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Abstract

The efficacy of an HIV vaccine to prevent infection is likely to depend on the genetic

variation of the exposing virus. This paper addresses the problem of using data on the HIV

sequences that infect vaccine efficacy trial participants to 1) test for vaccine efficacy more

powerfully than procedures that ignore the sequence data; and 2) evaluate the dependence

of vaccine efficacy on the divergence of infecting HIV strains from the HIV strain that is

contained in the vaccine. Because hundreds of amino acid sites in each HIV genome are

sequenced, it is natural to treat the divergence (defined in terms of Hamming distance say) as

a continuous mark variable that accompanies each failure (infection) time. Problems 1) and

2) can then be approached by testing whether the ratio of the mark-specific hazard functions

for the vaccine and placebo groups is unity or independent of the mark, respectively. We de-

velop nonparametric and semiparametric tests for these null hypotheses, based on contrasts

of Nelson–Aalen-type estimates of cumulative mark-specific hazard functions for the two

groups. Techniques for nonparametric estimation of mark-specific vaccine efficacy based

on the cumulative mark-specific incidence functions are also developed. Numerical studies

show satisfactory performance of the procedures. The methods are illustrated with appli-

cation to HIV genetic sequence data collected in the first HIV vaccine efficacy trial. The

methodology applies generally to the study of relative risks of failure wherein a continuous

mark variable accompanies each failure event.
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1 INTRODUCTION

In many studies involving the comparison of survival data from two treatment groups, a mark

variable is measured only in failures, and it is of interest to account for this mark in comparing

the failure experience. In this article, we develop testing and estimation procedures to assess

mark-specific relative risks. Our approach is based on recent work in which we developed a test

for the dependence of a single mark-specific hazard rate on the mark variable (i.e., the “one-

sample” problem, Gilbert, McKeague and Sun, 2004).

We are motivated by applications in HIV vaccine efficacy trials. The extensive genetic diver-

sity of HIV poses one of the greatest challenges to developing an AIDS vaccine (Graham 2002).

Vaccine efficacy to prevent infection, usually defined in terms of the hazard ratio between vaccine

and placebo recipients, may decrease with the viral divergence of a challenge HIV from the virus

or viruses represented in the vaccine construct (Gilbert, Lele and Vardi, 1999). Detecting such a

decrease can help guide the development of new vaccines to provide greater breadth of protec-

tion (Gilbert et al., 2001). The relevance of our mark-specific hazard function approach is that

the “distance” between a subject’s infecting strain and the nearest vaccine strain can be viewed

as a mark variable that is only observed in subjects who experience the event (HIV infection).

From 1998 to 2003 VaxGen Inc. conducted the world’s first HIV vaccine efficacy trial (Flynn

et al., 2005). HIV uninfected volunteers at high risk for acquiring HIV were randomized to

receive the vaccine AIDSVAX (n1 = 3, 598) or placebo (n2 = 1, 805). Subjects were monitored

for 3 years for the primary study endpoint HIV infection. For each subject who became HIV

infected, the envelope glycoprotein (gp120) region of the infecting virus was sequenced. Of the

368 subjects who acquired HIV, the sequence data were collected for 336 subjects (217 of 241

vaccine; 119 of 127 placebo). VaxGen hypothesized that the level of vaccine efficacy would be

higher against HIVs with gp120 amino acid sequences that were relatively similar to either of the

two HIV strains (named MN and GNE8) that were represented in the vaccine. The distance of

each infecting virus to MN and to GNE8 was measured by the percent mismatch in the aligned

amino acid sequences (i.e., Hamming distance) for three sets of positions hypothesized to be

important for neutralizing HIV (Wyatt et al., 1998): (1) the neutralizing face core of gp120 that
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was crystalized; (2) the neutralizing face core plus the variable loop V2/V3 regions; and (3) the

V3 loop. For each metric and infecting virus, the mark is defined as the minimum of the two

distances to the MN and GNE8 reference sequences.

Gilbert, Lele and Vardi (1999) and Gilbert (2000) developed a semiparametric biased sam-

pling model as a tool for studying vaccine efficacy as a function of a continuous mark, which

parametrically specifies the relationship between vaccine efficacy and the mark, and leaves the

distribution of the mark in the infected placebo group unspecified. However, there are no data

available for suggesting the correct parametric model, so nonparametric methods are desirable.

Furthermore, the earlier work is limited by conditioning on infection, so odds ratios but not rela-

tive risks of infection can be estimated, and the model treats HIV infection as a binary outcome,

ignoring the time to HIV infection. The methods presented here were developed because they

are free from these limitations, as they are nonparametric (though semiparametric procedures are

also considered), prospective, and incorporate the failure times.

We introduce tests for the hypothesis that the mark-specific risks in the two groups coincide,

and for the hypothesis that the relative mark-specific risk between the groups is independent

of the mark. The time Tk to endpoint and the mark variable Vk for a representative individual in

group k are assumed to be jointly absolutely continuous with joint density fk(t, v). We only get to

observe (Xk, δk, δkVk), where Xk = min{Tk, Ck}, δk = I(Tk ≤ Ck), and Ck is a censoring time

assumed to be independent of both Tk and Vk, k = 1, 2. When the failure time Tk is observed,

δk = 1 and the mark Vk is also observed, whereas if Tk is censored, the mark is unknown. Since

the mark is only observed for failures, it cannot be studied as a covariate in evaluating risk. We

assume that each mark variable Vk has known and bounded support; rescaling Vk if necessary,

this support is taken to be [0, 1]. The mark-specific hazard rate in group k is

λk(t, v) = lim
h1,h2→0

P{Tk ∈ [t, t + h1), Vk ∈ [v, v + h2)|Tk ≥ t}/h1h2 (1.1)

and the mark-specific cumulative incidence function is

Fk(t, v) = lim
h2→0

P{Tk ≤ t, Vk ∈ [v, v + h2)}/h2, (1.2)

k = 1, 2, with t ranging over a fixed interval [0, τ ]. The functions (1.1) and (1.2) are related by
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the equation Fk(t, v) =
∫ t

0
λk(s, v)Sk(s) ds, where Sk(t) is the survival function for group k,

and are estimable from the observed group k competing risks failure time data. In the case of

a discrete mark variable, Gray (1988) developed a nonparametric test for comparing cumulative

incidence functions among groups, at a specified value of the mark variable.

A standard measure of vaccine efficacy to prevent infection at time t is the relative reduction

in hazard due to vaccination: VE(t) = 1 − λ1(t)/λ2(t), see Halloran, Struchiner, and Longini

(1997). It is natural to extend this definition to allow the vaccine efficacy to depend on viral

divergence: VE(t, v) = 1 − λ1(t, v)/λ2(t, v). Under the assumption of an equal distribution of

exposure to HIV strains with divergence v for vaccine and placebo recipients at all times up to

t (defensible by randomization and double-blinding), VE(t, v) approximately equals the relative

multiplicative reduction in susceptibility to strain v for vaccine versus placebo recipients under a

fixed amount of exposure to strain v at time t.

To account for the mark in testing for vaccine efficacy, we develop tests for the null hypothesis

H0
0 : λ1(t, v) = λ2(t, v) for (t, v) ∈ [0, τ ] × [0, 1]

against the following alternative hypotheses:

H0
1 : λ1(t, v) ≤ λ2(t, v) for all (t, v) ∈ [0, τ ] × [0, 1];

H0
2 : λ1(t, v) 6= λ2(t, v) for some (t, v) ∈ [0, τ ] × [0, 1]

with strict inequality for some (t, v) ∈ [0, τ ] × [0, 1] in H0
1 . The objective of testing H0

0 is to

assess if there is vaccine efficacy against any HIV strain, and as we show in simulations can

provide much greater power than standard tests of vaccine efficacy that ignore the mark.

If H0
0 is rejected, then it is of interest to assess if vaccine efficacy varies with strain distance.

Accordingly, we also develop tests for

H0: λ1(t, v)/λ2(t, v) does not depend on v for t ∈ [0, τ ]

against the following alternative hypotheses:

H1: λ1(t, v1)/λ2(t, v1) ≤ λ1(t, v2)/λ2(t, v2) for all v1 ≤ v2, t ∈ [0, τ ];

H2: λ1(t, v1)/λ2(t, v1) 6= λ1(t, v2)/λ2(t, v2) for some v1 ≤ v2, t ∈ [0, τ ]
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with strict inequality for some t, v1, v2 in H1. To develop suitable test statistics, we will exploit the

observation that H0 holds if and only if the mark-specific relative risk coincides with the ordinary

relative risk, i.e., λ1(t, v)/λ2(t, v) = λ1(t)/λ2(t) for all t, v, where λk(t) =
∫ 1

0
fk(t, v) dv/Sk(t) =

∫ 1

0
λk(t, v) dv is the group-k hazard irrespective of the mark.

Testing H0 versus H1 allows us to assess whether the instantaneous relative risk of HIV

infection for vaccine versus placebo recipients increases as a function of the divergence v of the

exposing virus. These hypotheses can be re-expressed as H0 : VE(t, v) = VE(t) for all t, v;

H1 : VE(t, v1) ≤ VE(t, v2) for all t, v1 ≥ v2 (with < for some v1 > v2); and H2 : VE(t, v1) 6=
VE(t, v2) for some t, v1 6= v2.

In Section 2 we introduce the proposed procedures for testing H 0
0 and H0. Large sample

results and a simulation technique needed to implement the test procedures are developed in

Section 3. In Section 4 we discuss nonparametric estimation of the mark-specific vaccine efficacy.

We report the results of a simulation experiment in Section 5, and an application to data from the

VaxGen trial is provided in Section 6. Section 7 contains concluding remarks. Proofs of the main

results are collected in the Appendix.

2 TEST PROCEDURE

We base our approach on estimates of the doubly cumulative mark-specific hazard functions

Λk(t, v) =
∫ v

0

∫ t

0
λk(s, u) ds du, k = 1, 2. Given observation of i.i.d. replicates (Xki, δki, δkiVki), i =

1, . . . , nk, of (Xk, δk, δkVk), k = 1, 2, the nonparametric maximum likelihood estimator (MLE)

of Λk(t, v) is provided by the Nelson–Aalen-type estimator

Λ̂k(t, v) =

∫ t

0

Nk(ds, v)

Yk(s)
, t ≥ 0, v ∈ [0, 1], (2.1)

where Yk(t) =
∑nk

i=1 I(Xki ≥ t) is the size of the risk set for group k at time t, and

Nk(t, v) =

nk∑

i=1

I(Xki ≤ t, δki = 1, Vki ≤ v)

is the marked counting process with jumps at the uncensored failure times Xki and associated

marks Vki, see Huang and Louis (1998, (3.2)).
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Our tests of H0
0 are based on comparing Λ̂1(t, v) and Λ̂2(t, v), and of H0 are based on compar-

ing the nonparametric MLE of Λ1(t, v)−Λ2(t, v) with an estimate under H0. Since H0 is equiva-

lent to Λ1(t, v) =
∫ t

0
[λ1(s)/λ2(s)]Λ2(ds, v) for all t, v, under H0 we may estimate the difference

Λ1(t, v) − Λ2(t, v) by
∫ t

0
[(λ̂1(s)/λ̂2(s)) − 1]Λ̂2(ds, v), where λ̂k(t) is a nonparametric estimator

of λk(t), as discussed below. Alternatively, under a proportional marginal hazards assumption,

λ1(t)/λ2(t) = exp(β), this difference may be estimated by
∫ t

0
[exp(β̂) − 1]Λ̂2(ds, v), where β̂

is the maximum partial likelihood estimator of β, which leads to a semiparametric test for H0.

The nonparametric approach makes minimal assumptions but requires smoothing, whereas the

semiparametric approach avoids smoothing and in principle may provide greater power when the

proportional hazards assumption holds.

For the nonparametric approach we estimate each hazard function λk(t) by kernel smoothing:

λ̂k(t) =
1

bk

∫ τ+δ

0

K

(
t − s

bk

)
dΛ̂k(s) ,

where Λ̂k(s) =
∫ t

0
(1/Yk(s)) dNk(s) is the Nelson–Aalen estimator of Λk(t) =

∫ t

0
λk(s) ds,

with Nk(t) =
∑nk

i=1 I(Xki ≤ t, δki = 1). The kernel K is a bounded symmetric function with

support [−1, 1] and integral 1. The bandwidth bk is a positive parameter that indicates the window

[t − bk, t + bk] over which Λ̂k(t) is smoothed, and converges to zero as nk → ∞. We choose

kernel esimators because they are uniformly consistent under assumptions (see Theorem IV.2.2

in Andersen et al., 1993), a property that is needed for the theoretical justification given later.

2.1 Test Processes and Test Statistics

Based on the above discussion, we introduce test processes of the form

Lr
n(t, v) =

√
n1n2

n

∫ t

a

Hn(s)
[
Λ̂1(ds, v) − r̂(s)Λ̂2(ds, v)

]
(2.2)

for t ≥ 0, 0 ≤ v ≤ 1, where Hn(·) is a suitable weight process converging to a non-random func-

tion H(·) and a ≥ 0. The superscript r reflects the choice of process r̂(s) in the test process and

indicates whether it is used to test H0
0 (indicated by r as 1, corresponding to r̂(s) = 1), to test H0

nonparametrically (indicated by r as np; r̂(s) = λ̂1(s)/λ̂2(s)) or to test H0 semiparametrically
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(indicated by r as sp; r̂(s) = exp(β̂)). A simple calculation shows that for r as np (r as sp), [·] in

(2.2) compares Λ̂1(ds, v) − Λ̂2(ds, v) to the nonparametric (semiparametric) estimate described

above of Λ1(ds, v) − Λ2(ds, v) under H0.

A variety of test statistics can be formulated as functionals of Lr
n(t, v). We develop integration

type and supremum type statistics. With wV (v) a known nonnegative weight function, large

values of the following test statistics provide evidence against H 0
0 in the direction of H1

0 (first

two statistics) or H2
0 (second two statistics):

Û1
1 = L1

n(τ, 1), Û1
2 =

∫ 1

0

wV (v)L1
n(τ, v)dv, (2.3)

Û1
3 = |L1

n(τ, 1)|, Û1
4 =

∫ 1

0

wV (v)(L1
n(τ, v))2dv. (2.4)

For testing H0, let yk(t) = P (Xk ≥ t), let τ̃ = sup{t: y1(t) > 0 and y2(t) > 0}, and assume

τ < τ̃ . With kernel smoothing, the bias term of λ̂k(t) is of order O(b2
k) for the inner points in

[bk, τ̃ − bk] and of order O(bk) for the boundary points in (0, bk) or (τ̃ − bk, τ̃). To simplify the

proofs and the conditions on the rates of convergence concerning bk, we take a > 0 and construct

the test statistics from the process Lr
n(t, v) over a ≤ t ≤ τ, 0 ≤ v ≤ 1. In practice, however,

there would be no harm in taking a = 0 in order to use as much of the data as possible (this is

done in the simulations and application).

Set ∆r
n(t, v1, v2) = Lr

n(t, v1)+Lr
n(t, v2)−2Lr

n(t, (v1+v2)/2). For r as np or sp, the following

test statistics measure departures from H0 in the direction of H1 (Û r
1 ) or H2 (Û r

2 ):

Û r
1 = sup

v1<v2

sup
0≤t1<t2<τ

[∆r
n(t2, v1, v2) − ∆r

n(t1, v1, v2)] , (2.5)

Û r
2 = sup

v1<v2

sup
0≤t1<t2<τ

|∆r
n(t2, v1, v2) − ∆r

n(t1, v1, v2)| . (2.6)

To motivate the test statistics Û r
1 and Û r

2 , we note from the proof of Theorem 2 in the Ap-

pendix that (n/n1n2)
1/2[∆r

n(t2, v1, v2)−∆r
n(t1, v1, v2)] converges in probability to δ(t1, t2, v1, v2) =

∫ t2

t1

∫ v2

v1+v2
2

H(s)(λ1(s, v)− r(s)λ2(s, v)) dv ds−
∫ t2

t1

∫ v1+v2
2

v1

H(s)(λ1(s, v)− r(s)λ2(s, v)) dv ds,

where r(s) = λ1(s)/λ2(s) or exp(β). Under H0, δ(t1, t2, v1, v2) = 0 for all t1, t2 ∈ [0, τ ]

and v1, v2 ∈ [0, 1]. Under H1 and some smoothness conditions, δ(t1, t2, v1, v2) > 0 for some
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t1 < t2 ∈ [0, τ ] and v1 < v2 ∈ [0, 1]. Therefore large values of Û r
1 (Û r

2 ) provide evidence against

H0 in the direction of H1 (H2).

In the next section, we provide results that all three processes Lr
n(t, v) (indexed by r) converge

weakly to a Gaussian process under the appropriate null hypothesis. We also state results (with

proofs given in the Appendix) on the consistency of the proposed tests against their alternatives,

and describe a simulation procedure for determining the critical values of the Û r
j .

3 LARGE-SAMPLE RESULTS

We present the asymptotic results for the nonparametric tests of H0. Parallel results for the

semiparametric tests of H0 and the tests of H0
0 follow by similar but simplified arguments; these

results are briefly stated at the end of this section.

We begin by defining notation that is used in the sequel. Let γk(t, v) = P (Xk ≤ t, δk =

1, Vk ≤ v), k = 1, 2. By the Glivenko–Cantelli Theorem, Nk(t, v)/nk and Yk(t)/nk converge

almost surely to γk(t, v) and yk(t), uniformly in (t, v) ∈ [0,∞) × [0, 1] and t ∈ [0,∞), re-

spectively. Note that we may write λk(t, v) = fk(t, v)/STk
(t), where STk

(t) = P (Tk ≥ t) and

fk(t, v) is the joint density of (Tk, Vk) for group k. Also λk(t) = fTk
(t)/STk

(t), where fTk
(t) is

the density of Tk for group k. Let D(I) be the set of all uniformly bounded, real-valued functions

on a K-dimensional rectangle I , endowed with the uniform metric. Let C(I) be the subspace of

uniformly bounded, continuous functions on I .

3.1 Asymptotic Distributions of the Test Statistics

Let Z1(t, v) and Z2(t, v) be two independent Gaussian processes defined by

Zk(t, v) =

∫ t

0

1

yk(s)
G

(k)
1 (ds, v) −

∫ t

0

G
(k)
2 (s)

yk(s)2
γk(ds, v), k = 1, 2, (3.1)

where G
(k)
1 (t, v) and G

(k)
2 (t) are continuous mean zero Gaussian processes with covariances

Cov(G
(k)
1 (s, u), G

(k)
1 (t, v)) = γk(s ∧ t, u ∧ v) − γk(s, u)γk(t, v),
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Cov(G
(k)
2 (s), G

(k)
2 (t)) = yk(s ∨ t) − yk(s)yk(t),

Cov(G
(k)
1 (s, u), G

(k)
2 (t)) = (γk(s, u) − γk(t−, u))I(t ≤ s) − γk(s, u)yk(t).

Let a(t) = 1/λ2(t) and 0 < κ = limn→∞ n1/n < 1. Define

Lnp(t, v) =
√

1 − κ

[∫ t

a

H(s)Z1(ds, v) −
∫ t

a

H(s)a(s)Λ′
2s(s, v) Z1(ds, 1)

]

−
√

κ

[∫ t

a

H(s)r(s)Z2(ds, v) −
∫ t

a

H(s)r(s)a(s)Λ′
2s(s, v) dZ2(ds, 1)

]
,(3.2)

where Λ′
2t(t, v) = ∂Λ2(t, v)/∂t.

Our first result describes the limiting null distribution of the test process and the test statistics.

Theorem 1. Suppose Hn(t) is a continuous functional of the processes Nk(t, 1) and Yk(t), k =

1, 2, t ∈ [0, τ +δ], τ +δ < τ̃ for some δ > 0. Assume there exists a uniformly continuous function

H(t) such that sup0≤t≤τ+δ |Hn(t) − H(t)| a.s.−→0 and both Hn and H have bounded variation

independent of n almost surely. Assume λk(t) is twice continuously differentiable over [0, τ +

δ], k = 1, 2, λ2(t) is bounded away from zero on [a/2, τ + δ], λ2(t, v) > 0 and ∂2Λ2(t, v)/∂t2 is

continuous on [0, τ + δ] × [0, 1]. Also assume the kernel function K(·) has bounded variation.

Suppose nb2
k → ∞ and nb6

k → 0 for k = 1, 2. Then, under H0

Lnp
n (t, v)

D−→Lnp(t, v) in D([a, τ ] × [0, 1]) as n → ∞. (3.3)

The proof of Theorem 1 immediately follows from Proposition 1 given in the Appendix. The

conditions on the rates of convergence are satisfied if bk = n−α
k for 1/6 < α < 1/2.

Let U r
j be defined the same asÛ r

j in (2.5)-(2.6), with Lr
n(t, v) replaced with Lr(t, v). By the

continuous mapping theorem, Ûnp
j

D−→Unp
j under H0, so P (Ûnp

j > cjα) → α, where cjα is the

upper α-quantile of Unp
j . However, the cjα are unknown and very difficult to estimate due to the

complicated nature of the limit process Lnp(t, v). In the next section we provide a Monte Carlo

procedure to obtain each cjα.

Theorem 2 establishes that each Ûnp
j is consistent against its alternative.

Theorem 2. In addition to the conditions given in Theorem 1, assume that λ1(t, v) and λ2(t, v)

are continuous and that H(t, v) > 0 on [0, τ ] × [0, 1]. Then, P (Ûnp
1 > c1α) → 1 as n → ∞

under H1, and P (Ûnp
2 > c2α) → 1 as n → ∞ under H2.
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Theorems 1 and 2 also hold for Lsp
n and Û sp

j , j = 1, 2, under the same conditions except

that the conditions on λk(t) are replaced by the proportional marginal hazards assumption λ1(t)/

λ2(t) = exp(β). Theorem 1 holds for L1
n under the same conditions minus any assumptions

about λk(t). We note that the tests Û1
j are not consistent tests since they are based on L1

n(τ, v) —

by integrating over t ∈ [0, τ ], differences between the two mark-specific hazard functions may

cancel in a case that the marginal hazards cross. Consistent supremum versions of these statistics

are easily constructed, however. By accumulating the contrast at the end of follow-up τ, the tests

based on Û1
j presented here may be more powerful than their supremum counterparts, in cases

that the marginal hazards do not strongly cross.

3.2 Gaussian Multipliers Simulation Procedure

We now describe a Gaussian multipliers technique for simulating each of the test processes

Lnp
n (t, v),

Lsp
n (t, v), and L1

n(t, v) under the null hypothesis, cf. Lin, Wei and Ying (1993). Note that

γk(ds, v)/yk(s) =
∫ v

0
λk(s, u) duds. By (8.2) in the Appendix and the continuous mapping

theorem, we obtain the result that
∫ t

a
y−1

k (s)
√

nk(Nk(ds, v) − Yk(s)Λk(ds, v))

=

∫ t

a

y−1
k (s)

√
nk(Nk(ds, v)/nk − γk(ds, v)) −

∫ t

a

y−2
k (s)

√
nk(Yk(s)/nk − yk(s)) γk(ds, v)

D−→Zk(t, v). (3.4)

Define the processL̃np(t, v) by replacing Zk(t, v), k = 1, 2, in Lnp(t, v) given in (3.2) with

the term on the left side of (3.4) and replacing κ with n1/n. Applying the continuous mapping

theorem again, we have L̃np(t, v)
D−→Lnp(t, v). Let Nki(t, v) = I(Xki ≤ t, δki = 1, Vki ≤ v) and

Yki(t) = I(Xki ≥ t), k = 1, 2. It follows that

L̃np(t, v) =
√

n2/nn1
−1/2

n1∑

i=1

h1i(t, v) −
√

n1/nn2
−1/2

n2∑

i=1

h2i(t, v); (3.5)

h1i(t, v) =

∫ t

a

H(s)y−1
1 (s) (N1i(ds, v) − Y1i(s)Λ1(ds, v))

−
∫ t

a

H(s)a(s)Λ′
2s(s, v)y−1

1 (s) (N1i(ds, 1) − Y1i(s)Λ1(ds, 1))
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h2i(t, v) =

∫ t

a

H(s)r(s)y−1
2 (s) (N2i(ds, v) − Y2i(s)Λ2(ds, v))

−
∫ t

a

H(s)b(s)Λ′
2s(s, v)y−1

2 (s) (N2i(ds, 1) − Y2i(s)Λ2(ds, 1))

with a(s) = 1/λ2(s), b(s) = λ1(s)/(λ2(s))
2, and Λ′

2s(s, v) = ∂Λ2(s, v)/∂s.

Define ĥki(t, v) by replacing, in hki(t, v), H(s) with Hn(s), yk(s) with Yk(s)/nk, a(s) with

â(s), and Λ′
2s(s, v) with a suitable smooth uniformly consistent estimate Λ̂′

2s(s, v) on [a, τ ]×[0, 1].

Let Wki, i = 1, . . . , nk, k = 1, 2, be i.i.d. standard normal random variables. Let

Lnp∗
n (t, v) =

√
n2

n
n1

−1/2

n1∑

i=1

ĥ1i(t, v)W1i −
√

n1

n
n2

−1/2

n2∑

i=1

ĥ2i(t, v)W2i. (3.6)

We show that the conditional weak limit of the process Lnp∗
n (t, v) given the observed data is

the same as the weak limit of Lnp
n (t, v) under the null hypothesis H0. Note that the two terms

in (3.2) and (3.6) are independent. It is easy to show that for any two points (t, v) and (s, w) in

[a, τ ]× [0, 1], n−1
k

∑nk

i=1 ĥ1i(t, v)ĥ1i(s, w)
P−→E[h1i(t, v)h1i(s, w)], since ĥki(t, v)

P−→hki(t, v) as

n → ∞. Thus, the conditional covariance of Lnp∗
n (t, v) converges to the covariance of Lnp(t, v).

It is left to show that the process Lnp∗
n (t, v) is tight (see Appendix).

Theorem 3. Under the conditions of Theorem 1, conditional on the observed data, Lnp∗
n (t, v)

D−→
Lnp(t, v) in D([a, τ ] × [0, 1]) under H0 as n → ∞, where Lnp(t, v) is given in (3.2).

Theorem 3 also holds for the semiparametric tests of H0, using the following modified test

processes. By the proof of Proposition 1, under H0

Lsp
n (t, v) =

√
n2

n

∫ t

0

Hn(s)Ẑ1(ds, v) −
√

n1

n

∫ t

0

Hn(s) exp(β̂)Ẑ2(ds, v)

−
√

n1n2

n

∫ t

0

Hn(s)[exp(β̂) − exp(β)]Λ2(ds, v). (3.7)

Let Un(β) and Jn(β) be the score function and information matrix under the proportional

marginal hazards model. It is easy to obtain that

Un(β) =
n1∑

i=1

∫ τ

0

∑n2

j=1 Y2j(s)∑n1

j=1 Y1j(s) exp(β) +
∑n2

j=1 Y2j(s)
N1i(ds, 1)
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−
n2∑

i=1

∫ τ

0

∑n1

j=1 Y1j(s) exp(β)∑n1

j=1 Y1j(s) exp(β) +
∑n2

j=1 Y2j(s)
N2i(ds, 1)

≡
n1∑

i=1

U1i(β) −
n2∑

i=1

U2i(β);

Jn(β) =
2∑

k=1

nk∑

i=1

∫ τ

0

∑n1

j=1 Y1j(s)
∑n2

j=1 Y2j(s) exp(β)

(
∑n1

j=1 Y1j(s) exp(β) +
∑n2

j=1 Y2j(s))2
Nki(ds, 1).

A routine delta method and likelihood analysis yields n1/2(exp(β̂)−exp(β)) = exp(β)(n−1Jn(β))−1n−1/2

Un(β)+op(1). From this result and (3.7), following the arguments of Section 3.2, the distribution

of Lsp
n (t, v) under H0 can be approximated by the following process Lsp∗

n (t, v) given the observed

data,

Lsp∗
n (t, v) =

√
n2

n
n1

−1/2

n1∑

i=1

[ ∫ t

0

Hn(s)(n1Y
−1
1 (s)) (N1i(ds, v) − Y1i(s)Λ1(ds, v))

−n1

n
exp(β̂)(n−1Jn(β̂))−1Û1i(β̂)

∫ t

0

Hn(s)Λ̂2(ds, v)
]
W1i

−
√

n1

n
n2

−1/2

n2∑

i=1

[ ∫ t

0

Hn(s) exp(β̂)(n2Y
−1
2 (s)) (N2i(ds, v) − Y2i(s)Λ2(ds, v))

−n2

n
exp(β̂)(n−1Jn(β̂))−1Û2i(β̂)

∫ t

0

Hn(s)Λ̂2(ds, v)
]
W2i,

where Û1i(β̂) and Û2i(β̂) are obtained from U1i(β) and U2i(β), respectively, with β, Λ1(ds, 1)

and Λ2(ds, 1) replaced by β̂, Λ̂1(ds, 1) and Λ̂2(ds, 1), respectively.

Similarly, the distribution of L1
n(t, v) under H0

0 can be approximated by L1∗
n (t, v) given the

observed data, where

L1∗
n (t, v) =

√
n1

n
n2

−1/2
n2∑

i=1

∫ t

0

Hn(s)(n2Y
−1
2 (s)) (N2i(ds, v) − Y2i(s)Λ2(ds, v))W2i

−
√

n2

n
n1

−1/2
n1∑

i=1

∫ t

0

Hn(s)(n1Y
−1
1 (s)) (N1i(ds, v) − Y1i(s)Λ1(ds, v))W1i.

3.3 Choice of Weight Process and a Graphical Procedure

In exploratory work it can be useful to examine a plot of the test process Lr
n(t, v) with the weight

process chosen to be Hn(t) = 1, and compare it with plots of (say) 5–20 realizations of the

12



simulated reference process Lr∗
n (t, v). Large values of |L1(t, v)| for some v and t suggest a

departure from H0
0 . Large values of Lnp

n (t1, v) − Lnp
n (t2, v) for some v and some t1 < t2, as

compared with the same contrast in Lnp∗
n (t, v), suggest a departure from H0 in the direction

of H1. Large absolute differences in Lnp
n (t, v) across different marks v (as compared with the

reference process) would suggest H2. This graphical procedure is illustrated in Section 6.

The test process is more variable at larger failure times, so it is advisable to choose the weight

process to downweight the upper tail of the integral, and we suggest

Hn(s) =

√
Y1(s)

n1

Y2(s)

n2
. (3.8)

The weight can also be chosen to increase power against specific alternatives (Sun, 2001).

4 ESTIMATION OF MARK-SPECIFIC VACCINE EFFICACY

Precise estimation of VE(t, v) introduced in Section 1 requires huge sample sizes, because

smoothing is required in both v and t, and generally efficacy trials do not provide sufficient

samples (Gilbert et al., 2002). Accordingly, we consider an alternative notion of mark-specific

vaccine efficacy defined in terms of cumulative incidences:

VEc(t, v) = 1 − F1(t, v)/F2(t, v),

which we call cumulative vaccine efficacy. This represents a time-averaged — rather than instan-

taneous — measure of vaccine efficacy and is much easier to estimate than VE(t, v). We also

consider the doubly cumulative vaccine efficacy

VEdc(t, v) = 1 − P (T1 ≤ t, V1 ≤ v)/P (T2 ≤ t, V2 ≤ v),

which can be estimated without smoothing and with greater precision than VEc(t, v).

A nonparametric estimator of VEc(t, v) is given by V̂E
c
(t, v) = 1− F̂1(t, v)/F̂2(t, v), where

F̂k(t, v) =
1

bk

∫ 1

0

∫ t

0

Ŝk(s−)

Yk(s)
K

(
v − u

bk

)
Nk(ds, du), (4.1)
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Ŝk(t) is the Kaplan–Meier estimate of Sk(t), K(·) is a bounded symmetric kernel function with

support [−1, 1] and integral 1, and bk > 0 is a bandwidth. The estimator F̂k(t, v) is the continuous

analog of the estimator that has been used for a discrete mark (Prentice et al., 1978).

If F1(t, v) 6= 0 and F2(t, v) 6= 0, a 100(1 − α)% pointwise confidence interval for VEc(t, v)

can be computed by transforming symmetric confidence limits about log(F1(t, v)/F2(t, v)) :

1 −
(
1 − V̂E

c
(t, v)

)
exp


±zα/2

√
V̂ar{F̂1(t, v)}

F̂1(t, v)2
+

V̂ar{F̂2(t, v)}
F̂2(t, v)2


 ; (4.2)

V̂ar{F̂k(t, v)} =
1

b2
k

∫ 1

0

∫ t

0

[
Ŝk(s−)

Yk(s)
K

(
v − u

bk

)]2

Nk(ds, du).

To estimate VEdc(t, v), each P (Tk ≤ t, Vk ≤ v) is simply estimated by F̂k1(t) =
∫ t

0

(
Ŝk(s−)/Yk(s)

)

Nk(ds, v), the estimator for the cumulative incidence function for cause of failure defined by

V ≤ v, and its variance is estimated by
∫ t

0

(
Ŝk(s−)/Yk(s)

)2

Nk(ds, v).

5 SIMULATION EXPERIMENT

The simulations are based on the features of the VaxGen trial described in the Introduction. We

study performance of the test statistics Û1
j , j = 1, 2, 3, 4; Ûnp

j and Û sp
j , j = 1, 2; and of V̂E

c
(τ, v),

with τ = 3 years. For VEc(τ, v) we focus on the end of follow-up t = τ because it is most

important scientifically to understand durability of vaccine efficacy.

The main simulations were done with Tk and Vk independent, k = 1, 2, wherein the cumula-

tive incidence function for group k is Fk(t, v) = P{Tk ≤ t}fV k(v), where fV k is the density of

Vk. In the first set of simulations we specify T1 and T2 to be exponential with parameters θλ2 and

λ2, respectively, so that the cumulative vaccine efficacy by time τ irrespective of the mark V is

given by VEc(τ) = 1− (1− exp(−λ2θτ))/(1− exp(−λ2τ)), where λ2 is the constant infection

hazard rate in the placebo group. Here θ is the constant infection hazard ratio between groups

1 and 2. In the second set of simulations we specify non-proportional hazards, wherein Vk and

T2 are distributed the same as above, and T1 is set as T1 =
√

X1, where X1 is exponential with

parameter λ1, implying λ1(t) = 2λ1t.
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We consider two true values of VEc(τ), 0.67 and 0.33. To evaluate the size of the tests of H 0
0

we also consider VEc(τ) = 0.0. We select λ2 so that 50% of placebo recipients are expected to

be infected by τ = 36 months.

Next, we specify

fV k(v) =
[
βk

(
1.51/βk − 0.51/βk

)]−1
(v + 0.5)(1/βk)−1 for 0 ≤ v ≤ 1.

Here βk = 1 corresponds to λk(t, v) not depending on v, with E(Vk) = 1/2, and βk = 0.5, 0.25

correspond to increasing levels of dependence between λk(t, v) and v, with E(Vk) = 2/3 and 4/5,

respectively. The cumulative vaccine efficacy is given by

VEc(τ, v) = 1 − (1 − VEc(τ))
β2

β1

[
1.51/β2 − 0.51/β2

1.51/β1 − 0.51/β1

]
(v + 0.5)(1/β1)−(1/β2) .

Note that VE(τ, v) = VE(τ) and VEc(τ, v) = VEc(τ) if and only if β1 = β2, so that setting

β2/β1 = 1.0 represents H0. Furthermore β2/β1 > 1 implies VE(τ, v) and VEc(τ, v) decrease

with v, so the extent of departure from H0 increases with β2/β1. We set the true (β1, β2) to be

(1.0, 1.0), (0.50, 1.0), (0.25, 1.0), (0.50, 0.50), or (0.25, 0.25). We also consider a two-sided

alternative with fV 2(v) a uniform density and fV 1(v) = 16
3
vI(v < 1

2
) + (8

3
− 8

3
v)I(v ≥ 1

2
).

Results for this case are given under the heading “2-sided” in Tables 1-3.

The weight process Hn(·) of (3.8) is used for the test statistics. For kernel estimation of

λk(t), k = 1, 2, the Epanechnikov kernel K(x) = 0.75(1 − x2)I(|x| ≤ 1) is used. For each

simulation iteration the optimal bandwidth bk is chosen to minimize an asymptotic approximation

to the mean integrated squared error of λ̂k (Andersen et al., 1993, p. 240) separately for k = 1, 2,

and the method of Gasser and Müller (1979) is used to correct for bias in the tails. An alternative

approach would jointly optimize (b1, b2) for estimating the hazard ratio. Based on Kelsall and

Diggle (1995), joint optimization does not provide appreciable efficiency gains unless the hazards

in the two groups are fairly similar. For the HIV vaccine application, it is most interesting to

assess the relationship of vaccine efficacy on viral divergence when there is some efficacy (i.e.,

the hazards are unequal), because (tautologically) some degree of protection is necessary for there

to be differential protection. For this reason we optimized bk for the hazard functions separately.
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The nominal level of the tests is set at 0.05, and critical values are calculated using 500 repli-

cates of the Gaussian multipliers technique described in Section 3.2. For estimation, the mark-

bandwidths bvk were chosen to achieve reasonably smooth estimates, which was accomplished

with bv1 = bv2 = 0.20. Bias, coverage probability of the 95% confidence intervals (4.2), and

variance estimation of V̂E
c
(τ, v) are evaluated at the three mark-values v = 0.30, 0.50, 0.80. We

choose n = 100, 200 or 400 and in addition to the 50% administrative censoring for the failure

times at 36 months we use a 10% random censoring rate in each arm. The performance statistics

are calculated based on 1000 simulated datasets.

The results in Table 1 indicate that the tests of H0
0 have appropriate sizes and high powers.

When V E(t, v) declines with v, they have greater power than the Cox model Wald test of V E =

0. Therefore accounting for the mark variable can substantially improve efficiency. This is

especially the case for Û1
2 , although this test has less power than the Cox model test if V E(t, v)

is constant in v (i.e., β1 = β2). In contrast, the power of Û1
1 is less sensitive to how strongly

V E(t, v) varies in v. The corresponding 2-sided tests Û1
3 and Û1

4 show a similar comparative

pattern but with lower power for the one-sided alternatives.

The results in Table 2 show that the tests of H0 perform well at moderate sample sizes.

Somewhat surprisingly, for small/moderate samples the semiparametric tests did not provide

greater power than the nonparametric tests in the case that the failure times had proportional

hazards. To explain this, note that the nonparametric and semiparametric test processes involve

contrasts Λ̂1(dt, v) − r̂(t)Λ̂2(dt, v), with r̂(t) = λ̂1(t)/λ̂2(t) and exp(β̂), respectively, and the

alternative hypothesis involves changes of λ1(t, v)/λ2(t, v) in v— but not in t. Since Λ̂k(dt, v)

and λ̂k(t) approximately “track” each other in t, the nonparametric test process can reduce the

noise from perturbations of λ̂1(t)/λ̂2(t) in t, whereas the semiparametric test process cannot

dampen this noise.

The small simulation study under non-proportional hazards, with H0 true with (β1, β2) =

(1.0,1.0), (0.5,0.5), or (0.25,0.25), demonstrates (as predicted from the theory) that the semi-

parametric tests are not valid when the marginal proportional hazards condition is not met. The

empirical sizes of the tests frequently missed 0.05 by an amount more than 2 or 3 Monte Carlo
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standard deviations (results not shown).

The results in Table 3 show that for moderate samples V̂E
c
(36, v) is unbiased at some param-

eter configurations and biased at others, and that the bias becomes negligible as the number of

infections grows large. The confidence intervals for VEc(36, v) have correct coverage probability

in large samples and usually perform well at smaller sample sizes, but have too-small coverage

probability for the same values of VEc(36, v) at which the estimator is substantially negatively

biased. The asymptotic variance estimates of V̂E
c
(36, v) tracked the Monte Carlo variance esti-

mates fairly closely, verifying acceptable accuracy of the variance estimators (not shown).

Additional simulations were conducted with Tk and Vk dependent for both groups, and the

test procedures showed nominal size, and power was not eroded. The simulation study was

programmed in Fortran, with pseudorandom-numbers generated with internal Fortran functions.

This program and a data analysis program are available upon request.

6 APPLICATION

We apply the methods to the data from the VaxGen trial described in the Introduction. Figure 1

shows boxplots of the three percent amino acid mismatch distances of the infecting HIV viruses

to the nearest virus (MN or GNE8) represented in the tested vaccine. The testing procedures

were implemented using the same weight function Hn(·), kernel K(·), and procedures for opti-

mal bandwidth selection and tail correction that were used in the simulation experiment. P-values

were approximated using 10,000 simulations. The MISE-optimized bandwidths bk for the esti-

mated hazards of infection λ̂1(·) and λ̂2(·) were b1 = 1.83 months and b2 = 2.10 months. For

the neutralizing face core distances, the four tests of H0
0 : VE(t, v) = 0 gave p-values spanning

0.05 to 0.32 (Figure 1(d)), with Û1
2 rejecting H0

0 at level 0.05. Based on this evidence (albeit

weak) that VE(t, v) 6= 0, we go on to test H0 : VE(t, v) = VE(t). Neither nonparametric test

rejected H0 (Figure 1(d)). The proportional hazards assumption seemed reasonable based on a

goodness-of-fit test (p = 0.35), justifying the semiparametric tests of H0, which gave nonsignif-

icant results (Figure 1(d)). To illustrate the graphical procedure, Figure 2 shows the test process
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Lnp
n (t, v) together with 8 randomly selected realization of the null test process Lnp∗

n (t, v), using a

unit weight process Hn(·) = 1. The maximum absolute deviation of Lnp
n (t, v) in t is larger than

that for all but one of the null test processes. Figures 1(e)-(f) show p-values of the tests for the

other two distances, which all exceeded 0.05.

With bandwidths bv1 and bv2 separately optimized using 2-fold cross-validation, we next es-

timated VEc(36, v) and VEdc(36, v) (Figure 3). The VEc(36, v) curves are estimated with rea-

sonable precision at mark values v not in the tail regions, and VEdc(36, v) is estimated with

reasonable precision for v not in the left tail, with precision increasing with v. For neutralizing

face core distances the estimates of VEc(36, v) and VEdc(36, v) in the regions of precision di-

minished with viral distance, which suggests that the closeness of match of amino acids in the

exposing strain versus vaccine strain in the core amino acids may have impacted the ability of

the vaccine to stimulate protective antibodies that neutralized the exposing strain. The border-

line significant result is intriguing, because this distance has the soundest biological rationale–

three-dimensional structural analysis has demonstrated that the amino acid positions used for this

distance constitute conserved neutralizing antibody epitopes (Wyatt et al., 1998).

7 CONCLUDING REMARKS

Nonparametric and semiparametric methods have been developed for testing and estimation of

relative risks taking into account a continuous mark variable observed only at uncensored failure

times, and for evaluating the relationship between the relative risk and the mark. We showed

that if the mark-specific relative risk varies with the mark, then a standard Cox model test of a

unit hazard ratio (ignoring the mark) is less powerful (and sometimes much less) than the newly

developed nonparametric procedures that test the null H 0
0 : λ1(t, v)/λ2(t, v) = 1 of a unit mark-

specific hazard ratio. This finding raises the novel idea to consider accounting for the mark

variable in primary hypothesis tests in clinical trials for which there are strong reasons to suspect

that the mark-specific relative risk is monotone in the mark. Among the statistics developed for

testing H0
0 , Û1

1 or Û1
2 are recommended, with the choice between them depending on how strongly
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the mark-specific relative risk varies with the mark in the alternative hypothesis of interest.

For testing dependency of the mark-specific relative risk on the mark, H0 : λ1(t, v)/λ2(t, v) =

λ1(t)/λ2(t), the simulations suggest that the nonparametric procedures perform better than their

semiparametric counterparts that assume proportional marginal hazards. The test based on Ûnp
1

is recommended.

Although the methods were motivated by a particular scientific problem (the question in HIV

vaccine efficacy trials of if and how efficacy of the tested vaccine varies with the genetic distance

of the infecting HIV strain), we emphasize that they provide a general solution to the two-sample

survival analysis problem with a continuous mark variable, which may have many applications.

An appeal of the procedures developed here is that they are based on a mark-specific version of

the widely-applied and well-understood Nelson–Aalen-type nonparametric maximum likelihood

estimator, and naturally extend the scope of methods that have been developed for competing

risks data with discrete (cause-of-failure) marks.
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8 APPENDIX: PROOFS OF THEOREMS

Proofs of the results in Section 3.2 are presented for the nonparametric tests of H0, involving

Lnp
n (t, v) and Ûnp

j with r(t) = λ1(t)/λ2(t). The proofs are similar and simpler for the other tests

and are omitted.

Proposition 1. Given the conditions expressed in Theorem 1,

Lnp
n (t, v) −

√
n1n2

n

∫ t

a

Hn(s)[Λ1(ds, v) − r(s)Λ2(ds, v)]
D−→Lnp(t, v) (8.1)

in D([a, τ ] × [0, 1]).

19



Proof of Proposition 1.

Using the central limit theorem for empirical processes (cf. Gilbert, McKeague and Sun,

2004, (A.4)),

√
nk(Nk(t, v)/nk − γk(t, v), Yk(t)/nk − yk(t))

D−→(G
(k)
1 (t, v), G

(k)
2 (t)) (8.2)

in D([0, τ ] × [0, 1]) × D[0, τ ], where G
(k)
1 (t, v) and G

(k)
2 (t) are continuous mean zero Gaussian

processes with covariances

Cov(G
(k)
1 (s, u), G

(k)
1 (t, v)) = γk(s ∧ t, u ∧ v) − γk(s, u)γk(t, v),

Cov(G
(k)
2 (s), G

(k)
2 (t)) = yk(s ∨ t) − yk(s)yk(t),

Cov(G
(k)
1 (s, u), G

(k)
2 (t)) = (γk(s, u) − γk(t−, u))I(t ≤ s) − γk(s, u)yk(t).

Let Ẑk(t, v) =
√

nk(Λ̂k(t, v) − Λk(t, v)). By the functional delta method as used in (A.7)–(A.8)

of Gilbert et al. (2001), we have

Ẑk(t, v)
D−→Zk(t, v) (8.3)

in D([0, τ ] × [0, 1]), where the two processes Z1(t, v) and Z2(t, v) are independent. Applying

the almost sure representation theorem (Shorack and Wellner, 1986, p. 47) as in the proof of

Proposition 2 of Gilbert, McKeague and Sun (2004), we may treat the weak convergence in (8.3)

as almost sure convergence uniformly on [0, τ ] × [0, 1].

The test process can be decomposed as follows:

Lnp
n (t, v) =

√
n1n2

n

∫ t

a

Hn(s)[Λ̂1(ds, v) − Λ1(ds, v)]

−
√

n1n2

n

∫ t

a

Hn(s)r̂(s)[Λ̂2(ds, v) − Λ2(ds, v)] +

√
n1n2

n

∫ t

a

Hn(s)[Λ1(ds, v) − r̂(s)Λ2(ds, v)]

=

√
n2

n

∫ t

a

Hn(s)Ẑ1(ds, v) −
√

n1

n

∫ t

a

Hn(s)r̂(s)Ẑ2(ds, v)

+

√
n1n2

n

∫ t

a

Hn(s)[r(s) − r̂(s)]Λ2(ds, v) +

√
n1n2

n

∫ t

a

Hn(s)[Λ1(ds, v) − r(s)Λ2(ds, v)].(8.4)

Under H0, the last term equals zero. Let â(s) = 1/λ̂2(s) and b̂(s) = λ1(s)/(λ2(s)λ̂2(s)). Let

a(s) = 1/λ2(s) and b(s) = λ1(s)/(λ2(s))
2. The third term of (8.4) equals

√
n1n2

n

∫ t

a

Hn(s)[−â(s)(λ̂1(s) − λ1(s)) + b̂(s)(λ̂2(s) − λ2(s))]Λ2(ds, v). (8.5)
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Next, the third term in (8.4) can be approximated by the integrations with respect to Ẑk(t, 1),

k = 1, 2. Note that

λ̂k(t) =
1

bk

∫ τ+δ

0

K

(
t − s

bk

)
dΛ̂k(s)

and
1

bk

∫ τ+δ

0

K

(
t − s

bk

)
dΛk(s) = λk(t) +

1

2
b2
kλ

′′
k(t)

∫ 1

−1

x2K(x) dx + O(b3
k),

uniformly in t ∈ [a, τ ]. We have, by changing the order of integration and noting the compact

support of the kernel function K(·) on [−1, 1],
√

n1n2

n

∫ t

a

Hn(s)â(s)(λ̂1(s) − λ1(s))Λ2(ds, v) (8.6)

=

√
n1n2

n

∫ τ+δ

0

[∫ t

a

1

b1

K

(
s − u

b1

)
Hn(s)â(s)Λ2(ds, v)

]
d(Λ̂1(u) − Λ1(u)) + O(

√
nb3

1)

=

√
n1n2

n

∫ t−b1

a−b1

[∫ t

a

1

b1
K

(
s − u

b1

)
Hn(s)â(s)Λ2(ds, v)

]
d(Λ̂1(u) − Λ1(u))

+

√
n1n2

n

∫ t+b1

t−b1

[∫ t

a

1

b1
K

(
s − u

b1

)
Hn(s)â(s)Λ2(ds, v)

]
d(Λ̂1(u) − Λ1(u)) + O(

√
nb3

1).

By the uniform convergence of Hn(s) to H(s) and â(s) to a(s), and the uniform continuity of

H(s) and a(s), we have

1

b1

∫ t

a

K

(
s − u

b1

)
Hn(s)â(s)Λ2(ds, v) = H(u)a(u)Λ′

2u(u, v) + op(1),

uniformly in u ∈ (a − b1, t + b1), 0 ≤ t ≤ τ , where Λ′
2u(u, v) = ∂Λ2(u, v)/∂u. Further, the

process
∫ t

a
b−1
1 K((s − u)/b1)Hn(s)â(s)Λ2(ds, v) is of bounded variation in u uniformly in n,

v ∈ [0, 1] and t ∈ [0, τ ], and H(u)a(u)Λ′
2u(u, v) is of bounded variation uniformly in v ∈ [0, 1].

It follows from Lemma A.1 of Lin and Ying (2001) that (8.6) equals
√

n1n2

n

∫ t−b1

a−b1

H(u)a(u)Λ′
2u(u, v) d(Λ̂1(u) − Λ1(u)) + O(

√
nb3

1) + O(b1)

=

√
n2

n

∫ t

a

H(s)a(s)Λ′
2s(s, v) Ẑ1(ds, 1) + O(

√
nb3

1) + op(1). (8.7)

Similarly,
√

n1n2

n

∫ t

a

Hn(s)b̂(s)(λ̂2(s) − λ2(s))Λ2(ds, v)

=

√
n1

n

∫ t

a

H(s)b(s)Λ′
2s(s, v) dẐ2(ds, 1) + O(

√
nb3

2) + op(1). (8.8)
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By (8.4), (8.6), (8.7) and (8.8), under
√

nb3
k → 0, as n → ∞ for k = 1, 2, we have

Lnp
n (t, v) =

√
n2

n

[∫ t

a

Hn(s)Ẑ1(ds, v) −
∫ t

a

H(s)a(s)Λ′
2s(s, v) Ẑ1(ds, 1)

]

−
√

n1

n

[∫ t

a

Hn(s)r̂(s)Ẑ2(ds, v) −
∫ t

a

H(s)b(s)Λ′
2s(s, v) dẐ2(ds, 1)

]

+

√
n1n2

n

∫ t

a

Hn(s)[Λ1(ds, v) − r(s)Λ2(ds, v)] + op(1).

By Lemma 1 in Bilias, Gu and Ying (1997), we have

Lnp
n (t, v) =

√
n2

n

[∫ t

a

H(s)Ẑ1(ds, v) −
∫ t

a

H(s)a(s)Λ′
2s(s, v) Ẑ1(ds, 1)

]

−
√

n1

n

[∫ t

a

H(s)r(s)Ẑ2(ds, v) −
∫ t

a

H(s)b(s)Λ′
2s(s, v) dẐ2(ds, 1)

]

+

√
n1n2

n

∫ t

a

Hn(s)[Λ1(ds, v) − r(s)Λ2(ds, v)] + op(1).

Note that b(s) = r(s)a(s). It follows by the continuous mapping theorem that

Lnp
n (t, v) −

√
n1n2

n

∫ t

a

Hn(s)[Λ1(ds, v) − r(s)Λ2(ds, v)]
D−→Lnp(t, v).

in D([a, τ ] × [0, 1]).

Proof of Theorem 2.

Under H1, the ratio λ1(t, v)/λ2(t, v) increases with v for all t ∈ [0, τ ]. Since λk(t) =
∫ 1

0
λk(t, v) dv, k = 1, 2, and under H1,

λ1(t, 0)

λ2(t, 0)
≤ λ1(t, v)

λ2(t, v)
≤ λ1(t, 1)

λ2(t, 1)
,

we have
λ1(t, 0)

λ2(t, 0)
≤ λ1(t)

λ2(t)
≤ λ1(t, 1)

λ2(t, 1)
.

Under the assumptions of Theorem 2, λ1(t,v)
λ2(t,v)

is continuous in v ∈ [0, 1] for every t ∈ [0, τ ]. By

the intermediate-value theorem, for every t ∈ [0, τ ] there exists a vt ∈ [0, 1] such that

r(t) =
λ1(t)

λ2(t)
=

λ1(t, vt)

λ2(t, vt)
.
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We choose vt to be the smallest v satisfying this equality. It follows that vt is a continuous

function of t and

λ1(t, v)

λ2(t, v)
≤ r(t) for v ≤ vt and

λ1(t, v)

λ2(t, v)
≥ r(t) for v ≥ vt.

Note that the inequality in H1 is strict for some (t, v), λk(t) =
∫ 1

0
λk(t, v) dv and the functions

λ1(t, v) and λ2(t, v) are continuous. There exists an open neighborhood of t such that 0 < vt < 1.

Let a > 0 and s1 < s2 be such that vt − a, vt + a ∈ (0, 1) for t ∈ [s1, s2]. Then

∫ vt+a

vt

H(t)(λ1(t, v) − r(t)λ2(t, v)) dv −
∫ vt

vt−a

H(t)(λ1(t, v) − r(t)λ2(t, v)) dv > 0,

for t ∈ [s1, s2]. Since the integrals above are uniform continuous functions of (t, vt) and vt is

uniform continuous, there exists a neighborhood [t1, t2] ⊂ [s1, s2] and [v1, v2] ⊂ [0, 1] such that

∫ t2

t1

∫ v2

v1+v2
2

H(s)(λ1(s, v)−r(s)λ2(s, v)) dv ds−
∫ t2

t1

∫ v1+v2
2

v1

H(s)(λ1(s, v)−r(s)λ2(s, v)) dv ds ≥ c > 0,

where c is a constant. Let δn(t1, t2, v1, v2) be the left side of the above expression with H(s) re-

placed by Hn(s). Since Hn(t)
P−→H(t) > 0 uniformly in t ∈ [0, τ ], we have

√
n1n2

n
δn(t1, t2, v1, v2)

P−→∞,

as n → ∞. By Proposition 1,

∆r
n(t2, v1, v2) − ∆r

n(t1, v1, v2) −
√

n1n2

n
δn(t1, t2, v1, v2)

=
[
(Lr

n(t2, v2) − Lr
n(t1, v2)) − (Lr

n(t2,
v1 + v2

2
) − Lr

n(t1,
v1 + v2

2
))

]

−
[
(Lr

n(t2,
v1 + v2

2
) − Lr

n(t1,
v1 + v2

2
)) − (Lr

n(t2, v1) − Lr
n(t1, v1))

]
−

√
n1n2

n
δn(t1, t2, v1, v2)

D−→
[
(Lr(t2, v2) − Lr(t1, v2)) − (Lr(t2,

v1 + v2

2
) − Lr(t1,

v1 + v2

2
))

]

−
[
(Lr(t2,

v1 + v2

2
) − Lr(t1,

v1 + v2

2
)) − (Lr(t2, v1) − Lr(t1, v1))

]
(8.9)

Applying Slusky’s Theorem, we have Û r
1

P−→∞ as n → ∞.

We note that, under H2, there exist [t1, t2] and [v1, v2] such that
∣∣∣∣∣

∫ t2

t1

∫ v2

v1+v2
2

H(s)(λ1(s, v) − r(s)λ2(s, v)) dv ds −
∫ t2

t1

∫ v1+v2
2

v1

H(s)(λ1(s, v) − r(s)λ2(s, v)) dv ds

∣∣∣∣∣ ≥ c > 0.
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Otherwise, H(s)(λ1(s, v) − r(s)λ2(s, v)) is a constant function of (s, v), which would be zero

since λk(t) =
∫ 1

0
λk(t, v) dv, k = 1, 2. Since Hn(t)

P−→H(t) > 0 uniformly in t ∈ [0, τ ], it

follows that
√

n1n2

n
|δn(t1, t2, v1, v2)| P−→∞, as n → ∞. By (8.9) and Slutsky’s Theorem, we

have Û r
2

P−→∞ as n → ∞. This completes the proof.

Proof of the tightness for Lnp∗
n (t, v) (remaining piece of the proof of Theorem 3).

To show tightness of Lnp∗
n (t, v) given the observed data sequence, it suffices to check a slight

extension of the moment conditions of Bickel and Wichura (1971) for stochastic processes on

the plane, cf. McKeague and Zhang’s (1994, page 506) extension of the moment conditions of

Billingsley (1968).

It is sufficient to show that n1
−1/2

∑n1

i=1 ĥ1i(t, v)W1i in (3.6) is tight given the observed data

sequence. The tightness of the second term follows similarly. Let B = [t1, t2]× [v1, v2] and G =

[s1, s2] × [x1, x2] be any pair of neighboring blocks in [0, τ ] × [0, 1]. Let ĥ1i(B) = ĥ1i(t2, v2) −
ĥ1i(t2, v1) − ĥ1i(t1, v2) + ĥ1i(t1, v1) and

∆(B) = n
−1/2
1

n1∑

i=1

ĥ1i(B)W1i.

We show that there exists a finite measure µ0 on [0, τ ] × [0, 1] such that

E
{

∆2(B)
∣∣∣{observed data}

}
≤ µ0(B) + op(1) (8.10)

E
{

∆2(B)∆2(G)
∣∣∣{observed data}

}
≤ µ0(B)µ0(G) + op(1), (8.11)

where the op(1) term converges to zero in probability independently of (or uniformly in) B and

G. Since a simple linear combination of tight processes is tight, it suffices to check the conditions

(8.10) and (8.11) for each of the four terms in ĥ1i. However, for ease of notation we use ĥ1i to

represent any one of the four terms.

By the uniform convergence of Hn(s), Yk(s), Nk(s, v)/nk, â(s), and Λ̂′
2s(s, v) on [a, τ ] ×

[0, 1], a simple probability argument yields that

E
{

∆2(B)
∣∣∣{observed data}

}
≤ n−1

1

n1∑

i=1

(ĥ1i(B))2 + op(1) (8.12)

E
{

∆2(B)∆2(G)
∣∣∣{observed data}

}
≤ 6n−2

1

n1∑

i=1

(ĥ1i(B))2

n1∑

i=1

(ĥ1i(G))2 + op(1)(8.13)
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Then (8.10) and (8.11) follow from working with each of the four terms of ĥ1i in (8.12) and

(8.13). The details are omitted.
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Table 1. Empirical Power (× 100%) for Testing H0
1 and H0

2

VE(τ) = 0 VE(τ) = 0.33 VE(τ) = 0.67

β1 β1 β1

nk Test Altern. 1 1 0.5 0.25 2-sided 1 0.5 0.25 2-sided

100 Cox1 5.2 65.1 65.1 65.1 61.8 99.9 99.9 99.9 99.8

(48)2 Û1
1 H0

1 7.9 68.1 72.3 78.8 58.7 99.8 1.0 1.0 96.8

Û1
2 H0

1 7.7 58.5 81.0 97.8 56.5 97.8 1.0 1.0 97.7

Û1
3 H0

2 5.9 55.4 60.2 69.7 47.3 98.9 99.5 1.0 94.8

Û1
4 H0

2 6.7 47.6 71.8 94.8 43.1 96.8 99.3 1.0 94.6

200 Cox 5.0 90.6 90.6 90.6 1.0 1.0 1.0 1.0 1.0

(95)2 Û1
1 H0

1 5.0 92.7 94.3 97.2 91.5 1.0 1.0 1.0 1.0

Û1
2 H0

1 5.3 86.0 98.4 1.0 88.1 1.0 1.0 1.0 1.0

Û1
3 H0

2 7.0 87.5 90.3 94.7 84.7 1.0 1.0 1.0 1.0

Û1
4 H0

2 5.3 81.0 95.4 1.0 79.4 1.0 1.0 1.0 1.0

400 Cox 5.8 99.7 99.7 99.7 1.0 1.0 1.0 1.0 1.0

(190)2 Û1
1 H0

1 6.6 99.9 99.9 1.0 99.5 1.0 1.0 1.0 1.0

Û1
2 H0

1 6.0 99.0 1.0 1.0 98.8 1.0 1.0 1.0 1.0

Û1
3 H0

2 5.3 99.6 99.9 1.0 99.0 1.0 1.0 1.0 1.0

Û1
4 H0

2 5.2 97.9 1.0 1.0 97.6 1.0 1.0 1.0 1.0

1Test statistic is a Wald Z-statistic based on the standard Cox model that ignores the mark.

2Average number of subjects infected in group 2 (placebo).
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Table 2. Empirical Power (× 100%) for Testing H1 and H2

VE(τ) = 0.33 VE(τ) = 0.67

β1 β1

nk Test Altern. 1 0.5 0.25 2-sided 1 0.5 0.25 2-sided

100 Û
np
1 H1 6.4 21.8 59.0 42.7 7.1 17.0 35.2 22.9

(48)1 Û
np
2 H2 6.2 15.9 47.7 43.3 6.7 12.2 26.1 20.4

Û
sp
1 H1 6.2 18.3 52.9 35.8 5.7 12.8 30.2 17.8

Û
sp
2 H2 4.4 11.1 41.4 38.8 3.5 7.3 18.7 15.3

200 Û
np
1 H1 6.3 32.4 87.0 78.3 6.7 21.0 62.7 48.8

(95)1 Û
np
2 H2 6.8 23.0 81.4 80.9 6.5 14.3 54.2 51.4

Û
sp
1 H1 5.6 29.7 84.8 76.8 5.5 20.0 61.1 46.3

Û
sp
2 H2 5.4 20.8 79.5 81.4 4.8 13.2 49.6 45.6

400 Û
np
1 H1 5.8 48.2 99.5 98.3 6.2 33.7 93.3 87.4

(190)1 Û
np
2 H2 5.2 35.8 98.6 98.7 5.8 25.4 89.2 90.4

Û
sp
1 H1 5.4 46.7 99.0 98.3 5.5 32.7 92.9 86.1

Û
sp
2 H2 4.8 35.3 98.5 98.7 5.1 23.8 87.9 89.4

1Average number of subjects infected in group 2 (placebo).
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Table 3. Bias of V̂E
c
(36, v) and 95% Coverage Probability of VEc(36, v)

VE(τ) = 0.0 VE(τ) = 0.67 VE(τ) = 0.33

β1 β1 β1

nk v 1 1 0.5 0.25 1 0.5 0.25

Average Bias × 100

100 (48)1 0.3 -6.3 −2.3 −6.3 −31.6 −2.5 −5.0 −20.8

0.5 -5.8 −1.3 −2.6 −13.7 −3.6 −3.6 −9.0

0.8 -6.3 −3.7 −3.0 −3.6 −5.2 −5.1 −9.6

200 (95)1 0.3 -2.8 −0.1 −1.6 −13.0 −0.9 −1.6 −9.0

0.5 -1.6 −0.0 −0.9 −4.8 −1.0 −2.2 −6.0

0.8 -3.5 −0.5 −0.6 −1.5 −2.1 −2.7 −5.4

400 (190)1 0.3 -1.4 −0.0 −0.4 −3.7 −0.2 −0.1 −3.0

0.5 -1.1 −0.1 −0.8 −3.6 −0.0 −0.9 −4.6

0.8 -0.8 −0.3 0.1 −0.9 −0.3 −0.2 −2.4

Coverage Probability × 100%

100 (48)1 0.3 97.6 97.9 96.0 73.9 97.2 97.3 86.6

0.5 97.7 98.6 97.5 90.0 97.5 97.9 95.2

0.8 94.7 96.0 96.2 95.4 94.6 94.9 96.1

200 (95)1 0.3 96.7 96.5 96.8 77.1 97.8 97.1 88.0

0.5 97.2 96.7 97.5 93.8 96.8 97.5 96.5

0.8 94.9 94.4 95.3 95.8 94.5 95.6 95.9

400 (190)1 0.3 96.8 95.4 96.4 87.8 96.8 97.3 92.2

0.5 96.4 96.3 95.9 93.6 96.5 97.2 96.4

0.8 96.9 96.0 96.3 96.7 96.2 96.8 96.8

1Average number of subjects infected in group 2 (placebo).
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Figure Captions

Figure 1. For the VaxGen HIV vaccine trial, the top panel of the figure shows boxplots of amino

acid Hamming distances in HIV gp120 between the infecting viruses and the nearest vaccine

strain MN or GNE8, for distances computed in (a) the neutralizing face core, (b) the neutralizing

face core plus the V2/V3 loops, and (c) the V3 loop. The bottom panel shows p-values of the

studied tests: Cox corresponds to the Wald test in the Cox model; 11, 12, 13, 14 correspond to

Û1
1 , Û1

2 , Û1
3 , Û1

4 ; n1, n2, correspond to Ûnp
1 , Ûnp

2 , ; s1, s2, correspond to Û sp
1 , Û sp

2 .

Figure 2. For the VaxGen HIV vaccine trial and neutralizing face core distances, the top-left

panel shows the observed test process Lnp
n (t, v) and the other panels show 8 randomly selected

realizations of the simulated null test process Lnp∗
n (t, v).

Figure 3. For the VaxGen HIV vaccine trial, the left panels show point and 95% confidence

interval estimates of VEc(36, v) = 1 − F1(36, v)/F2(36, v) versus the HIV gp120 amino acid

distance between infecting viruses and the nearest vaccine antigen MN or GNE8, for distances

computed in (a) the neutralizing face core, (c) the neutralizing face core plus the V2/V3 loops,

and (e) the V3 loop. The right panels show corresponding point and interval estimates of

VEdc(36, v) = 1 − P (T1 ≤ 36, V1 ≤ v)/P (T2 ≤ 36, V2 ≤ v) for these three distances. The

dashed horizontal line is the overall vaccine efficacy estimateV̂E
c
(36) = 0.048.
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Test process and 8 simulated test processes for neutralizing face core distance
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(c) Neutralizing Face Core + V2/V3 
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(d) Neutralizing Face Core + V2/V3 
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(e) V3 loop 
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(f) V3 loop
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