positions are pre-screened out, based on

Tarone’s (1990) technique for improving power of the Bonferroni correction for discrete

data. Tarone’s (1990) procedure first screens out hypothesis tests using a simple al-

gorithm, leaving K ≤ p hypotheses to test, and second rejects the ith hypothesis if

the unadjusted p-value pi < α/K. If K < p this method can provide greater power

than the Bonferroni method. The procedure involves computing a minimum achievable

significance level α∗
i for each test, calculated from data pooled over the two groups.

Due to the complexity of computing the α∗
i for each of the new test statistics, for the

Simulations and Examples the α∗
i were computed based on Fisher’s exact test.

4. Simulation Study

4.1 Design of the Simulation Study

The simulation study is designed based on data from the first HIV vaccine efficacy

trial (Flynn et al., 2005) as described in the introduction. For each of the testing
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procedures developed above, plus Fisher’s exact test for comparison, simulations were

carried out to address the following questions: 1) What is the impact of the proportion

of positions with a true alternative hypothesis on the performance of the procedures?

2) How much power is there to detect signature positions for vaccine efficacy trials

of different sizes? 3) How do the position weights w1(i) influence performance of

the split test statistics? To address these questions, gp120 sequences for the infected

placebo group were simulated by randomly sampling with replacement n2 = 90 or 180

whole sequences from the 336 sequences. Assuming half as many vaccine recipients got

infected as placebo recipients (i.e., vaccine efficacy = 50%), n1 = 45 or 90 sequences

were generated for the infected vaccine group. These sequences were generated in

two steps. First, sequences were sampled in the same way as the placebo sequences.

Second, the HIV-specific Point Accepted Mutation (PAM) matrix developed by Nickle

et al. (2005) was used to create amino acid mutations in some of the vaccine group

sequences at the positions i where the alternative hypothesis is true. The PAM matrix

is 20 × 20, with the 20 amino acids running down the rows and across the columns

(see Web Table 1). Each nondiagonal entry of the PAM matrix corresponds to two

different amino acids, and equals the estimated probability that either of the amino

acids mutates into the other one, given a specified probability of any mutation at

all. The estimated probabilities of amino acid interchange were computed based on

thousands of observed mutations in HIV sequences (see Web Appendix B). We used

the PAM−25 matrix, which specifies a 25% chance that the amino acid at position i

in a vaccine recipients’ sequence will be mutated. Independently for each alternative

hypothesis position and each vaccine group sequence, the amino acid was mutated to

one of the 19 other amino acids according to the probabilities in the PAM-25 matrix.

Question 1) was addressed by setting 1%, 10% or 25% of the positions to have true
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alternatives, which amounts to 6, 58, or 145 of the 581 positions. We selected the

positions based on previous studies supporting that 39 of the 581 positions are im-

portant for HIV neutralization or CD4 co-receptor binding. Specifically, Wyatt et al.

(1998) identified 36 positions that are involved with CD4-binding, are in CD4-induced

epitopes, or that constitute a neutralization epitope defined by the monoclonal anti-

body 2G12. In addition, Wei et al. (2003) identified three positions at which amino

acid changes can sterically inhibit the accessibility of principal neutralizing epitopes

on the virus surface: 245, 274, 309. The positions, here and in the Example, are

numbered using the standard HXB2 strain numbering system (Kuiken et al., 2002).

For the 6 alternative positions, we selected the positions constituting the monoclonal

antibody 2G12 neutralization epitope (295, 297, 334, 386, 392, 397); for the 58 alter-

native positions we selected the 39 key positions considered above plus 19 randomly

sampled positions; and for the 145 alternative positions we used these 58 positions

plus 87 more randomly sampled positions. Question 2) was addressed by repeating

the simulation experiment for small (n1/n2 = 45/90 infections) and large (n1/n2 =

90/180 infections) efficacy trials. Question 3) was addressed by running simulations

with w1(i) = I(H0(i) true) + cI(H0(i) false) with c set as 2.0 or 0.5, which evalu-

ate the split test statistics when the true alternative hypotheses are upweighted 2-fold

(correctly incorporating prior knowledge) or downweighted 2-fold (incorrectly incorpo-

rating prior knowledge), respectively.

Except for results reported at the end of Section 4.2, positions in the split statistics

were weighted equally (w1(i) = 1). Tests were carried out at pre-specified PCER

= 0.01, 0.05, and 0.10, using Bperm = 1000 permutations to approximate unadjusted p-

values for the non-split statistics and Bperm
split = 5 permutations for the split statistics. In

Step (1) of the algorithm described in Section 3.3 Bnull = 1 data set is generated under
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the complete null hypothesis. The PCER, the false positive rate (FPR, the percentage

of true null positions rejected), and the true positive rate (TPR, the percentage of true

alternative hypotheses rejected) were estimated by averaging over 250 simulated vaccine

trials. The performance of the tests can be compared by plotting the estimated TPRs

versus FPRs. We also evaluated the PCER because this error rate can be controlled at

a fixed level in applications, whereas precise control of the FPR is difficult to achieve.

4.2 Simulation Results

For the type B tests, Figures 2-4 show the estimated TPRs versus FPRs, for the

scenarios where 1%, 10%, and 25% of the alternative hypotheses are true, respectively.

We make several observations. First, the Kullback-Leibler (ZB
KL(i)) and standardized

Euclidean (ZB
E2(i)) statistics are consistently most powerful. Their power advantage is

greatest at low FPRs. Second, when FPR ≥ 0.05, the power of ZB
KL(i) and ZB

E2(i) is

almost matched by that of ZB
E1(i) and ZBsplit

E2 (i). Third, the test based on ZB
M(i) has

relatively low power, especially when 1% of the alternative hypotheses are true. To ex-

plain the poor performance of the Mahalanobis-based statistic, note that the rank of the

estimated covariance matrix Ŝ(i) is often fairly high, which occurs because the gp120

region of HIV is highly variable. Consequently there are dozens of covariance terms to

estimate, but the sample size is quite limited for doing so. Therefore, we conjecture

that the noise in covariance estimation is causing the poor performance. To support

this conjecture, we repeated the simulations with all covariance estimates set to zero,

in which case the Mahalanobis-based statistic is very similar to the Euclidean-based

statistic ZB
E2(i). With this modification these two approaches performed similarly.

Fourth, the split statistics with true alternative positions upweighted have greater

TPRs and smaller FPRs than the equal-weighted methods; for example with m1/m2 =

45/90, PCER = 0.05 and 10% of the alternative hypotheses true, the TPR/FPR of
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the ZBsplit
E2 (i) tests is 0.94/0.015 compared to 0.90/0.051 for the unweighted tests. On

the other hand when the true alternative positions were downweighted, the opposite

results attains, with TPR/FPR of 0.74/0.068. These results provide preliminary “proof

of principle” that correct upweighting of positions can improve performance of the

split test statistics, but incorrect weighting can erode performance. This suggests that

weighting to incorporate biological knowledge should be done with caution. Fifth,

most of the estimated PCERs are close to their pre-specified values, showing that the

procedures correctly control the PCER (results not shown).

The four tests for type A signatures were evaluated using the same simulated data

sets. The estimated PCERs are close to their pre-specified values (results not shown).

In addition the tests have comparable TPRs, although the split tests sometimes out-

perform or underperform the non-split tests (Web Figure 1). The comparable powers

may be explained by the fact that the type A tests are all variants of t-statistics.

5. Examples

We now consider the evaluation of type A signature positions for the data from the

efficacy trial described in the introduction. The matrix M was taken as J − I, or as

the reciprocal of the HIV-specific PAM−250 matrix of Nickle et al. (2005), modified

to have zeros on the diagonal and a vector of zeros added to the 21st row and 21st

column. Because the previously available amino acid substitution matrices were built

using organisms other than HIV, this PAM may yield more accurate rates of HIV amino

acid interchanges. Taking the reciprocal upweights rare amino mismatches, which may

have greater biological significance.

The tests were performed using Bperm = 10, 000 or Bperm
split = 1000 permutations and

Nnull = 1 null data set generated in Step (1) of the algorithm described in Section

3.3. Tarone’s (1990) procedure screened out 232 of the 581 amino acid positions. With
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w1(·) = 1, M = J − I, and PCER fixed at 0.01, the cut-off p-value pcut ranged from

0.0009 to 0.0085 for the 4 type A test statistics. The statistics rejected 1, 1, 6, and

6 hypotheses (Figure 5). Because 349 positions were analyzed, 3.5 false positives per

test statistic are expected. Therefore the results are consistent with all of the null

hypotheses being true. This conclusion is supported by the observation that only one

test across all the positions and test statistics is significant under the Holm-Bonferroni

adjustment procedure applied to control the family-wise error rate at level 0.10 (with

cut-off p-value of 0.00023). Specifically position 268 had unadjusted p = 0.0027, 0.0023,

0.0057, < .0001 for ZA
1 (i), ZA

2 (i), ZAsplit
1 (i), ZAsplit

2 (i). Similar null results were obtained

when M was set as the reciprocal PAM matrix. The result of no signature positions

can be explained by the inability of the tested vaccine to prevent HIV infection. If

the vaccine does not impact susceptibility to HIV acquisition, then the distribution of

infecting sequences should be identical in the vaccine and placebo groups.

To illustrate the tests for evaluating type B signature positions, 251 gp160 subtype

B HIV-1 sequences were downloaded from the Los Alamos HIV Sequence Database

(Kuiken et al., 2002), 61 known to be CXCR4 co-receptor utilizing viruses and 192

known to be CCR5 co-receptor utilizing viruses. The sequences were multiply aligned,

with common length p = 857 amino acid positions. Many significant signatures are

found by all of the procedures; for example with PCER = 0.01, ZB
E2(i) and ZB

KL(i) yield

67 and 71 significant signature positions out of 448 screened-in positions, compared to

35 for Fisher’s exact test.

6. Discussion

For comparing two sets of amino acid sequences, we developed and evaluated four

new testing procedures for detecting type A signature positions (positions where amino

acids have a different probability of mismatch relative to a reference amino acid) and six
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new testing procedures for detecting type B signature positions (positions where amino

acids have a different frequency distribution, irrespective of a reference amino acid). For

evaluating type B signatures the Kullback-Leibler statistic ZB
KL(i) and the standardized

Euclidean statistic ZB
E2(i) were most powerful and are recommended. The split statistic

ZBsplit
E2 (i) may also be recommended, based on its fairly good performance and its

computational speed, only requiring ≈ 5 permutations. A statistic similar to our ZB
E2(i)

was found to perform well by Wu et al. (2001). We conjecture that the Euclidean-based

statistics provide greater power than the Mahalanobis-based statistic ZB
M(i) because

the latter statistic includes a nonparametric estimate of a large covariance matrix,

introducing considerable noise. The efficiency of the Kullback-Leibler test likely derives

from its similarity to a likelihood ratio test.

The four t-type statistics developed for evaluating type A signatures performed

comparably in the simulation models considered. These tests differ from previously

developed t-type tests for large-scale significance testing in that the data (amino acid

distances) are discrete, and the test statistics advantageously incorporate a weight

matrix specifying dissimilarity values for all pairs of different amino acids. Further-

more, the type A and B split-statistic methods advantageously incorporate weights on

amino acid positions. These weights allow the techniques to flexibly reflect biological

knowledge about sequences, and their tailoring to different applications.

Supplementary Materials

Web Appendices, Tables and Figures referenced in Sections 3.2 and 4.1 are available un-

der the Paper Information link at the Biometrics website http://www.tibs.org/biometrics.
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Figure Legends

Figure 1. Illustration of amino acid sequence data available for genome scanning

analysis, from 6 randomly selected vaccine and placebo recipients who got HIV infected

during the VaxGen trial, aligned together with the reference HIV vaccine sequence

GNE8. Each capital letter denotes an amino acid, which is a basic building block of

proteins. A - denotes a gap that arose in the alignment; gaps occur because the lengths

of HIV sequences differ. The V3 loop region within the HIV protein gp120 is shown,

which consists of positions 297-329 of gp160 using the HXB2 strain numbering system

(Kuiken et al., 2002).

Figure 2. Average true positive rates (TPRs) versus average false positive rates

(FPRs) for evaluating type B signatures with the alternative hypothesis true for 1% of

positions. (a) and (b) are for trials with 45/90 and 90/180 vaccine/placebo sequences.

Figure 3. Average true positive rates (TPRs) versus average false positive rates

(FPRs) for evaluating type B signatures with the alternative hypothesis true for 10%

of positions.

Figure 4. Average true positive rates (TPRs) versus average false positive rates

(FPRs) for evaluating type B signatures with the alternative hypothesis true for 25%

of positions.

Figure 5. Histograms of the 4 type A test statistics for the 349 screened-in positions

among the p = 581 HIV gp120 positions sequenced in the VaxGen trial, with equal

weighting of all positions and amino acid mismatches. For PCER = 0.01 the statistics

ZA
1 (i), ZA

2 (i), ZAsplit
1 (i), and ZAsplit

2 (i) rejected 1, 1, 6, and 6 hypotheses, respectively.
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