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A modified false discovery rate multiple-
comparisons procedure for discrete data, applied
to human immunodeficiency virus genetics
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Summary. To help to design vaccines for acquired immune deficiency syndrome that protect
broadly against many genetic variants of the human immunodeficiency virus, the mutation
rates at 118 positions in HIV amino-acid sequences of subtype C versus those of subtype B
were compared. The false discovery rate (FDR) multiple-comparisons procedure can be used
to determine statistical significance.When the test statistics have discrete distributions, the FDR
procedure can be made more powerful by a simple modification.The paper develops a modified
FDR procedure for discrete data and applies it to the human immunodeficiency virus data. The
new procedure detects 15 positions with significantly different mutation rates compared with 11
that are detected by the original FDR method. Simulations delineate conditions under which the
modified FDR procedure confers large gains in power over the original technique. In general
FDR adjustment methods can be improved for discrete data by incorporating the modification
proposed.

Keywords: Bonferroni; False discovery rate; Genetics data; High dimensional data; Human
immunodeficiency virus vaccine trial; Hypothesis testing; Simultaneous inference

1. Introduction

Consider the following problem in genetics. Data are available on two sets of amino-acid
sequences, aligned such that all the sequences have the same number of amino-acids. (Amino-
acids are the basic building-blocks of proteins; there are 20 amino-acids, denoted by capital
letters.) For each sequence set, the degree of polymorphism at each position in the sequences
can be measured by the frequency of non-consensus amino-acids at the position. (The consensus
amino-acid is the modal amino-acid for the sequence set.) The problem that is addressed here is
how to identify the ‘differentially polymorphic’ positions, i.e. the positions at which the probabil-
ity of a non-consensus amino-acid differs between the two sequence sets. For example, position
6 is differentially polymorphic if the consensus amino-acid has frequency 0.87 for the first set
and 0.52 for the second set. This two-sample problem occurs in many genetics studies; here we
focus on the application of developing a vaccine for acquired immune deficiency syndrome.

The development of an efficacious preventive vaccine for the human immunodeficiency virus
(HIV) is challenged by the extensive genetic heterogeneity of HIV (World Health Organization–
UNAIDS, 2001; Gaschen et al., 2002). Within a phase III trial of a HIV vaccine, an important
objective is to assess how the level of efficacy of the vaccine to prevent infection depends on
genetic characteristics of the exposing HIV (such an analysis has been named ‘sieve analysis’;
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Berman et al., 1997). Gilbert et al. (1999, 2000) developed statistical methods for sieve analysis,
in which, for each HIV-infected participant, a genetic distance is computed between the infect-
ing virus and the HIV represented in the vaccine, and the distributions of these distances are
compared between the vaccine and placebo arms. The distance between two HIV sequences can
be defined as the percentage mismatch of amino-acids with appropriate weighting of positions
for their immunological significance, and an important research area is how to select the weights
(see De Groot et al. (2002)). In this paper, we consider the analysis of a data set that informs
this choice of weighting. Specifically, several vaccines are under development that are based on
a subtype C strain of HIV that includes the gag p24 protein (Graham, 2002), and there are plans
to test these vaccines in regions where both subtype C and subtype B HIVs circulate (subtype C
is the globally predominant HIV subtype and subtype B predominates in North America and
Europe; Papathanasopoulos et al. (2003)). For such vaccines, a genetic distance can be defined
on the basis of the amino-acids in the gag p24 sequence, and one weighting strategy upweights
positions that have a different degree of polymorphism among subtype C and B viruses. Differ-
ential polymorphism at a position may reflect an important immunobiological difference in the
subtypes at this location and suggests that a mismatch of the amino-acid at this position in the
exposing HIV sequence compared with that in the vaccine sequence might be key for causing
failure of a vaccine. Upweighting such positions can improve the power of sieve analyses. In
addition, for forthcoming phase III HIV vaccine trial data sets, a useful sieve analysis would
compare the polymorphism of positions between the vaccine and placebo sequences. Positions
with greater polymorphism in vaccine than in placebo sequences are flagged as positions at
which ‘vaccine resistance’ mutations may have occurred, i.e. amino-acid mutations that allowed
HIV to break through the immune responses induced by vaccination. Identifying the differen-
tially polymorphic positions would aid the design of a vaccine by suggesting the positions at
which multiple different amino-acids should be added to the vaccine formulation to broaden
the protection that is conferred by the vaccine.

To study differential polymorphism in gag p24, we analyse a data set of 146 gag p24 amino-
acid sequences, with half the sequences sampled from Southern Africans infected with a subtype
C HIV (group 1, n1 = 73 individuals) and half the sequences sampled from North Americans
infected with a subtype B HIV (group 2, n2 = 73 individuals) (Novitsky et al., 2002a; Kuiken
et al., 2002) (Fig. 1). In addition to informing the weighting of amino-acid metrics, this assess-
ment is useful for designing ‘cytotoxic T-lymphocyte (CTL) epitope cocktail’ vaccines, a leading
vaccine approach (De Groot et al., 1997, 2002; Novitsky et al., 2002b). Such vaccines contain
many HIV epitopes (i.e. contiguous strips of 8–11 HIV amino-acids that induce CTL immune
responses, e.g. PIVQNLQGQ). At epitope regions with positions with different mutation rates
among subtype C and B HIVs, it is important to include multiple different epitope sequences in
the vaccine, to maximize the number of HIVs that the vaccine can protect against. Thus, iden-
tifying differentially polymorphic positions guides the design of CTL epitope cocktail vaccines
by informing where to place multiple HIV epitope sequences.

The 146 amino-acid sequences were aligned to have all the same length (231 positions). The
alignment was constructed by using ClustalX version 1.81 (Thompson et al., 1997) and manu-
ally edited by using BioEdit (Hall, 1999). The alignment is correct with high probability because
most of the positions in gag p24 sequences are conserved. To attempt to identify the differentially
polymorphic positions, 231 hypothesis tests can be conducted, one for each position. The inves-
tigator then faces the question of how to identify the set of significant results while controlling
the false positive error rate. This problem motivates the statistical issue that is addressed in this
paper, which has broad application to genetics and other fields: how to control the false positive
rate when carrying out a large number of hypothesis tests for data with discrete distributions?
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Multiple-comparisons procedures that control the familywise error rate FWER, such as the
widely used Bonferroni method, provide stringent type I error control but often allow a high
rate of type II errors, and the power sharply diminishes with the number of tests (Hochberg
and Tamhane, 1987; Westfall and Young, 1993; Hsu, 1996). For many practical applications,
it is preferable to apply a multiple-comparisons procedure that controls the risks of type I and
II errors more evenly. This objective is addressed by sequential P-value methods that control
the false discovery rate (FDR), i.e. the expected proportion of rejected hypotheses that are
false rejections. Such methods have been used successfully in many applications including wave-
let analysis of signal processing (Abramovich and Benjamini, 1996), genome scans for locating
traits (Weller et al., 1998; Storey and Tibshirani, 2003), psychiatric research (Mallet et al., 1998),
educational research (Williams et al., 1999) and deoxyribonucleic acid microarray experiments
(Efron et al., 2001).

Benjamini and Hochberg (1995) developed the first FDR controlling method and showed that
it provides large power gains over FWER controlling methods that increase with the number
of tests. Despite its power advantages, the original FDR procedure is often quite conservative,
with the true FDR well below the prespecified FDR. Several modifications of the original FDR
method have been proposed that can provide improved power (e.g. Benjamini and Liu (1999)
and Benjamini and Hochberg (2000)). However, when the test statistics have discrete distri-
butions, apparently none of the published FDR controlling methods explicitly account for the
discrete characteristics, which can be exploited to improve the power considerably.

For FWER controlling multiple-comparisons procedures, Westfall and Wolfinger (1997) and
others have shown that accounting for the discreteness of the data can yield large gains in power.
In particular, Tarone (1990) developed a modified Bonferroni method for discrete data. In this
paper, we show that Tarone’s (1990) modification also applies to FDR controlling procedures,
with a similar capacity to improve the power. The newly proposed procedure is applied to the
HIV sequence data set in Section 2. Section 3 provides background on the method of Benjamini
and Hochberg (1995) and Tarone’s (1990) method, and Section 4 describes the modification of
Benjamini and Hochberg’s FDR procedure. The new and existing procedures are evaluated in
a simulation study in Section 5. Section 6 provides a discussion of several recently developed
FDR controlling procedures and makes the point that these techniques can be improved for
discrete data by incorporating the modification proposed. The data and the programs that were
used to analyse them can be obtained from

http://www.blackwellpublishing.com/rss

2. Example

The goal of the HIV sequence problem is to identify the positions in gag p24 amino-acid
sequences at which the probability of a non-consensus amino-acid differs between the sets
of subtype C and B sequences. Of the 231 positions in HIV gag p24, 113 have the modal
amino-acid in all 146 sequences, i.e. are perfectly conserved. Thus, m=118 positions contribute
comparative information. Let p1i and p2i respectively be the probabilities of a non-consensus
amino-acid at position i for group 1 and group 2 sequences; the goal is to test simultaneously
Hi : p1i =p2i, i=1, . . . , 118.

Fisher’s exact test was used to compute 118 unadjusted P-values. An alternative approach
to this problem would compare the probabilities of the 19 possible amino-acid substitutions
from the consensus amino-acid between the sets of sequences, using Fisher’s exact test gener-
alized for 20-category variables. However, the data set has few positions with more than two
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amino-acids represented appreciably in either set of sequences, so measuring polymorphism by
binary response variables captures most of the available information (see Fig. 1).

With α = 0:05, all P-values from Fisher’s exact test less than 0:05=118 = 0:000424 are sig-
nificant by the ordinary Bonferroni method. Applying Tarone’s (1990) modification of the
Bonferroni procedure that is described in Section 3.1, we compute the sequence m.1/, m.2/, . . . ,
and stop at the first value K = k such that m.k/ � k. We obtain m.K/ = K = 25, and thus RK

contains the 25 indices with αÅ
i < 0:05=25 = 0:002 (these positions are highlighted with boxes

in Fig. 1). Because η· =Σi∈RK ηi = 0:03511 is less than α= 0:05, the significance cut-off value
0:002 can be further improved. Implementing the approach that is described in the last para-
graph of Section 3.2, the Tarone Bonferroni procedure was applied to a sequence of α-values
ranging from 0.05 to 0.10 in increments of 0.001. The largest α such that η· �0:05 was 0.081, for
which m.K/=K was 27, yielding an improved cut-off value 0:081=27=0:003, which we refer to
as the Tarone Bonferroni cut-off with adjustment. Using the three Bonferroni procedures, 6, 9
and 10 of the positions have significant P-values after multiple-comparisons adjustment.

Next, we apply Benjamini and Hochberg’s (1995) FDR procedure to the 118 positions. The
largest ordered P-value P.i/ with P.i/ � .i=118/0:05 is 0:00452, so all positions with Pi �0:00452
are significant, yielding 11 positive results. With the new Tarone-modified FDR procedure that
is described in Section 4.1, the largest P.i/ in RK with P.i/ � .i=25/0:05 is 0.01526. The increase
in cut-off value from 0.00452 to 0.01526 represents an improvement, yielding 13 compared with
11 positive results. Finally, the modified FDR procedure with adjustment was carried out, in
which the modified FDR procedure was repeated for several values of α � 0:05: The largest
αÅ >α such that

FDRÅ = 1
m.K/Å

m.K/Å∑
i=1

ηim.K/Å �0:05

is 0.058, for which m.K/Å =KÅ = 25 and RÅ
K =RK, and the Tarone-modified FDR procedure

conducted at level 0.058 (instead of 0.05) yields a cut-off value of 0.0338, and 15 positive results.
In sum, of the six multiple-comparisons procedures that were used, the five improvements all
successively make more discoveries (6, 9, 10, 11, 13 and 15).

Because the FDR procedures are only guaranteed to control FDR � 0.05 if the test statis-
tics are independent or satisfy certain conditions such as positive regression dependence (see
Section 4.2), it is possible (but unlikely) that the FDR procedures were liberal. To account
for this possibility, Benjamini and Hochberg’s (1995) FDR procedure was rerun at level
0:05=Σ118

i=1.1=i/ = 0:0093 and the Tarone-modified FDR procedures were rerun at level
0:05=Σ25

i=1.1=i/=0:0131, to provide upper bound conservative procedures that are guaranteed
to control FDR � 0:05 for completely general test statistics. Six, 10 and 10 hypotheses are
rejected by Benjamini and Hochberg’s (1995) FDR procedure and the Tarone-modified FDR
procedure without and with adjustment respectively.

In conclusion, the newly proposed FDR procedure identified 15 positions in gag p24 that are
differentially polymorphic between subtypes C and B (which are highlighted with shaded boxes
in Fig. 1). These positions can be upweighted in HIV metrics that are used in sieve analyses
of forthcoming efficacy trials of subtype C HIV vaccines that are tested either in a geographic
region where both subtype C and subtype B HIVs circulate (e.g. China) or at multiple sites, some
with subtype C HIVs and others with subtype B HIVs. In addition, multiple HIV epitopes with
different amino-acid sequences can be included in CTL epitope cocktail HIV vaccine constructs
that are under development (De Groot et al., 1997, 2003; Novitsky et al., 2002b) at the regions
containing the 15 identified positions.
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3. Background on existing multiple-comparisons procedures

3.1. Original false discovery rate procedure
Consider the problem of testing simultaneously m null hypotheses H1, . . . , Hm. Define random
variables R and V as the number of null hypotheses and the number of true null hypotheses
that are rejected by a testing procedure respectively. The FDR is defined as E.V=R/ I.R > 0/,
i.e. the expected proportion of the rejected null hypotheses that are erroneously rejected, with
FDR ≡ 0 if no hypotheses are rejected. Order the m testwise P-values P.1/ � . . . � P.m/, with
H.1/, . . . , H.m/ the corresponding null hypotheses. Fix α ∈ .0, 1/, and let k be the largest i for
which P.i/ � .i=m/α. Then, Benjamini and Hochberg’s (1995) FDR procedure specifies rejecting
H.i/ for i=1, . . . , k. For independent, continuous test statistics Benjamini and Hochberg proved
that this procedure controls the FDR at α (FDR � α), and Benjamini and Yekutieli (2001)
proved this result for independent discrete test statistics. Furthermore, Benjamini and Yekutieli
(2001) proved this result for dependent statistics satisfying certain dependence structures and
argued on the basis of simulation experiments and other means that it is expected to hold quite
generally. Main advantages of the FDR procedure include that it is often much more powerful
than FWER controlling methods and it is simple to use.

3.2. Tarone’s (1990) modified Bonferroni procedure
Given P-values P1, . . . , Pm for testing m null hypotheses H1, . . . , Hm, the original Bonferroni
procedure rejects all Hi with Pi �α=m. The main virtues of this procedure are that it controls the
FWER for any data set, and it is very simple to use. Tarone (1990) proposed a modification to
the Bonferroni procedure to make it more powerful for problems with discrete test statistics. To
help to describe this procedure as well as the new procedure in Section 4.1, consider the example
data set. Let x1i and x2i be the number of observed non-consensus amino-acids in the group 1
and group 2 sample respectively, and set x·i = x1i + x2i, i = 1, . . . , 118. By conditioning on the
denominators n1i = n2i = n1 = n2 = 73 sequences, Fisher’s exact test can be applied to obtain
unadjusted two-sided P-values P1, . . . , P118. Let αÅ

i be the minimum achievable significance
level at position i, which for this example equals

αÅ
i =2

(
n1i

x·i

)/(
n1i +n2i

x·i

)
=2× 73!

.73−x·i/!

/
146!

.146−x·i/!
:

Table 1 lists the number of positions i with observed values of x1i and x2i satisfying x·i =
1, 2, . . . , 12 and x·i > 12, and the corresponding values of αÅ

i . Note that many positions are
fairly conserved, with few non-consensus amino-acids, in which cases αÅ

i is relatively large. For
example, 83 of the 118 positions have fewer than six non-consensus amino-acids, which implies
that αÅ

i > 0:05. As illustrated in the example in Section 2, the large fraction of positions with
sizable αÅ

i can be exploited to enlarge the number of significant discoveries substantially.
Tarone’s (1990) modified Bonferroni method works as follows. For each k =1, . . . , m, let m.k/

be the number of the m tests for which αÅ
i <α=k, and let K be the smallest value of k such that

m.k/�k. Let RK be the set of indices satisfying αÅ
i <α=K, which contains m.K/ indices. Then,

the ith test is deemed significant if i is in RK and the nominal (testwise) significance level
Pi <α=K: This procedure always controls the FWER rate at level α, with the probability of at
least one false rejection (the FWER) bounded by m.K/α=K �α:

Tarone (1990) showed that the Bonferroni method can be improved further by considering
values ηi, i ∈ RK, with ηi the largest achievable significance level such that ηi �α=K: Because
FWER =Σi∈RK ηi ≡η·, it follows that, if η· <α, then it may be possible to expand the rejection
region. Tarone suggested a systematic approach whereby the tail outcome of smallest probability
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Table 1. Observed frequencies of non-consensus (i.e. non-modal) amino-acids for the two
groups of HIV amino-acid sequences of length 118 positions

Number of xi=ni for group with xi=ni for x. αÅ
i ηi† Pi

positions smaller x1i,x2i other group

50 0/73 1/73 1 1.00 ND 1.00
7 0/73 2/73 2 0.50 ND 0.50
7 1/73 1/73 2 0.50 ND 1.00
2 0/73 3/73 3 0.24 ND 0.24
6 1/73 2/73 3 0.24 ND 1.00
2 0/73 4/73 4 0.12 ND 0.12
2 1/73 3/73 4 0.12 ND 0.62
1 2/73 2/73 4 0.12 ND 1.00
5 0/73 5/73 5 0.058 ND 0.058
1 2/73 3/73 5 0.058 ND 1.00
1 0/73 6/73 6 0.028 ND 0.028
1 2/73 4/73 6 0.028 ND 0.68
1 3/73 3/73 6 0.028 ND 1.00
2 3/73 4/73 7 0.013 ND 1.00
2 0/73 8/73 8 0.0064 ND 0.0064
1 4/73 4/73 8 0.0064 ND 1.00
1 1/73 8/73 9 0.0030 ND 0.033
1 4/73 5/73 9 0.0030 ND 1.00
1 0/73 10/73 10 0.0014 0.0014 0.0014
2 2/73 8/73 10 0.0014 0.0014 0.097
1 3/73 7/73 10 0.0014 0.0014 0.33
1 0/73 11/73 11 0.00065 0.00065 0.00065
1 0/73 12/73 12 0.00030 0.00030 0.00030
1 1/73 11/73 12 0.00030 0.00030 0.0045

18 >12 <0.00030 �0.002

†ND, not defined.

not included in the current rejection region is sequentially added to make the final rejection
region as near as possible to α. This improvement is relatively complicated to implement, and in
practice it may be preferable to use a simpler adjustment, in which the unmodified Tarone pro-
cedure is repeated for a grid of values αÅ �α. The rejection decisions are based on the procedure
that is performed using the value of αÅ for which η· is closest to α without exceeding it.

4. Modification of the original false discovery rate procedure

4.1. Combining false discovery rate and Tarone’s modification
Benjamini and Yekutieli’s (2001) theorem 5.1 and its proof illuminate why the original Benja-
mini and Hochberg (1995) FDR procedure can be made more powerful for discrete data. For
independent test statistics, theorem 5.1 states that the Benjamini and Hochberg procedure con-
ducted at level α controls the FDR at exactly .m0=m/α for continuous test statistics, and at level
less than or equal to .m0=m/α for general test statistics. Equality holds for continuous test sta-
tistics because the m P-values are uniformly distributed under the null hypotheses in this case,
which implies that Pr{Pi � .k=m/α}= .k=m/α for all i, k = 1, . . . , m, which is a key step in the
proof. For discrete statistics, Pr{Pi � .k=m/α} may be less than .k=m/α and, the greater the gaps
between these terms, the greater the opportunity to improve the power.

The newly proposed modified FDR procedure is a simple two-step combination of the Tarone
and BH procedures: first, compute the integer K and the subset of m.K/ indices RK among the m
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hypotheses as described in Section 3.2; second, perform Benjamini and Hochberg’s (1995) FDR
procedure at level α on the subset of hypotheses RK: Because K, m.K/ and RK are calculated
on the basis of marginal information only (pooled over the two groups), it follows that the
FDR procedure conducted on the subset of indices in RK controls the FDR at level less than or
equal to {m0.K/=m.K/}α�α, where m0.K/ is the number of true null hypotheses among the
m.K/ tests. The modified FDR procedure simplifies to the original Benjamini and Hochberg
FDR procedure if RK consists of all m positions (K = m.K/ = m), and usually has a larger
rejection region otherwise, with the gain in power generally increasing with m−m.K/.

The improvement of the Tarone Bonferroni procedure that was described at the tail end of
Section 3.2 can also be applied to the FDR method to improve it further for some data sets. For
each i and k = 1, . . . , m.K/, let ηik be the largest achievable significance level that is less than
or equal to {k=m.K/}α: Then, on the basis of equation (19) in Benjamini and Yekutieli (2001),
it follows that, when the above modified FDR procedure is carried out at level α, the FDR is
bounded above by

m.K/∑
i=1

m.K/∑
k=1

1
k
ηikwik,

where Σm.K/
k=1 wik = 1. To derive a simple practical procedure from this inequality that usually

controls the FDR, set wik = I{k =m.K/}, so that for each i all weight is placed on the largest
ηik, ηim.K/: Under this approximation the FDR is bounded by

FDRÅ = 1
m.K/

m.K/∑
i=1

ηim.K/,

and FDRÅ may be substantially less than α. This fact leads to the following procedure: conduct
the modified FDR procedure for a grid of values αÅ �α for which FDRÅ �α, and keep the
results from the iteration for which FDRÅ is as near as possible to α without exceeding it.

4.2. Dependent test statistics
When Benjamini and Hochberg’s (1995) FDR procedure controls the FDR, so does the mod-
ified FDR procedure. When their procedure is not guaranteed to control the FDR, nor is the
modified procedure. To help to explain the effect of dependences in the test statistics on the
modified procedure, a summary is given on the known operating characteristics of Benjamini
and Hochberg’s FDR procedure applied to dependent data. First, a general result establishing
that their procedure confers FDR control for dependent test statistics is not available. Benja-
mini and Yekutieli (2001) proved that Benjamini and Hochberg’s procedure controls the FDR
for statistics with positive regression dependence, a condition that is satisfied for some statis-
tics of interest such as multivariate normal statistics with non-negative correlations between
statistics for true null hypotheses and all the other statistics. Simulation studies by Benjamini
et al. (1997) showed that Benjamini and Hochberg’s procedure controlled the FDR for equally
positively correlated normally distributed (possibly Studentized) test statistics. Fisher’s exact
test statistics that were used in the example have a limiting multivariate normal distribution,
with non-negative correlations more plausible than negative correlations, supporting that the
FDR procedures are unlikely to be liberal.

Benjamini and Yekutieli (2001) also proved that a simple modification of Benjamini and
Hochberg’s (1995) procedure controls the FDR for all forms of dependence: conducting the
FDR procedure at level α=Σm

i=1.1=i/ guarantees control of the FDR � α. This modification
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also ensures FDR control by the newly proposed procedure for general test statistics: first m.K/

and RK are computed and then Benjamini and Hochberg’s FDR procedure is run at level
α=Σm.K/

i=1 .1=i/ on the indices in RK: In addition, Yekutieli and Benjamini (1999) developed a
resampling-based FDR controlling procedure that uses information on the dependence struc-
ture of the test statistics, and they showed that it can substantially improve the power, especially
if many null hypotheses are true and the P-values for testing the true null hypotheses are highly
positively correlated. This approach could be incorporated into the new procedure; however,
the resampling method is not guaranteed to control the FDR, and more work is needed to
characterize its utility in practice.

5. Simulation study

We conduct a simulation experiment to compare the false positive error control and the power of
the new Tarone FDR procedure with those of existing multiple-comparisons procedures. Con-
sider a two-sample problem in which a vector of m independent binary responses is observed for
each of 100 individuals in each group, and the goal is to test simultaneously the m hypotheses
Hi : p1i = p2i, i = 1, . . . , m, where p1i and p2i are the success probabilities for the ith binary
response in group 1 and group 2 respectively. To study power for high dimensional data sets,
we use several large values of m: 100, 200, 400, 800, 1600 and 3200. With m1 + m2 + m3 = m,
data are generated so that the response is Bernoulli(0.01) at m1 positions for both groups, is
Bernoulli(0.10) at m2 positions for both groups and is Bernoulli(0.10) at m3 positions for group
1 and Bernoulli(0.30) at m3 positions for group 2. The small success probability (0.01) for
the m1 positions reflects the fact that they are quite conserved, with only two successes (non-
consensus amino-acids) expected for the two groups combined. The high degree of conservation
implies that many of the minimum significance levels αÅ

i for these m1 positions will be large,
which provides an opportunity for improving the power of a multiple-comparisons procedure
by accounting for the αÅ

i . For each of the m2 positions, there is substantial diversity, so the αÅ
i

will tend to be too small (less than 0.001) to be useful for improving a procedure. Whereas the
null hypothesis is true for the m1 and m2 positions, the alternative hypothesis is true for the
m3 positions, for which there is also substantial diversity and little opportunity for the Tarone
modification to confer improvement.

Three sets of simulations are run, with m1 set to be 20%, 50% or 80% of the value m. These
cases reflect ‘lightly conserved’, ‘moderately conserved’ and ‘heavily conserved’ data sets, with
increasing opportunity for gains in power via the Tarone modification. Given m1, m2 is set
to be f = 5%, 25%, 50%, 75% of the remaining m2 + m3 positions. The percentage f repre-
sents the proportion of the m2 + m3 hypotheses for which the null hypothesis is true; in total
fnull = m2=.m1 +m2f −1/% of the m null hypotheses are true. For each of the 72 parameter
configurations specified by m, m1 and f , 5000 data sets are generated. For each data set an
unadjusted P-value from Fisher’s exact test is computed for each of the m positions at which
there is at least one success in the pooled data set, and the six multiple-comparisons procedures
that are described in the example are applied. For each parameter configuration the ‘size’ of
each FDR controlling procedure is evaluated by computing the true FDR as the fraction of
the rejected hypotheses that are truly null, averaged over the 5000 simulations. In addition, the
power of each procedure is evaluated by computing the empirical expectation of the fraction of
the m3 false null hypotheses that are rejected.

Fig. 2 shows the FDRs of the three FDR controlling procedures performed at level 0.05.
For all parameter configurations, each procedure is conservative, with the unmodified proce-
dure most conservative and the modified procedure with adjustment least conservative. The
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Fig. 2. Based on the simulation study, the figure shows the FDR (the fraction of rejected null hypotheses
that are truly null averaged over the 5000 simulations) for Benjamini and Hochberg’s (1995) FDR method
(– � – � –), the Tarone-modified FDR method (— —) and the Tarone-modified FDR method with adjustment
(- — -), for testing simultaneously mD100, 200, 400, 800, 1600, 3200 hypotheses: (a) 60% of m H0s true;
(b) 37.5% of m H0s true; (c) 15% of m H0s true; (d) 40% of m H0s true; (e) 25% of m H0s true; (f) 10% of
m H0s true; (g) 20% of m H0s true; (h) 13.5% of m H0s true; (i) 5% of m H0s true; (j) 4% of m H0s true;
(k) 2.5% of m H0s true; (l) 1% of m H0s true; (a), (d), (g), (j) m1=mD0:2; (b), (e), (h), (k) m1=mD0:5; (c), (f),
(i), (l) m1=mD0:8
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new methods are consistently closer to the nominal 0.05 level than the original FDR method,
with the gap widening with the degree of conservancy of the data set (moving from left to right
across the panels). Further note that, although the relative improvement in the modified FDR
methods is substantial for all parameter configurations, all three FDR methods become more
conservative with the fraction of false null hypotheses and are highly conservative when 95% of
the m2 +m3 null hypotheses are false (Fig. 2(l)).

Fig. 3 shows the average power for the six procedures. We summarize the results. First, the
power of the Bonferroni-based methods decreases with the number of tests m, whereas the power
of the FDR-based methods is steady with m. Second, the ordinary Bonferroni method always has
the lowest power, and the two modified FDR methods always have the highest power. Third, the
extent of power gained by the modified FDR methods compared with the original FDR method

(a) does not depend on the number of tests m,
(b) increases slightly with the percentage of true null hypotheses and
(c) increases substantially with the degree of conservatism (i.e. moving from left to right

across the panels).

Fourth, when m� 200, the data set is heavily conserved and 75% of the m2 +m3 null hypoth-
eses are true (Fig. 3(c)), the Tarone modification has a greater effect on the power than the use
of the FDR versus Bonferroni procedure. Since the majority of null hypotheses are expected to
be true in many practical applications, this point highlights that Tarone’s idea can be as helpful
as the FDR idea for improving the power of a multiple-comparisons testing procedure when
the data are discrete and quite ‘conserved’. Fifth, the powers of the modified FDR procedures
with and without adjustment are comparable; this occurs because for some data sets the adjust-
ment enhances the power and for others it diminishes the power. To see why, note that the
unadjusted and adjusted methods carry out Benjamini and Hochberg’s (1995) FDR procedure
using sequential cut-off levels iα=m.K/ and iαÅ=m.K/Å respectively, whereαÅ, m.K/ and m.K/Å

depend on the particular data set and αÅ � α and m.K/Å � m.K/. These inequalities imply
that rejection regions for the adjusted method are sometimes greater than those for the unad-
justed method and sometimes smaller, depending on the relative size of the ratios α=m.K/ and
αÅ=m.K/Å. In practice, these two ratios can be computed (on the basis of pooled data only)
and, if αÅ=m.K/Å >α=m.K/, then the adjusted method is expected to be more powerful.

Additional simulations were conducted for low dimensional data sets (with m=10), and the
Tarone modification was found to provide similar gains in power over the original FDR pro-
cedure. Simulations were also performed that were equivalent to the above simulations except
that the probabilities p1i =p2i =0:1 for the m2 null positions were replaced with p1i =p2i =0:3,
and the probabilities p1i =0:1, and p2i =0:3 for the m3 alternative positions were replaced with
p1i = 0:01 and p2i = 0:1. This case was chosen to illustrate that the original FDR procedure
sometimes beats the modified procedures. The results on size were similar to those which are
reported in Fig. 2, but for lightly and moderately conserved data sets the original FDR proce-
dure consistently had the greatest power, with the gain in power increasing with the number of
hypothesis tests. This is explained by the fact that the true success probability is small in group 1
(0.01), which implies that zero successes occur in group 1 for an expected 36.6% of all positions.
For these positions, Pi from Fisher’s exact test is tiny and equals αÅ

i , and many of these indices
are excluded from RK, and therefore these truly false null hypotheses cannot be rejected by the
modified FDR methods. The original FDR procedure does have the opportunity to reject these
hypotheses, however, and by virtue of the large number of such indices the power of the original
procedure can exceed that of the modified procedures.

Finally, to assess the effect of dependences of the test statistics across amino-acid positions
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Fig. 3. Based on the simulation study, the figure shows the average power (the fraction of false null hypoth-
eses rejected averaged over the 5000 simulations) for the Bonferroni method ( ), the Tarone-modified
Bonferroni method (– – –), the Tarone-modified Bonferroni method with adjustment (. . . . . . .), Benjamini and
Hochberg’s (1995) FDR method (– � – �), the Tarone-modified FDR method (— —) and the Tarone-modified
FDR method with adjustment (- — -): (a) 60% of mH0 s true; (b) 37.5% of mH0 s true; (c) 15% of m H0s true;
(d) 40% of m H0 s true; (e) 25% of m H0 s true; (f) 10% of m H0 s true; (g) 20% of m H0 s true; (h) 13.5% of m
H0 s true; (i) 5% of m H0 s true; (j) 4% of m H0 s true; (k) 2.5% of m H0 s true; (l) 1% of m H0s true; (a), (d), (g),
(j) m1=mD0:2; (b), (e), (h), (k) m1=mD0:5; (c), (f), (i), (l) m1=mD0:8
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in the example data on the size of the procedures, simulations (with α=0:05) were conducted in
which two sets of 73 sequences were randomly sampled with replacement from the pooled set of
146 HIV sequences, and the true FWERs and FDRs were estimated on the basis of 5000 resam-
pled data sets. Resampling whole sequences for individuals preserves the dependence structure
of the data. The FDRs of all three methods were bounded by 0.01, with the original FDR proce-
dure most conservative, demonstrating that for the example the new procedures are improbably
liberal.

6. Discussion

Benjamini and Hochberg’s (1995) original FDR multiple-comparisons procedure has broad
application, including to clinical trials, genomics and microarray experiments. This paper has
developed a modified FDR procedure for discrete data, on the basis of Tarone’s (1990) modi-
fication of the Bonferroni procedure. The new procedure is simple to apply and was shown in
simulations and an example to improve the power substantially over Benjamini and Hochberg’s
FDR procedure for certain applications. The extent of the gain in power depends on the degree
of variability in the outcome of interest, with greatest gains for highly conserved data sets (e.g.
genetic sequence data sets) and negligible gains for data sets that have substantial variability
in the outcome for all hypothesis tests. The improvement that is conferred by the new method
is consistent across low dimensional and high dimensional problems, for which the number of
tests is small or large compared with the sample size respectively. In general, FDR controlling
procedures have their greatest advantage over FWER controlling procedures when the number
of hypothesis tests is large; thus the modified FDR procedure that was developed here is expected
to be particularly useful for the analysis of high dimensional data sets. For the example data set
with 146 subjects and 118 tests, the new procedure identified 15 positions in the gag p24 sequence
of HIV that are differentially polymorphic between subtypes C and B, and this information can
be applied to weight HIV metrics that are used in sieve analyses of forthcoming HIV vaccine
efficacy trials, and to inform the on-going construction of CTL epitope cocktail HIV vaccines.

In addition to the original FDR procedure, the modification that is described here can be
applied to improve several recently developed FDR controlling procedures when the data are
discrete. For example, the adaptive method of Benjamini and Hochberg (2000) proceeds as fol-
lows: an allowable FDR α is prespecified, the number of true hypotheses m0 is estimated with
an upwardly biased estimator m̂0 and Benjamini and Hochberg’s (1995) procedure is conducted
with m replaced by m̂0. Similarly, Storey (2002) proposed an upwardly biased estimator π̂0
for the probability that a null hypothesis is true and noted that, for independent test statistics,
performing Benjamini and Hochberg’s procedure with prespecified FDR =α=π̂0 controls the
FDR at level α. Both of these adaptive FDR procedures are substantially more powerful than
the original FDR procedure when a large fraction of the m null hypotheses are false, and the
Tarone modification for discrete data can be implemented directly as described in Section 4.1.

Development of FDR controlling multiple-comparisons techniques is an active area of
research, and we expect that many of the newly developed procedures can be modified straight-
forwardly by using the idea that is described here, to improve their power when the data are
discrete.
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