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Summary. Consider a placebo-controlled preventive HIV vaccine efficacy trial. An

HIV amino acid sequence is measured from each volunteer who acquires HIV, and these

sequences are multiply aligned together with the reference HIV sequence represented in

the vaccine. We develop genome scanning methods to identify HIV positions at which

the amino acids in sequences from infected vaccine recipients tend to be more divergent

from the corresponding reference amino acid than the amino acids in sequences from

infected placebo recipients. Such analysis can help guide the sequence design of anti-

gens to include in HIV vaccines. We consider five test statistics for comparing amino

acid divergences between groups, based on Euclidean, Mahalanobis, and Kullback-

Leibler measures. Weights are incorporated to reflect biological information contained

in different amino acid positions and substitutions. Position-wise p-values are obtained

by approximating the null distribution of the test statistics either by a permutation

procedure or by nonparametric estimation. Modified Bonferroni and false discovery

rate procedures that exploit the discrete nature of the genetic data are used to infer

statistically significant signature positions. The methods are examined in simulations

and are applied to data from the first HIV vaccine efficacy trial.
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1. Introduction

The extensive genetic diversity of the human immunodeficiency virus (HIV) poses

a formidable challenge to the development of an efficacious HIV vaccine (Graham,

2002). An HIV vaccine may prevent infections with viruses genetically similar to a

virus represented in the vaccine, but fail against genetically dissimilar viruses. Data

on the amino acid sequences of the viruses that infect participants in preventive HIV

vaccine efficacy trials can be used to assess how the efficacy of the candidate vaccine

depends on genetic mismatching of exposing viruses. “Sieve analysis” methods have

been developed for this purpose, which are based on comparing the genetic distances

(to the vaccine sequence) of the sequences of infected vaccine recipients to the genetic

distances of the sequences of infected placebo recipients (Gilbert, Self, and Ashby,

1998). Previously developed sieve analysis methods considered “low dimensional” cases

in which viruses are classified exhaustively by a small number of K genotypes (or

phenotypes), or are ordered by a scalar continuous summary measure of distance from

the virus represented in the vaccine (Gilbert, Lele, and Vardi, 1999). However, there

are many thousands of distinct HIV genotypes as defined by amino acid sequence.

Consequently, the problem of identifying sequence patterns that differentiate between

the two sets of infecting viruses is a high dimensional data problem, in which the

number of variables (sequence positions) exceeds the number of observations (infected

subjects). In a typical HIV vaccine efficacy trial, 100-400 subjects are infected and

hundreds or thousands of sequence positions are studied.

The dataset available from an efficacy trial that we consider is the aligned HIV
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amino acid sequences sampled from infected vaccine and placebo recipients, with one

sequence per subject. We develop techniques for “genome scanning”, whereby a slid-

ing window is used within which the amino acids in the two aligned sequence sets

are compared to the amino acid at the corresponding position in the reference vaccine

sequence, and the goal is to identify “signature positions” (see Figure 1). A signature

position is a position at which vaccinee sequences exhibit significantly greater diver-

gence from the reference amino acid than placebo sequences. Identifying a signature

position may suggest that amino acid changes in that position were required in order

for HIV to elude the vaccine-induced immune response and hence establish infection.

For example, certain N-linked glycosylation positions in the glycoprotein 120 (gp120)

region of HIV appear critically important for HIV to evade neutralization (Wei et al.,

2003), and the vaccine may fail to protect against viruses with certain mutant amino

acids in these positions, due to antibody epitope escape. Finding a signature position

could imply the necessity to add multiple different antigens to the vaccine, with amino

acid sequences that match contemporary circulating viral strains, in order for the vac-

cine to elicit broadly protective immune responses. Therefore the results of genome

scanning analyses can guide the design of new vaccines.

Consideration of one of the most commonly used methods for studying HIV sig-

nature positions, VESPA (Korber and Myers, 1992; http:hiv-web.lanl.govcontenthiv-

dbmainpage.html), demonstrates the need for new methodology. VESPA is purely

descriptive- it compares the frequency of the most common amino acid at positions

between two sequence sets, without weighting the particular amino acids involved, and

without using a probabilistic framework to control error rates. Our approach to the

scanning analysis divides into three parts:

1. For each position, construct a two-sample test statistic that compares amino acid
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divergences or frequencies between the two groups;

2. Approximate the null distribution of the test statistics across the set of studied

amino acid positions, and obtain position-specific p-values;

3. Apply a multiple testing adjustment procedure to the set of unadjusted p-values

to infer the set of signature positions, controlling for a false positive rate.

For 1., various statistics for evaluating sequence distances have recently been pro-

posed, based on standardized Euclidean and Kullback-Leibler discrepency (Wu, Hsieh,

and Li, 2001), and Mahalanobis distance (Kowalski, Pagano, and DeGruttola, 2002).

These metrics were developed in different contexts than genome scanning analysis, so

that their relative utility for our application is unknown. Accordingly we develop and

compare test statistics based on all four of these approaches, generalized to incorporate

weight functions that can make amino acid distances more immunologically relevant

and thus hopefully more predictive of vaccine efficacy.

The test statistics evaluate the null hypothesis that the amino acids in the two

sets of sequences have equal distributions of distance to the reference amino acid. We

also consider versions of the statistics that test whether the distribution of amino acid

frequencies at the position is equal for the two sets of sequences, irrespective of a

reference amino acid.

For 2., we consider two approaches to approximating the null distributions. The first

is a standard permutation procedure that only uses information at individual positions.

When the number of tests is large compared to the sample size, this position-specific

approach can provide too-conservative inference (cf., Pan, 2002). This motivates our

second approach, which, following Pan (2003), pools information across all positions

and estimates the null distributions of the test statistics directly and nonparametrically.
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Efron (2004) also pointed out that a large number of tests presents an opportunity

to estimate the null distribution directly as a novel approach to coping with high

dimensional data. We apply both the permutation and the nonparametric estimation

approaches to obtain unadjusted p-values for each of the positions, which are then

subjected to a multiple comparisons adjustment procedure.

For 3., we apply the modified Bonferroni method developed by Tarone (1990) to

control the family-wise type I error rate (FWER) across positions, as well as a recent

modification of the original false discovery rate (FDR) procedure that also exploits the

discrete characteristics of the genetic data to increase power (Gilbert, 2005).

This article is organized as follows. Section 2 develops four new test statistics for

identifying signature positions. Section 3 describes the procedures for obtaining p-

values and summarizes the multiple comparisons techniques employed, and describes

two slightly modified test statistics that are suitable for use with the nonparametric

estimation method for deriving p-values. Section 4 compares the performance of the

various methods in numerical studies, Section 5 presents an example from the first HIV

vaccine efficacy trial, and Section 6 gives concluding remarks.

2. Genome Scanning Methods for Identifying Signature Positions

2.1 Preliminaries

The data available for genome scanning analysis are n1 +n2 +1 aligned amino acid

sequences, one from each infected trial participant (n1 vaccine arm; n2 placebo arm),

plus a reference sequence represented in the vaccine construct, all of which are p amino

acids long. The amino acids compose HIV proteins, and the analysis considers the set

of positions that constitute the HIV proteins expressed by the tested vaccine. Current

vaccine candidates express proteins spanning p ∼ 500− 3500 positions (HVTN, 2005).

For the ith position and the jth sequence in the kth group, k = 1, 2, we define
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a vector of indicators to represent the 20 amino acids possible at position i, includ-

ing the possibility of a gap which may have arisen in the alignment. Specifically, let

Ykj(i) = (Ykj(i, 1), · · · , Ykj(i, 21))′, where Ykj(i, a) is 1 if amino acid a is at position

i and 0 otherwise, a = 1, · · · , 20 (a = 1 represents A, a = 2 represents C, and so

on), and a = 21 represents a gap. Similarly define Yr(i) = (Yr(i, 1), · · · , Yr(i, 21))′ for

the reference sequence , and let r(i) denote the amino acid at position i in the refer-

ence sequence. Ykj(i) is a 21-nomial random variable with response probability vector

pk(i) = (pk(i, 1), · · · , pk(i, 21))′. The MLE of pk(i) is p̂k(i) = (Ȳk(i, 1), · · · , Ȳk(i, 21))′,

where Ȳk(i, a) = n−1
k

∑nk

j=1 Ykj(i, a).

The biological significance of a difference in two amino acids at a position depends

on the particular amino acids being compared (e.g., T vs Y). There is a vast literature

on how to weight the 20× 19 = 380 different amino acid mismatches, by physico-

chemical or evolutionary properties, and our methods incorporate a weight matrix to

reflect such information. Specifically, let M be a 21 × 21 matrix with nonnegative

entries, with (a, a′)th element the weight/score summarizing dissimilarity of amino

acids a and a′. For example, the nondiagonal entries of M could be taken to be those

from a hydrophobicity/biochemical scoring matrix (George, Barker, and Hunt, 1990)

or an HIV-specific point accepted mutation (PAM) matrix (Nickle et al., 2005). The

distance between the amino acid at position i in the jth sequence of group k to the

amino acid at position i in the reference sequence, r(i), is the appropriate element of

M , computed as dkj(i) = Ykj(i)
′MYr(i). The simplest matrix M = J − I, with J the

21 by 21 matrix of ones and I the identity matrix; with this matrix dkj(i) is one if the

two amino acids under comparison are different and is zero if they are the same.

2.2 Two-sample Test Statistics

For each position i, test statistics are developed to evaluate H0(i) : p1(i) = p2(i)
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versus H1(i) : p1(i) 6= p2(i). The choice of weight matrix M determines whether the

procedures test for differential amino acid divergence from the reference amino acid

or for differential amino acid frequencies, irrespective of any reference. Zeros on the

diagonal of M yields tests of the former type, and M = J of the latter type.

For position i, set

v̂2(i, a) = M(a, r(i))

[
(n1 − 1)

(n − 2)
V̂ ar(p̂11(i, a) +

(n2 − 1)

(n − 2)
V̂ ar(p̂21(i, a))

]
M(a, r(i)).

Let p∗(i) be the number of nonzero components in v̂2(i, a), and define

ZE(i) = CE(i)
21∑

a=1

(M(a, r(i)) [p̂1(i, a) − p̂2(i, a)])2

{v̂(i, a) + λ1}2
I(v̂(i, a) > 0), (1)

where CE(i) = (n − 2 − p∗(i) + 1)/(p∗(i)(n − 2)) × ((n1 − 1)(n2 − 1)/(n − 2)) and λ1

is a nonnegative constant. Note that M(a, r(i)) [p̂1(i, a) − p̂2(i, a)] = d̄1(i, a)− d̄2(i, a).

The constant λ1 is added to the denominator of ZE(i) to stabilize the statistics, which

can be very large due to small v̂(i, a). Efron et al. (2001), Tusher et al. (2001), and

Guo et al. (2003) suggested adding a small positive constant to two-sample statistics

in microarray applications, and Lönnstedt and Speed (2002) showed that the modified

statistics perform better than the usual t-statistic. Following the approach of Tusher

et al. (2001), we choose λ1 to minimize the coefficient of variation of {ZE(i) : i =

1, · · · , p}. An alternative approach would pick λ1 as the 90th percentile of {v̂(i, a) : i =

1, · · · , p; a = 1, · · · , 21} (Efron et al., 2001).

For the second test statistic, Mahalanobis’ D2 statistic for position i is given by

D2(i) = (p̂1(i) − p̂2(i))
′diag(MYr(i))Ŝ

−

λ2
(i)diag(MYr(i))(p̂1(i) − p̂2(i)),

where Ŝ−

λ2
(i) is the Moore-Penrose generalized inverse of Ŝλ2

(i) ≡ Ŝ(i)+λ2diag(1nz(i)),

with Ŝ(i) = [(n1−1)Ŝ1(i)+(n2−1)Ŝ2(i)]/(n−2) and λ2 a nonnegative constant. Here

Ŝk(i) = p̂k(i)I − p̂k(i)p̂k(i)
′ is the multinomial MLE of Sk(i) = pk(i)I − pk(i)pk(i)

′, and
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1nz(i) is the 21-vector of indicators of whether the ath row of Ŝ(i) is the zero vector, a =

1, · · · , 21. S−

λ2
(i) is obtained by computing the Moore-Penrose inverse of the submatrix

of Ŝλ2
(i) formed by removing the zero-vector rows and columns (corresponding to amino

acids never present or always present at position i), and then expanding the inverse to

a 21 × 21 matrix by re-inserting the zero-vector rows and columns. When M = J (so

that diag(MYr(i)) = I) and λ2 = 0, D2(i) is the Mahalanobis statistic that has been

used extensively (cf., Rao and Chakraborty, 1991).

Let p∗(i) be the rank of Ŝ(i), and define the second test statistic ZM(i) by

ZM(i) =
(n − p∗(i) − 1)

p∗(i) × (n − 2)

n1n2

n
D2(i).

Similarly to ZE(i), the diagonal matrix λ2I is added to Ŝ(i) to stabilize ZM(i). The

constant λ2 is selected to minimize the coefficient of variation of the test statistic via

the algorithm of Guo et al. (2003, page 1630). An advantage of ZM(i) compared

to the Euclidean statistic ZE(i) is that it accounts for the correlation structure of

the multinomial response vectors, which can increase statistical power, as verified in

Section 4.

The third statistic is based on the Kullback-Leibler discrepency, which is relatively

easy to compute. For position i, let ZKL(i) =

21∑

a=1

M(a, r(i))p̂1(i, a)log

{
I(p̂2(i, a) > 0)

p̂1(i, a)

p̂2(i, a)
+ I(p̂2(i, a) = 0)

(p̂1(i, a) + n−1
1 )

n2

}
. (2)

If in (2) I(p̂2(i, a) > 0) is replaced with unity and the second term with I(p̂2(i, a) =

0) is deleted, and M = J , then ZKL(i) is exactly the Kullback-Leibler discrepency

between the 21-nomial empirical densities p̂1(i) and p̂2(i). The modification, which

was suggested by Wu, Hsieh, and Li (2001) prevents ZKL(i) from taking infinite value.

3. Judging Statistical Significance

3.1 Permutation-based Unadjusted p-values
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To judge statistical significance of the p tests, first nominal (unadjusted) position-

wise p-values are computed. Since analytic p-values based on limiting distributions are

not available for the test statistics (except Euclidean and Mahalanobis with λ1 = λ2 =

0), and parametric distributional assumptions may be unreliable given the underlying

discreteness of the sequence data, we use a permutation procedure to determine p-

values. Specifically, B data sets, each of n = n1 + n2 sequences, are generated by

independently permuting the group membership labels of the whole sequences. The

p-value for position i is calculated as the fraction of the test statistics computed using

the B permuted datasets that equal or exceed the value of the original test statistic.

3.2 Nonparametric Estimated Null Distribution-based Unadjusted p-values

In the second (pooling) approach to computing position-specific p-values, assume

that under all H0(i)’s, the test statistics of interest Z(i) have the same distribution for

i = 1, · · · , p. We follow Pan’s (2003) clever idea for how to directly nonparametrically

estimate the null distribution of hundreds of t-statistics. For each group of sequences

separately, randomly permute the sequences into two (almost) equally-sized pieces,

labeled sets Jk1, Jk2, k = 1, 2. Define nk2 = nk1 if nk = 2nk1 and nk2 = 2nk1 + 1

otherwise, k = 1, 2. Let w1(i), i = 1, · · · , p be a vector of nonnegative weights on the

positions. Modify (slightly) the test statistic ZE(i) of (1) to Zsplit
E (i) = w1(i)CE(i)×

21∑

a=1

{M(a, r(i)) [(p̂11(i, a) + p̂12(i, a))/2 − (p̂21(i, a) + p̂22(i, a))/2]}2

{v̂(i, a) + λ1}
2 I(v̂(i, a) > 0),

where p̂k1(i, a) = n−1
k1

∑n1

j=1 Ykj(i, a)I(j ∈ Jk1) averages the Ykj(·) in the first permuted

half of sample k and p̂k2(i, a) averages the Ykj(·) in the second permuted half. The

statistic Zsplit
E (i) approximately equals ZE(i), and motivates a statistic that estimates

its null distribution: zsplit
E (i) = w1(i)CE(i)×

21∑

a=1

{M(a, r(i)) [(p̂11(i, a) − p̂12(i, a))/2 + (p̂21(i, a) − p̂22(i, a))/2]}2

{v̂(i, a) + λ1}
2 I(v̂(i, a) > 0).
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Because the numerator of zsplit
E (i) is the sum of within-sample differences, its mean is

zero. Furthermore, the denominators of Zsplit
E (i) and zsplit

E (i) are the same, and thus

zsplit
E (i) can be expected to approximate the null distribution of Zsplit

E (i).

To obtain p-values, once Zsplit
E (i) is computed, each group of sequences is again

separately randomly permuted into two halves, and zsplit
E (i) is computed. Based on B

separate permutations z
split(b)
E (i) is computed B times, b = 1, · · · , B. For position i the

p-value is then pi = Ni/(B×p), where Ni is the number of the test statistics z
split(b)
E (i′)

that equal or exceed Zsplit
E (i), pooling over i′ = 1, · · · , p and b = 1, · · · , B.

We use a very similar approach to estimate the null distribution of a slightly mod-

ified version of ZM(i), Zsplit
M (i), defined as

Zsplit
M (i) = w1(i)

(n − p∗(i) − 1)

p∗(i) × (n − 2)

n1n2

n
D2split(i), (3)

D2split(i) =

{
p̂11(i) + p̂12(i)

2
−

p̂21(i) + p̂22(i)

2

}
′

diag(MYr(i))Ŝ
−

λ2
(i)

×diag(MYr(i))

{
p̂11(i) + p̂12(i)

2
−

p̂21(i) + p̂22(i)

2

}
.

The null distribution of Zsplit
M (i) can be estimated via zsplit

M (i) defined as in (3) with

(p̂11(i)+p̂12(i))/2−(p̂21(i)+p̂22(i))/2 replaced by (p̂11(i)−p̂12(i))/2+(p̂21(i)−p̂22(i))/2.

Unadjusted p-values are then obtained in the same way as for Zsplit
E (i). Note that for

Zsplit
E (i) and Zsplit

M (i), the inverse variances are not estimated separately for the two

halves of the data, to increase the stability of the statistics.

An advantage of the “split” statistics Zsplit
E (i) and Zsplit

M (i) is the incorporation of a

position-specific weight w1(i) that can be used to reflect biological information. These

weights affect the p-values because the pooling method is used; weights placed in front

of the non-split statistics described in Section 2 would not affect the p-values, because

they are computed marginally (position-specific).
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3.3 Multiple Hypothesis Testing Adjustment

Given the set of p-values, we consider four multiple comparisons adjustment pro-

cedures to determine the set of significant signature positions: standard Bonferroni,

Tarone’s (1990) modified Bonferroni method for discrete data, standard FDR (Ben-

jamini and Hochberg, 1995), and Tarone-modified FDR for discrete data, which we

refer to as “Tarone FDR” (Gilbert, 2005). We sketch the latter procedure in two steps:

First, compute the integer K and the subset of indices RK among the p hypotheses as

described by Tarone (1990); Second, perform Benjamini and Hochberg’s (1995) FDR

procedure at level α on the subset of hypotheses RK . To define K and RK , for each

k = 1, · · · , p, let m(k) be the number of the p positions for which α∗

i < α/k, where α∗

i

is the minimum achievable significance level for the test for the ith position, computed

based on data pooled over the two groups. Then K is the smallest value of k such

that m(k) ≤ k, and RK is the set of indices satisyfing α∗

l < α/K. Because K and RK

are calculated based only on information pooled over the vaccine and placebo groups,

this procedure controls the FDR at level α. Due to the complexity of computing the

α∗

i for each of the newly proposed test statistics, for the Simulations and Example the

α∗

i were computed based on Fisher’s exact test.

4. Simulation Study

4.1 Background

The simulation study is designed based on data from the first HIV vaccine efficacy

trial (Flynn et al., 2005). Healthy HIV uninfected volunteers were randomized to

receive vaccine (Nv = 3598) or placebo (Np = 1805) and were tested for HIV infection

every 6 months for 36 months. The vaccine was a recombinant envelope gp120 subunit

vaccine, and was designed to prevent acquisition of HIV by inducing antibodies that

could bind to neutralizing epitopes on HIV gp120 and prevent entry of HIV into host
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cells. The vaccine did not prevent HIV infection, with a similar rate of infection in

the vaccine (241/3598 = 6.7%) and placebo (127/1805 = 7.0%) arms. For 336 of

the 368 infected participants three HIV isolates were sampled at the time of HIV

infection detection, and the amino acid sequence of gp120 was determined by direct

translation of the DNA sequence for each isolate. Sequences from the same individual

were highly similar, and with little loss of information we considered one randomly

selected sequence from each subject. The 336 gp120 sequences were aligned together

with the two gp120 sequences that were represented in the vaccine construct, named

MN and GNE8. Since GNE8 was sampled more recently and was closer genetically to

the infecting sequences, it was used as the reference sequence in all analyses. There

are n1 = 217 vaccine group sequences and n2 = 119 placebo group sequences, each of

length p = 581.

For each of the five testing procedures developed above, plus Fisher’s exact test

for comparison, simulations were carried out to address the following questions: 1)

What is the impact of the proportion of positions with a true alternative hypothesis

on the performance of the procedures? 2) How much power is there to detect signature

positions for vaccine efficacy trials of different sizes? 3) What is the impact of whether

the alternative hypotheses are true in conserved or variable positions? 4) How do the

position weights w1(i) influence size and power of the split test statistics? 5) What

is the impact of the constants λ1 and λ2 in the performance of the procedures? To

address these questions, gp120 sequences for the infected placebo group were simulated

by randomly sampling with replacement n2 = 90 or 180 whole sequences from the 336

sequences. These sample sizes represent a small and large efficacy trial. Assuming an

overall vaccine efficacy of 50%, sequences for the infected vaccine group were generated

by sampling with replacement n1 = 45 or 90 whole sequences from the 336 sequences.
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To create the alternative hypothesis at a given position i, we used the HIV-specific

PAM matrix developed by Nickle et al. (2005) to induce stochastic evolution of the

amino acids at i in the vaccinee sequences. Each nondiagonal entry of the PAM matrix

corresponds to two different amino acids, and specifies the probability that either of the

amino acids mutates into the other one during a certain amount of evolutionary time.

We used the PAM−25 matrix, which specifies a total of 25 amino acid interchanges

per 100 positions. Thus, at alternative hypothesis positions, on average 25% of the

vaccinee sequences have mutations.

Question 1) was addressed by setting 1%, 10% or 25% of the positions to have true

alternatives, which amounts to 6, 58, or 145 of the 581 positions. We selected the posi-

tions based on previous studies supporting that 39 of the 581 positions are important

for HIV neutralization or CD4 co-receptor binding. Specifically, Wyatt et al. (1998)

identified the CD4-binding positions 88, 113, 117, 256, 257, 262, 266, 368, 370, 384,

421, 427, 457, 470, 474, 475, 477, 482, 483, 484, the CD4-induced epitope positions 88,

117, 121, 207, 256, 257, 262, 370, 381, 382, 419, 420, 421, 422, 423, 427, 435, 438, 475,

and positions 295, 297, 334, 386, 392, 397, which constitute a neutralization epitope

defined by the monoclonal antibody 2G12. The positions, here and in the Example, are

numbered using the standard HXB2 strain numbering system (Kuiken et al., 2002). In

addition, Wei et al. (2003) identified three positions at which amino acid changes can

sterically inhibit the accessibility of principal neutralizing epitopes on the virus surface:

245, 274, 309. These comprise 39 unique positions. For the 6 alternative positions,

we selected the positions constituting the monoclonal antibody 2G12 neutralization

epitope (295, 297, 334, 386, 392, 397); for the 58 alternative positions we selected the

39 key positions listed above plus 19 randomly sampled positions; and for the 145 alter-

native positions we used these 58 positions plus 87 more randomly sampled positions.
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Question 2) was addressed by repeating the simulation experiment for the two sample

sizes. Question 3) was addressed by evaluating the power of the testing procedures

separately for diverse positions (frequency of modal amino acid < 0.95) and conserved

positions (frequency of modal amino acid ≥ 0.95). Question 4) was addressed by run-

ning simulations with w1(i) = I(H0(i) true) + cI(H0(i) false) with c set as 2.0 or 0.5,

which assess size and power of the split test statistics when the false null hypotheses

are upweighted 2-fold (correctly incorporating prior knowledge) or downweighted 2-fold

(incorrectly incorporating prior knowledge), respectively. Question 5) was addressed

by repeating the simulations for the Euclidean- and Mahalanobis-based tests with λ1

and λ2 set to zero.

Amino acid substitutions were weighted equally, by setting M = J − I. Except for

results reported at the end of Section 4.3, positions in the split statistics were weighted

equally (w1(i) = 1). Tests were carried out at 2-sided level α = 0.05, using 10,000

permutations to approximate p-values. Empirical false positive rates, false discovery

rates, and powers of the testing procedures were computed.

4.3 Simulation Results

Figure 2 shows the estimated sizes and FDRs using the Tarone Bonferroni and

Tarone FDR multiple testing adjustment methods, respectively. The tests based on

ZE(i), ZM(i), Zsplit
E (i), Zsplit

M (i) used λ1 = λ2 = 0, due to their superior performance as

described below. All of the test procedures are conservative under family-wise error

(FWER) adjustment. Under FDR adjustment, when 10% or 25% of the null hypotheses

are false, all of the procedures except the two Mahalanobis-based tests control the FDR

below 0.05 within 2 Monte Carlo standard errors. When only 1% of the null hypotheses

are false, all of the proposed procedures have estimated FDRs higher than 0.05. This

occurs because in many simulation runs the null hypothesis was only rejected at 1 or
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2 positions, in which case a single false rejection makes the FDR very high (e.g., 0.5

for 2 total rejections). This suggests that the FDR method should not be used unless

the Tarone Bonferroni method rejects at least one null hypothesis. The tests based on

ZE(i), ZM(i), Zsplit
E (i), Zsplit

M (i) with λ1 > 0 and λ2 > 0 had very similar FWER and

FDR rates.

Figure 3 shows the estimated powers of the procedures (again with λ1 = λ2 = 0).

We make several observations. First, the Kullback-Leibler and standardized Euclidean

statistics are consistently most powerful. Fisher’s exact statistic is third most powerful,

with Zsplit
E (i) providing similar power at the larger sample size under FDR adjustment.

Second, the statistics that use pooling are generally less powerful the non-pooled coun-

terparts, moreso for lower fractions of false null hypotheses. It appears that the pooling

methods perform best when many alternative hypotheses are true (Pan (2003) found

greatest advantage of the pooling approach for this setting).

Third, the tests based on ZM(i) and Zsplit
M (i) consistently have the lowest power. To

explain the poor performance of the Mahalanobis-based statistics, which have inflated

false positive rates as well as low power, note that the estimated covariance matrix Ŝ(i)

is often fairly high-dimensional (e.g., 10 × 10), which occurs because the gp120 region

is highly variable. Consequently there are dozens of covariance terms to estimate, but

the sample size is quite limited for doing so. Therefore, we conjecture that the noise in

covariance estimation is causing the poor performance. To support this conjecture, we

repeated the simulations with all correlation estimates set to zero, in which case the

Mahalanobis-based test statistics are very similar to the Euclidean-based statistics. As

expected, with this modification these two approaches performed similarly.

Fourth, the tests based on ZE(i) and Zsplit
E (i) with λ1 = 0 were consistently more

powerful than the corresponding tests with λ1 > 0 (not shown in figures). For example,
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for the smaller sample size and FWER adjustment, power of the ZE(i) tests with λ1 = 0

was 0.45, 0.73, and 0.63 for 1%, 10%, and 25% of H0(i)’s false, respectively, compared

to 0.20, 0.59, and 0.51 for the ZE(i) tests with λ1 > 0. Similarly, for the larger sample

size and FWER adjustment, power of the Zsplit
E (i) tests with λ1 = 0 was 0.12, 0.42, and

0.27 for 1%, 10%, and 25% of H0(i)’s false, respectively, compared to 0.01, 0.27, and

0.18 for the Zsplit
E (i) tests with λ1 > 0. This result can be explained by the fact that

the sum
∑21

a=1 in ZE(i) is restricted to contrasts p̂1(i, a) − p̂2(i, a) for which at least

one of V̂ ar(p̂11(i, a)) or V̂ ar(p̂21(i, a)) is positive, which prevents the denominator from

being near 0. A similar explanation attains for Zsplit
E (i).

Fifth, when 1% of null hypotheses are false, the Kullback-Leibler and standardized

Euclidean statistics have much greater power than the other methods. Because only a

small number of signature positions are expected in many applications including vaccine

trials, these methods are recommended for sparse-signal problems. Fifth, the results

for conserved and diverse positions showed that for 10% and 25% true alternatives,

power was greater for conserved positions, presumably because there is less background

sequence variability (noise). For 1% true alternatives the methods had zero power for

conserved positions, due to insufficient sequence variability, whereas the power of the

tests for diverse positions was slightly greater than for all positions.

Sixth, the split statistics with true alternative positions upweighted had lower false

positive/discovery rates and greater power than the equal-weighted methods; for ex-

ample with m1/m2 = 45/90 and 10% of the alternative hypotheses true, the FDR of

the Zsplit
E (i) tests with λ1 = 0 was 0.0, compared to 0.032 for the unweighted tests,

and power was 0.26/0.64 under Tarone Bonferroni/FDR compared to 0.23/0.56 for the

unweighted tests. On the other hand when the true alternative positions were down-

weighted, the opposite results attained: the Zsplit
E (i) tests with λ1 = 0 gave inflated
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FDR = 0.078 and low power 0.10/0.21. These results provide “proof-of-principle” that

correct upweighting of positions can improve size and power of the tests based on

Zsplit
E (i), but incorrect weighting can seriously erode performance. This suggests that

weighting to incorporate biological knowledge should be done with caution.

5. Example

The matrix M was taken as J−I, or as the HIV-specific PAM−250 matrix of Nickle

et al. (2005), modified to have zeros on the diagonal and a vector of zeros added to the

21st row and 21st column. This matrix was computed based on thousands of observed

among-patient mutations in HIV sequences. Because the previously available amino

acid substitution matrices were built using organisms other than HIV, this HIV-specific

PAM may yield more accurate estimates of evolutionary distances, as supported with

some real data examples in Nickle et al. (2005). Weighting amino acid mismatches

by their relative probability of interchange may enhance the biological relevance of the

genome scanning analysis.

With w1(·) = 1 and M = J − I, Figure 4 shows the -log10-transformed unadjusted

p-values based on the six test statistics (setting λ1 = λ2 = 0) for the 350 informative

positions (i.e., those with enough diversity to possibly reject H0(i) using the Tarone

Bonferroni procedure), and Figure 5 shows histograms of the test statistics. As indi-

cated by the horizontal lines in Figure 4, after multiplicity adjustment the null hypoth-

esis was not rejected for any positions by any of the statistics. The same result was

obtained when M was set as the modified PAM matrix. The analysis was repeated for

the subset of the 39 biologically-key positions described in the Simulations. Again there

were no significant signature positions. The lack of any signatures can be explained

by the apparent inability of the tested vaccine to prevent HIV infection. If the vaccine

has no effect on susceptibility to acquiring HIV, then the distribution of infecting HIV
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sequences should be identical in the infected vaccine and infected placebo groups.

Because there was a suggestion of possible partial vaccine efficacy in non-white

participants (infection rates 5.0% and 9.4% in the vaccine and placebo groups, respec-

tively, unadjusted p = 0.012) and in participants with high self-reported risk behavior

at baseline (infection rates 20.3% and 29.2%, unadjusted p = 0.032) (Flynn et al.,

2005), the scanning analyses were repeated in these subgroups. Again no significant

signatures were found, which supports that the apparent efficacy in these subgroups

may not have been real.

To illustrate an application with significant signature positions, 251 gp160 subtype

B HIV-1 sequences were downloaded from the Los Alamos HIV Sequence Database

(Kuiken et al., 2002), 61 known to be CXCR4 co-receptor utilizing viruses and 192

known to be CCR5 co-receptor utilizing viruses. The sequences were multiply aligned,

with common length p = 857 amino acid positions. The procedures were applied to

the data with M = J, to test for positions with different amino acid frequency distri-

butions. Many significant signatures were found by all of the procedures; for example

at level α = 0.05 the Kullback-Leibler test yielded 13 significant signature positions

under Tarone Bonferroni adjustment and 16 under Tarone FDR adjustment, and the

pooled-Mahalanobis test yielded 9 and 17 significant signature positions, respectively.

In comparison Fisher’s exact test provided 5 and 13 significant signature positions,

demonstrating greater sensitivity of the new testing procedures.

6. Discussion

We developed and evaluated five new testing procedures for detecting signature

positions that distinguish two groups of amino acid sequences. The Kullback-Leibler

and standardized Euclidean test statistic (with constant λ1 in the denominator set to

0) were most powerful and are recommended. The efficiency of the Kullback-Leibler
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discrepency likely derives from the fact that it is an expected log likelihood ratio,

and has optimality properties closely related to those of likelihood ratio tests, as has

been widely studied (Eguchi and Copas, 2002, provide a particularly clear discussion).

A related standardized Euclidean statistic was also found to perform well by Wu et

al. (2001), and in our setting we conjecture that it provided greater power than the

Mahalanobis-based test because it standardized only by the variance estimates, thereby

avoiding the noise introduced by estimating the entire covariance matric nonparamet-

rically. Further research into the Mahalanobis-based tests is of interest, for example

by using shrinkage covariance matrix estimates (Ledoit and Wolf, 2004).

An advantage of the methods developed here is that the procedures for obtaining

position-specific unadjusted p-values and for determining significance of this set of

p-values are completely separate; therefore any valid p-value-based multiple testing

procedure can be used with any of the test statistics.
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Figure Legends

Figure 1. Illustration of sequence data available for genome scanning analysis, from 6

randomly selected infected vaccine and placebo recipients in the VaxGen trial, aligned

together with the reference HIV vaccine sequence GNE8. The V3 loop region within

gp120 is shown, which consists of positions 297-328 of gp160 using the HXB2 strain

numbering system. The letters denote amino acids.

Figure 2. Based on the simulation study, panels (a) and (c) show average false

positive rates for the five testing procedures (with λ1 = λ2 = 0) using the Tarone

Bonferroni multiple testing adjustment procedure, for n1/n2 = 45/90 and n1/n2 =

90/180, respectively. Panels (b) and (d) show the corresponding average false discovery

rates for the Tarone FDR multiple testing adjustment procedure.

Figure 3. Based on the simulation study, panels (a) and (c) show average true positive

rates (powers) for the five testing procedures (with λ1 = λ2 = 0) using the Tarone

Bonferroni multiple testing adjustment procedure, for n1/n2 = 45/90 and n1/n2 =

90/180, respectively. Panels (b) and (d) show the corresponding estimated powers for

the Tarone FDR multiple testing adjustment procedure.

Figure 4. -log10 unadjusted p-values from the five testing procedures (with λ1 = λ2 =

0), for the 350 informative positions among the p = 581 positions analyzed in the

VaxGen trial, with equal weighting of all amino acid substitutions and all positions.

The horizontal lines represent cut-off levels of significance after adjustment for multiple

testing using four different multiple testing adjustment procedures.

Figure 5. Histograms of the log-transformed test statistics for the 350 informative
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positions (positions with some amino acid diversity) among the p = 581 positions

analyzed in the VaxGen trial, with equal weighting of all amino acid substitutions and

all positions.
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Fisher’s Exact Test

Note: Value of 0 is replaced with 0.00005; −log10(0.00005)=4.3 

−log10 p−value for comparing Vaccine and Placebo VaxGen gp120 sequences
Equal Weight Matrix



Z_E

 

de
ns

ity

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Z_Esplit

 

de
ns

ity
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Z_M

 

de
ns

ity

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Z_Msplit

 

de
ns

ity

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Z_KL

de
ns

ity

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0

10

20

30

40

50

Histograms of Test Statistics
VAXGEN gp120 vaccine and placebo recipient data set, with Equal Weight Matrix




