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Abstract

The efficacy of an HIV vaccine to prevent infection is likely to depend on the genetic variation of

the exposing virus. This paper addresses the problem of using data from an HIV vaccine efficacy trial

to detect such dependence in terms of the divergence of infecting HIV viruses in trial participants from

the HIV strain that is contained in the vaccine. Because hundreds of amino acid sites in each HIV

genome are sequenced, it is natural to treat the divergence (defined in terms of Hamming distance say)

as a continuous mark variable that accompanies each failure (infection) time. The problem can then

be approached by testing whether the ratio of the mark-specific hazard functions for the vaccine and

placebo groups is independent of the mark. We develop nonparametric tests for this null hypothesis,

using test statistics sensitive to ordered and two-sided alternatives. The test statistics are functionals of

a bivariate test process that contrasts Nelson–Aalen-type estimates of cumulative mark-specific hazard

functions for the two groups. Asymptotically correct critical values are obtained through a Gaussian

multipliers simulation technique. Techniques for estimating mark-specific vaccine efficacy based on

the cumulative mark-specific incidence functions are also developed. Numerical studies show good

performance of the procedures. The methods are illustrated with application to HIV genetic sequence

data collected in the first HIV vaccine efficacy trial.
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1 INTRODUCTION

In many longitudinal studies involving the comparison of survival data from two treatment groups, the

hazard of an endpoint event is related to a mark variable observed at the endpoint, and it is of interest

to determine whether the relative risk between the two groups depends on the mark. In this article, we

develop testing and estimation procedures to address this problem. Our approach is based on recent work

in which we developed a test for the dependence of a single mark-specific hazard rate on the mark variable

(i.e., the “one-sample” problem), see Gilbert, McKeague and Sun (2004).

We are motivated by applications in HIV vaccine efficacy trials. The broad genetic sequence diversity

of HIV poses one of the greatest challenges to developing an effective AIDS vaccine (cf., Nabel 2001,

Graham 2002). Vaccine efficacy to prevent infection, defined in terms of the hazard ratio between vaccine

and placebo recipients, may decrease with the genetic divergence of a challenge HIV from the virus or

viruses represented in the vaccine construct (Gilbert, Lele and Vardi, 1999). Detecting such a decrease

can help guide the development of new vaccines to provide greater breadth of protection (Gilbert et al.,

2001). The relevance of our mark-specific hazard function approach is that the “distance” between a

subject’s infecting strain and the nearest vaccine strain [defined based on the comparison of the two genetic

sequences, as in Gilbert, Lele and Vardi (1999) and Wu, Hsieh and Li (2001)] can be viewed as a mark

variable that is only observed in subjects who experience the endpoint event (HIV infection).

VaxGen Inc. conducted the world’s first HIV vaccine efficacy trial, in North America and the Nether-

lands during 1998–2003. At the start of the trial, 5,403 HIV uninfected volunteers at high risk for acquiring

HIV were randomized to receive 7 injections of the investigational vaccine AIDSVAX (n1 = 3, 598) or of

placebo (n2 = 1, 805). Subjects were followed for occurrence of the primary study endpoint HIV infec-

tion every six months for 3 years. For each subject who became HIV infected during the trial, blood was

drawn on the date of infection diagnosis to use for sequencing the envelope glycoprotein (gp120) region

of the infecting virus. Of the 368 subjects who acquired HIV, the sequence data were collected for 336

subjects (217 of 241 infected vaccine recipients; 119 of 127 infected placebo recipients). The vaccine

contains two genetically engineered HIV gp120 envelope glycoprotein molecules, based on two HIV iso-

lates (named MN and GNE8), and VaxGen hypothesized that the level of vaccine efficacy would be higher

against exposing HIVs with gp120 amino acid sequences that were relatively similar to at least one of the

HIV strains represented in the vaccine. Three metrics were pre-specified for comparing an infecting virus

to the MN and GNE8 strains: the percent mismatch in the aligned amino acid sequences (i.e., Hamming
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distance) for three sets of positions. The first set comprises approximately 30 discontinuous amino acids

representing the neutralizing face core of gp120 that was crystalized (Wyatt et al., 1998). The second set

consists of those positions used for the first distance plus approximately 80 amino acids in the variable

loop V2/V3 regions, which are expected to be part of the neutralizing face but could not be crystalized.

The third set is the approximately 33 amino acids in the V3 loop, which contains important neutralizing

determinants (Wyatt et al., 1998). For each metric and infecting virus, the distance was computed as the

minimum of the two distances to the MN and GNE8 sequences.

Gilbert, Lele and Vardi (1999) and Gilbert (2000) developed semiparametric biased sampling models

as a tool for studying vaccine efficacy as a function of a continuous mark. However, these methods are

limited by the facts that (i) the models condition on infection, so that odds ratios but not relative risks

of infection can be estimated; (ii) the relationship between vaccine efficacy and the mark is specified

parametrically, with scant data available for suggesting the correct parametric model; and (iii) the models

treat HIV infection as a binary outcome, and do not account for the time to HIV infection. The procedures

developed here are free from these limitations, as they are prospective, nonparametric, and incorporate the

event times.

We introduce nonparametric tests of whether the mark-specific relative risk between the two groups is

independent of the mark. The time Tk to endpoint and the mark variable Vk for a representative individual

in group k are assumed to be jointly absolutely continuous with density fk(t, v). We only get to observe

(Xk, δk, δkVk), where Xk = min{Tk, Ck}, δk = I(Tk ≤ Ck), and Ck is a censoring time assumed to be

independent of both Tk and Vk, k = 1, 2. When the failure time Tk is observed, δk = 1 and the mark Vk

is also observed, whereas if Tk is censored, the mark is unknown. We assume that each variable Vk has

known and bounded support; rescaling Vk if necessary, this support is taken to be [0, 1]. This replicates

the one-sample setup of Gilbert, McKeague and Sun (2004). The mark-specific hazard rate in group k is

λk(t, v) = lim
h1,h2→0

P{Tk ∈ [t, t + h1), Vk ∈ [v, v + h2)|Tk ≥ t}/h1h2 (1.1)

and the mark-specific cumulative incidence function is

Fk(t, v) = lim
h2→0

P{Tk ≤ t, Vk ∈ [v, v + h2)}/h2, (1.2)

k = 1, 2, with t ranging over a fixed interval [0, τ ]. The functions (1.1) and (1.2) are related by the equation

Fk(t, v) =
∫ t
0 λk(s, v)Sk(s) ds, where Sk(t) is the survival function for group k, and are estimable from

the observed group k competing risks failure time data. In the case of a discrete mark variable, Gray
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(1988) developed a nonparametric test of the null hypothesis of equal cumulative incidence functions

across groups, at a specified value of the mark.

The null hypothesis of interest in our case is

H0: λ1(t, v)/λ2(t, v) does not depend on v for t ∈ [0, τ ]

which is to be tested against the following alternative hypotheses:

H1: λ1(t, v1)/λ2(t, v1) ≤ λ1(t, v2)/λ2(t, v2) for all v1 ≤ v2, t ∈ [0, τ ];

H2: λ1(t, v1)/λ2(t, v1) �= λ1(t, v2)/λ2(t, v2) for some v1 �= v2, t ∈ [0, τ ]

with strict inequality for some t, v1 < v2 in H1. To develop suitable test statistics, we will exploit

the observation that H0 holds if and only if the mark-specific relative risk coincides with the ordinary

relative risk, i.e., λ1(t, v)/λ2(t, v) = λ1(t)/λ2(t) for all t, v, where λk(t) =
∫ 1
0 fk(t, v) dv/Sk(t) =∫ 1

0 λk(t, v) dv is the group-k hazard irrespective of the mark.

Testing H0 versus the monotone alternative H1 allows us to assess whether the instantaneous relative

risk (vaccine/placebo) of HIV infection increases as a function of the divergence v of the exposing virus. A

standard measure of vaccine efficacy to prevent infection at time t is the relative reduction in hazard due to

vaccination: VE(t) = 1−λ1(t)/λ2(t) (Halloran, Struchiner, and Longini, 1997). It is natural to extend this

definition to allow the vaccine efficacy to depend on viral divergence: VE(t, v) = 1 − λ1(t, v)/λ2(t, v).

Then, the above hypotheses can be re-expressed as H0 : VE(t, v) = VE(t) for all t, v; H1 : VE(t, v1) ≤
VE(t, v2) for all t, v1 ≥ v2 (with < for some v1 > v2); and H2 : VE(t, v1) �= VE(t, v2) for some

t, v1 �= v2. That is, testing H0 versus H1 assesses whether vaccine efficacy decreases with divergence.

These tests are biologically meaningful because, under the assumption of an equal distribution of exposure

to HIV strains with divergence v for the vaccine and placebo arms at all times up to t (defensible by

randomization and double-blinding), VE(t, v) approximately equals the relative multiplicative reduction

in susceptibility to strain v for vaccine versus placebo recipients under a fixed amount of exposure to strain

v at time t. To make this approximate interpretation of VE(t, v) exact requires both the assumption of

equal exposure to strain v for the vaccine and placebo arms and that the probability of infection conditional

on exposure to strain v is homogeneous among subjects within each study arm (Halloran, Haber and

Longini, 1992).

An alternative notion of mark-specific vaccine efficacy is given in terms of cumulative incidences:

VEc(t, v) = 1 − F1(t, v)/F2(t, v),
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which we call cumulative vaccine efficacy. This represents a time-averaged– rather than instantaneous–

measure of vaccine efficacy and is much easier to estimate than VE(t, v). We also consider the doubly

cumulative vaccine efficacy

VEdc(t, v) = 1 − P (T1 ≤ t, V1 ≤ v)/P (T2 ≤ t, V2 ≤ v),

which can be estimated without smoothing and with greater precision than VEc(t, v).

In Section 2 we introduce the proposed test procedure and discuss estimation of the cumulative and

doubly cumulative vaccine efficacies. Large sample results and a simulation technique needed to imple-

ment the test procedure are developed in Section 3. We report the results of a simulation experiment in

Section 4, and an application to data from the VaxGen trial is provided in Section 5. Section 6 contains

concluding remarks. Proofs of the main results are collected in the Appendix.

2 TEST PROCEDURE

We base our approach on estimates of the doubly cumulative mark-specific hazard functions Λk(t, v) =∫ v
0

∫ t
0 λk(s, u) ds du, k = 1, 2. The idea is to compare a nonparametric estimate of Λ1(t, v) − Λ2(t, v)

with an estimate under H0.

Given observation of i.i.d. replicates (Xki, δki, δkiVki), i = 1, . . . , nk, of (Xk, δk, δkVk), k = 1, 2, the

nonparametric maximum likelihood estimator of Λk(t, v) is provided by the Nelson–Aalen-type estimator

Λ̂k(t, v) =
∫ t

0

Nk(ds, v)
Yk(s)

, t ≥ 0, v ∈ [0, 1], (2.1)

where Yk(t) =
∑nk

i=1 I(Xki ≥ t) is the size of the risk set for group k at time t, and

Nk(t, v) =
nk∑
i=1

I(Xki ≤ t, δki = 1, Vki ≤ v)

is the marked counting process with jumps at the uncensored failure times Xki and associated marks Vki,

cf. Huang and Louis (1998, (3.2)).

Notice that H0 holds if and only if λ1(t, v)/λ2(t, v) = λ1(t)/λ2(t) for all t, v, which is equiva-

lent to Λ1(t, v) =
∫ t
0 [λ1(s)/λ2(s)]Λ2(ds, v) for all t, v. Thus, under H0 we may estimate the contrast

Λ1(t, v)−Λ2(t, v) by
∫ t
0 [(λ̂1(s)/λ̂2(s))−1]Λ̂2(ds, v), where λ̂k(t) is a nonparametric estimator of λk(t),

as discussed below.
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We estimate each hazard function λk(t) by smoothing the increments of the Nelson–Aalen estimator, a

technique developed by Rice and Rosenblatt (1976), Yandell (1983), Ramlau-Hansen (1983), and Tanner

and Wong (1983). The estimator of λk(t) is given by

λ̂k(t) =
1
bk

∫ τ+δ

0
K

(
t − s

bk

)
dΛ̂k(s) ,

where Λ̂k(s) =
∫ t
0 (1/Yk(s)) dNk(s) is the ordinary Nelson–Aalen estimator of Λk(t) =

∫ t
0 λk(s) ds, with

Nk(t) =
∑nk

i=1 I(Xki ≤ t, δki = 1). The kernel function K is a bounded symmetric function with support

[−1, 1] and integral 1. The bandwidth bk is a positive parameter that indicates the window [t − bk, t + bk]

over which the Nelson–Aalen estimator is smoothed, and converges to zero as nk → ∞. We choose kernel

esimators because they are nonparametric and they are uniformly consistent under assumptions, a property

that is needed for the theoretical justification given later. Specifically, if [t1, t2] is an interval satisfying

0 < t1 < t2 ≤ τ, λk is continuous on [0, τ + δ], and

infs∈[0,τ+δ]b
2
kYk(s)

P−→∞ as n → ∞,

then λ̂k converges uniformly in probability to λk on [t1, t2] (see Theorem IV.2.2 in Andersen et al. 1993).

2.1 Test Processes and Test Statistics

Based on the above discussion, we now introduce test processes of the form

Ln(t, v) =
√

n1n2

n

∫ t

a
Hn(s)

[
Λ̂1(ds, v) − λ̂1(s)

λ̂2(s)
Λ̂2(ds, v)

]
(2.2)

for t ≥ 0, 0 ≤ v ≤ 1, where Hn(·) is a suitable weight process converging to H(t) and a ≥ 0. Note that

the statistic can be made symmetric by incorporating λ̂2(·) into Hn(·).
Let yk(t) = P (Xk ≥ t) and τ̃ = sup{t: y1(t) > 0 and y2(t) > 0} and assume τ < τ̃ . With kernel

smoothing, the bias term of λ̂k(t) is of order O(b2k) for the inner points in [bk, τ̃ − bk] and of order O(bk)

for the boundary points in (0, bk) or (τ̃ − bk, τ̃ ). To simplify the proofs and the conditions on the rates of

convergence concerning bk, we take a > 0 and construct the test statistics from the process Ln(t, v) over

a ≤ t ≤ τ, 0 ≤ v ≤ 1. In practice, however, there would be no harm in taking a = 0, or close to zero in

order to use as much of the data as possible (this is done in the simulations and application below). The

following test statistics are proposed to measure departures from H0 in the directions of H1 and H2:

Û1 = sup
0≤v≤1

sup
a<t1<t2<τ

(Ln(t1, v) − Ln(t2, v)), (2.3)
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Û2 = sup
0≤v1<v2≤1

sup
a<t<τ

|Ln(t, v2) − Ln(t, v1)|. (2.4)

Simple calculation shows that (n/n1n2)1/2(Ln(t1, v) − Ln(t2, v)) converges to

Γ(v, t1, t2) =
∫ v

0

∫ t2

t1

H(s)λ2(s, u)[r(s) − λ1(s, u)/λ2(s, u)] ds du,

where r(s) = λ1(s)/λ2(s). Under H1 and suitable smoothness conditions (for the details, see the proof

of Theorem 2 in the Appendix), it can be shown that r(s) > λ1(s, u)/λ2(s, u) for all s in some interval

[t1, t2] and all u in some interval [0, v], implying that Γ(v, t1, t2) > 0. However, under H0, we have

Γ(v, t1, t2) = 0 for all v, t1, t2. Thus a large value of Û1 provides evidence against H0 in the direction of

H1. A similar argument motivates Û2 as a natural test statistic for detecting the two-sided alternative H2.

Several other functionals of Ln(t, v) were evaluated as test statistics, and Û1 and Û2 were found to have

the greatest power.

In the next section, we show that Ln(t, v) converges weakly to a Gaussian process under H0. We also

show that the proposed test based on Ûj is consistent against its alternative, j = 1, 2. Since eachÛj above

is a continuous functional of Ln(t, v), its limiting null distribution is the distribution of the corresponding

functional of the limiting Gaussian process. These distributions are intractable, however, so we determine

the critical values of the Ûj with a simple simulation procedure, described in Section 3.2

2.2 Estimation of Cumulative Vaccine Efficacy

Confidence intervals for VE(t, v) are too wide to discern patterns in mark-specific efficacy within efficacy

trials, see Gilbert et al. (2002). On the other hand, the cumulative vaccine efficacy VEc(t, v) = 1 −
F1(t, v)/F2(t, v) can be estimated relatively easily because smoothing is not required over t, only over v.

A nonparametric estimator is given by V̂E
c
(t, v) = 1 − F̂1(t, v)/F̂2(t, v), where

F̂k(t, v) =
1

bvk

∫ 1

0

∫ t

0

Ŝk(s−)
Yk(s)

K

(
v − u

bvk

)
Nk(ds, du), (2.5)

Ŝk(t) is the Kaplan–Meier estimate of Sk(t), K(·) is a bounded symmetric kernel function with support

[−1, 1] and integral 1, and bvk > 0 is a bandwidth. The estimator F̂k(t, v) is the continuous analog of

the estimator that has been used for a discrete mark (Fine and Gray, 1999; McKeague, Gilbert and Kanki,

2001).
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If F1(t, v) �= 0 and F2(t, v) �= 0, a 100(1 − α)% pointwise confidence interval for VEc(t, v) can be

computed by transforming symmetric confidence limits about log(F̂1(t, v)/F̂2(t, v)) :

1 −
(
1 − V̂E

c
(t, v)

)
exp

±zα/2

√
V̂ar{F̂1(t, v)}

F̂1(t, v)2
+

V̂ar{F̂2(t, v)}
F̂2(t, v)2

 , (2.6)

where

V̂ar{F̂k(t, v)} =
1

b2
vk

∫ 1

0

∫ t

0

[
Ŝk(s−)
Yk(s)

K

(
v − u

bvk

)]2

Nk(ds, du).

To estimate the doubly cumulative vaccine efficacy VEdc(t, v), each P (Tk ≤ t, Vk ≤ v) is simply esti-

mated by F̂k1(t) =
∫ t
0

(
Ŝk(s−)/Yk(s)

)
Nk(ds, v), the estimator for the cumulative incidence function

with the discrete cause of failure 1 defined by V ≤ v, and its variance is estimated by
∫ t
0

(
Ŝk(s−)/Yk(s)

)2

Nk(ds, v). Similarly as for VEc(t, v), a confidence interval for VEdc(t, v) can be constructed by trans-

forming symmetric confidence limits about log(P (T1 ≤ t, V1 ≤ v)/P (T2 ≤ t, V2 ≤ v)), where the

estimated variance of the log ratio is obtained via the delta method.

3 LARGE-SAMPLE RESULTS

We begin by defining notation that is used in the sequel. Let γk(t, v) = P (Xk ≤ t, δk = 1, Vk ≤ v), k =

1, 2. By the Glivenko–Cantelli Theorem, Nk(t, v)/nk and Yk(t)/nk converge almost surely to γk(t, v)

and yk(t), uniformly in (t, v) ∈ [0,∞) × [0, 1] and t ∈ [0,∞), respectively. Note that we may write

λk(t, v) = fk(t, v)/STk
(t), where STk

(t) = P (Tk ≥ t) and fk(t, v) is the joint density of (Tk, Vk) for

group k. Also, λk(t) = fTk
(t)/STk

(t), where fTk
(t) is the density of Tk for group k. Let D(I) be the

set of all uniformly bounded, real-valued functions on a K-dimensional rectangle I , endowed with the

uniform metric. Let C(I) be the subspace of uniformly bounded, continuous functions on I .

3.1 Asymptotic Distributions of the Test Statistics

Let Z1(t, v) and Z2(t, v) be two independent Gaussian processes defined by

Zk(t, v) =
∫ t

0

1
yk(s)

G
(k)
1 (ds, v) −

∫ t

0

G
(k)
2 (s)

yk(s)2
γk(ds, v), k = 1, 2, (3.1)

where G
(k)
1 (t, v) and G

(k)
2 (t) are continuous mean zero Gaussian processes with covariances

Cov(G(k)
1 (s, u), G(k)

1 (t, v)) = γk(s ∧ t, u ∧ v) − γk(s, u)γk(t, v),
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Cov(G(k)
2 (s), G(k)

2 (t)) = yk(s ∨ t) − yk(s)yk(t),

Cov(G(k)
1 (s, u), G(k)

2 (t)) = (γk(s, u) − γk(t−, u))I(t ≤ s) − γk(s, u)yk(t).

Let r(t) = λ1(t)/λ2(t), a(t) = 1/λ2(t) and 0 < κ = limn→∞ n1/n < 1. Define

L(t, v) =
√

1 − κ

[∫ t

a
H(s)Z1(ds, v) −

∫ t

a
H(s)a(s)Λ′

2s(s, v)Z1(ds, 1)
]

−√
κ

[∫ t

a
H(s)r(s)Z2(ds, v) −

∫ t

a
H(s)r(s)a(s)Λ′

2s(s, v) dZ2(ds, 1)
]

, (3.2)

where Λ′
2t(t, v) = ∂Λ2(t, v)/∂t.

Our first result describes the limiting null distribution of the test process and the test statistics.

Theorem 1. Let the weight process Hn(t) be a continuous functional of the processes Nk(t, 1) and Yk(t),

k = 1, 2, t ∈ [0, τ+δ], τ+δ < τ̃ for some δ > 0. Assume there exists a uniformly continuous function H(t)

such that sup0≤t≤τ+δ |Hn(t)−H(t)| a.s.−→0 and both Hn and H have bounded variation independent of n

almost surely. Assume λk(t) is twice continuously differentiable over [0, τ + δ], k = 1, 2, λ2(t) is bounded

away from zero on [a/2, τ + δ], λ2(t, v) > 0 and ∂2Λ2(t, v)/∂t2 is continuous on [0, τ + δ] × [0, 1]. Also

assume the kernel function K(·) has bounded variation. Suppose nb2k → ∞ and nb6
k → 0 for k = 1, 2.

Then, under H0

Ln(t, v) D−→L(t, v) (3.3)

in D([a, τ ] × [0, 1]) as n → ∞.

The proof of Theorem 1 immediately follows from Proposition 1 given in the Appendix. The condi-

tions on the rates of convergence are satisfied if, for example, bk = n−α
k for 1/6 < α < 1/2.

Let U1 and U2 be defined the same as Û1 and Û2 in (2.3) and (2.4), respectively, with Ln(·) replaced

with L(·). By the continuous mapping theorem, Ûj
D−→Uj under H0, so P (Ûj > cjα) → α, where cjα

is the upper α-quantile of Uj . However, the cjα are unknown and very difficult to estimate due to the

complicated nature of the limit process L(t, v). In the next section we provide a Monte Carlo procedure

to obtain each cjα. Before proceeding, we show that the test statistics Ûj are consistent against their

respective alternatives.

Theorem 2. In addition to the conditions given in Theorem 1, assume that λ1(t, v) and λ2(t, v) are

continuous and that H(t, v) > 0 on [0, τ ] × [0, 1]. Then, P (Û1 > c1α) → 1 as n → ∞ under H1 and

P (Û2 > c2α) → 1 as n → ∞ under H2.
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3.2 Gaussian Multipliers Simulation Procedure

We now describe a Gaussian multipliers technique for simulating the test process Ln(t, v) under the null

hypothesis, cf. Lin, Wei and Ying (1993) and Lin, Wei and Fleming (1994). By (7.2) in the Appendix and

the continuous mapping theorem, we obtain∫ t

0

1
yk(s)

√
nk(Nk(ds, v)/nk − γk(ds, v)) −

∫ t

0

1
yk(s)2

√
nk(Yk(s)/nk − yk(s)) γk(ds, v)

D−→Zk(t, v). (3.4)

Define the process L̃(t, v) by replacing Zk(t, v), k = 1, 2, in L(t, v) given in (3.2) with the term on

the left side of (3.4) and replacing κ with n1/n. Applying the continuous mapping theorem again, we have

L̃(t, v) D−→L(t, v). Let Nki(t, v) = I(Xki ≤ t, δki = 1, Vki ≤ v) and Yki(t) = I(Xki ≥ t), k = 1, 2. It

follows that

L̃(t, v) =
√

n2/nn1
−1/2

n1∑
i=1

h1i(t, v) −
√

n1/nn2
−1/2

n2∑
i=1

h2i(t, v), (3.5)

where

h1i(t, v) =
∫ t

a
H(s)y−1

1 (s) (N1i(ds, v) − γ1(ds, v))

−
∫ t

a
H(s)y−2

1 (s)(Y1i(s) − y1(s)) γ1(ds, v)

−
∫ t

a
H(s)y−1

1 (s)a(s)Λ′
2s(s, v) (N1i(ds, 1) − γ1(ds, 1))

+
∫ t

a
H(s)y−2

1 (s)a(s)Λ′
2s(s, v)(Y1i(s) − y1(s))γ1(ds, v)

and

h2i(t, v) =
∫ t

a
H(s)y−1

2 (s)r(s) (N2i(ds, v) − γ2(ds, v))

−
∫ t

a
H(s)y−2

2 (s)r(s)(Y2i(s) − y2(s)) γ2(ds, v)

−
∫ t

a
H(s)y−1

2 (s)b(s)Λ′
2s(s, v) (N2i(ds, 1) − γ2(ds, 1))

+
∫ t

a
H(s)y−2

2 (s)b(s)Λ′
2s(s, v)(Y2i(s) − y2(s))γ2(ds, v),

with a(s) = 1/λ2(s), b(s) = λ1(s)/(λ2(s))2, and Λ′
2s(s, v) = ∂Λ2(s, v)/∂s.

Define ĥki(t, v) by replacing, in hki(t, v), H(s) with Hn(s), yk(s) with Yk(s)/nk, γk(s, v) with

Nk(s, v)/nk, a(s) with â(s), and Λ′
2s(s, v) with a suitable smooth uniformly consistent estimateΛ̂′

2s(s, v)
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on [a, τ ] × [0, 1]. Let Wki, i = 1, . . . , nk, k = 1, 2 be i.i.d. standard normal random variables. Let

L∗
n(t, v) =

√
n2

n
n1

−1/2
n1∑
i=1

ĥ1i(t, v)W1i −
√

n1

n
n2

−1/2
n2∑
i=1

ĥ2i(t, v)W2i. (3.6)

We show that the conditional weak limit of the process L∗n(t, v) given the observed data is the same

as the weak limit of Ln(t, v) under the null hypothesis H0. Note that the two terms in (3.2) and (3.6) are

independent. It is easy to show that for any two points (t, v) and (s,w) in [a, τ ] × [0, 1],

n−1
k

nk∑
i=1

ĥ1i(t, v)ĥ1i(s,w) P−→E[h1i(t, v)h1i(s,w)],

since ĥki(t, v) P−→hki(t, v) as n → ∞. Thus, the conditional covariance of L∗
n(t, v) converges to the

covariance of L(t, v). It is left to show that the processes L∗n(t, v) is tight (see Appendix). Therefore,

under H0 the conditional limit process of L∗
n(t, v) given the observed data sequence equals the limit

process L(t, v) in distribution.

Theorem 3. Under the conditions of Theorem 1, conditional on the observed competing risks data se-

quence,

L∗
n(t, v) D−→L(t, v) (3.7)

in D([a, τ ] × [0, 1]) under H0 as n → ∞, where L(t, v) is given in (3.2).

3.3 Choice of Weight Process and a Graphical Procedure

In exploratory work it can be useful to examine a plot of the test process Ln(t, v) with the weight process

chosen to be Hn(t) = 1, and compare it with plots of (say) 5–20 realizations of the simulated reference

process L∗
n(t, v). Large values of the contrast Ln(t1, v) − Ln(t2, v) for some v and some t1 < t2, as

compared with the same contrast in L∗
n(t, v), then suggest a departure from H0 in the direction of H1.

Large absolute differences in Ln(t, v) across different marks v (as compared with the reference process)

would suggest H2. This graphical procedure is illustrated in Section 5.

The test process is more variable at larger failure times, so it is advisable to choose the weight process

to downweight the upper tail of the integral. In addition, it is desirable to have a symmetric test process,

so we suggest the following choice of weight process:

Hn(s) = λ̂2(s)

√
Y1(s)
n1

Y2(s)
n2

. (3.8)
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The weight process can also be chosen to increase the power of the tests for some specific alternatives, cf.

Sun (2001).

If it is of interest to test the hypothesis that the mark-specific hazard ratio is independent of the mark

over a subinterval [v1, v2], then the testing procedure can be applied with Hn(s, v) made to depend on v

and set equal to zero outside of [v1, v2].

4 SIMULATION EXPERIMENT

The simulations are based on the features of the VaxGen trial described in the Introduction, in which vac-

cine and placebo recipients were monitored for infection during a τ = 36 month period after enrollment.

We study performance of the test statistics Û1 and Û2, and of the cumulative vaccine efficacy estimator

V̂E
c
(τ, v). The latter is only considered at the end of follow-up t = τ , because it is most important

scientifically to understand durability of vaccine efficacy, and precision is maximized at τ.

To set up the simulation experiment, first consider the case with Tk and Vk independent, k = 1, 2.

The cumulative incidence function for group k is then Fk(t, v) = P{Tk ≤ t}fV k(v), where fV k is the

density of Vk. We specify T1 and T2 to be exponential with parameters θλ2 and λ2, respectively, so

that the cumulative vaccine efficacy by time τ irrespective of the mark V is given by VEc(τ) = 1 − (1 −
exp(−λ2θτ))/(1−exp(−λ2τ)), where λ2 is the constant infection hazard rate in the placebo group. Here θ

is the constant infection hazard ratio between groups 1 and 2, which could itself be used to measure overall

vaccine efficacy. We consider two true values of VEc(τ), 0.67 and 0.33, corresponding to a moderately

and weakly efficacious vaccine, respectively. In addition, we select λ2 so that 50% of placebo recipients

are expected to be infected by τ = 36 months.

Next, we specify

fV k(v) =
1

βk

(
1.51/βk − 0.51/βk

) (v + 0.5)(1/βk)−1 for 0 ≤ v ≤ 1. (4.1)

Here βk = 1 corresponds to λk(t, v) not depending on v, with E(Vk) = 1/2, and βk = 0.5, 0.25

correspond to two different levels of dependence between λk(t, v) and v, with E(Vk) = 2/3 and 4/5,

respectively. The degree of dependence of λk(t, v) on v increases as βk decreases, and the cumulative

vaccine efficacy is given by

VEc(τ, v) = 1 − (1 − VEc(τ))
β2

β1

[
1.51/β2 − 0.51/β2

1.51/β1 − 0.51/β1

]
(v + 0.5)(1/β1)−(1/β2) ;
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this curve and the curve VE(τ, v) are depicted in panels (a) and (b) of Figure 1. Note that VE(τ, v) =

VE(τ) and VEc(τ, v) = VEc(τ) if and only if β1 = β2, so that setting β2/β1 = 1.0 represents the null

hypothesis. Furthermore β2/β1 > 1 implies VE(τ, v) and VEc(τ, v) decrease with v, so the extent of

departure from H0 increases with β2/β1. We set the true (β1, β2) to be (1.0,1.0), (0.50,1.0), or (0.25,1.0).

We also consider a two-sided alternative with fV 2(v) a uniform density and fV 1(v) = 16
3 vI(v <

1
2) + (8

3 − 8
3v)I(v ≥ 1

2). This alternative specifies VE(τ, v) and VEc(τ, v) as step functions ((c) and (d)

of Figure 1). Results for the two-sided case are given under the heading “2-sided” in Tables 1 and 2.

Next, we consider a case with Tk and V dependent for both groups. For the monotone alternative

H1, we use Fk(t, v) = P{Tk ≤ t|Vk = v}fV k(v) = (1 − exp(−θI(k=1)λt/(v + 1)))fV k(v), with

fV k(v) = (1/βk)v
1

βk
−1

. As in the independent case, β2/β1 = 1.0 represents the null hypothesis and

β2/β1 > 1.0 represents the alternative hypotheses with VE(t, v) and VEc(t, v) decreasing with v ((e)

and (f) of Figure 1). The true parameter pairs (β1, β2) are the same as in the independent case. For a

two-sided alternative, we use Fk(t, v) = (1 − exp(−θI(k=1)λt/(v + 1)))fV k(v), with fV 1 and fV 2 as in

the independent case (see (g) and (h) of Figure 1). For both the 1-sided and 2-sided dependent cases, we

select λ such that conditional on v = 0.5, 50% of placebo recipients are expected to fail by 36 months,

and θ such that VEc(τ, v = 0.5) = 0.67 or 0.33.

The weight process Hn(·) of (3.8) is used for the test statistics. For kernel estimation of λk(t), k =

1, 2, the Epanechnikov kernel K(x) = 0.75(1 − x2)I(|x| ≤ 1) is used. For each simulation iteration the

optimal bandwidth bk is chosen to minimize an asymptotic approximation to the mean integrated squared

error (Andersen et al., 1993, p. 240), and the method of Gasser and M̈uller (1979) is used to correct

for bias in the tails. An alternative approach to optimizing the bandwidths separately for each hazard

function would jointly optimize the bandwidths for estimating the hazard ratio; this issue was investigated

by Kelsall and Diggle (1995). Based on their results, joint optimization does not provide appreciable

efficiency gains unless the hazards in the two groups are fairly similar. For the HIV vaccine application, it is

most interesting to assess the relationship of vaccine efficacy on viral divergence when there is substantial

efficacy (i.e., the hazards are unequal), because (tautologically) some degree of protection is necessary for

there to be differential protection. For this reason we optimized the hazard functions separately.

The nominal level of the tests is set at 0.05, and critical values are calculated using 500 replicates of

the Gaussian multipliers technique described in Section 3.2. For estimation the mark-bandwidths bvk are

set at 0.20. Bias, coverage probability of the 95% confidence intervals (2.6), and variance estimation of
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V̂E
c
(τ, v) are evaluated at the three mark-values v = 0.30, 0.50, 0.80. We choose n = 100 or 200 and

in addition to the 50% administrative censoring for the failure times at 36 months we use a 10% random

censoring rate in each arm. The performance statistics are calculated based on 1000 simulated datasets.

The results in Tables 1 and 2 indicate that the tests perform well at moderate sample sizes, although

for VEc(τ) = 0.67 the procedures are conservative. For HIV vaccine efficacy trials of realistic size (∼190

infections in the placebo arm), the tests have high power to detect the alternative hypotheses considered.

The results in Table 3 show that the bias in V̂E
c
(36, v) becomes negligible as the number of infections

grows large. For small or moderate samples (45 or 90 infections in the placebo arm), the estimator is

approximately unbiased under the null β1 = 0, is slightly biased when β1 = 0.5, is moderately biased

when β1 = 0.25 and v = 0.5, and is largely biased when β1 = 0.25 and v = 0.3. The large negative

bias occurs because for small v, VEc(36, v) is near the upper boundary 1.0. The confidence intervals for

VEc(36, v) have correct coverage probability in large samples and usually perform well at smaller sample

sizes, but have too-small coverage probability for the same values of VEc(36, v) at which the estimator is

substantially negatively biased. The asymptotic variance estimates ofV̂E
c
(36, v) tracked the Monte Carlo

variance estimates fairly closely, verifying acceptable accuracy of the variance estimators (not shown).

The simulation study was programmed in Fortran, with pseudorandom-numbers generated with inter-

nal Fortran functions. This program and a data analysis program are available upon request.

5 APPLICATION

We apply the methods to the data from the VaxGen trial described in the Introduction. Figure 2 shows box-

plots of the three percent amino acid mismatch distances of the infecting HIV viruses to the nearest gp120

sequence (MN or GNE8) in the tested vaccine. The neutralizing face core distances ranged from 0.032

to 0.22 with medians 0.11 and 0.085 in the vaccine and placebo groups, the neutralizing face core plus

V2/V3 distances ranged from 0.071 to 0.32 with medians 0.17 in each group, and the V3 loop distances

ranged from 0.036 to 0.46 with medians 0.14 and 0.18 in the vaccine and placebo groups, respectively.

The testing procedures were implemented using the same weight function Hn(·), kernel K(·), and

procedures for optimal bandwidth selection and tail correction that were used in the simulation experiment.

P-values were approximated using 10,000 simulations. The MISE-optimized bandwidths for the estimated

hazards of infection λ̂1(·) and λ̂2(·) were 1.83 months and 2.10 months, respectively.
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The tests based on Û1 and on Û2 gave nonsignificant results for all three distances (p > 0.05). In

order of the distances presented in Figure 2, Û1 equaled 0.408 (p = 0.058), 0.287 (p = 0.39), and 0.214

(p = 0.68), respectively, and Û2 equaled 0.393 (p = 0.40), 0.340 (p = 0.72), and 0.432 (p = 0.34). To

illustrate the graphical procedure, for the neutralizing face core distances Figure 3 shows the test process

Ln(t, v) together with 8 randomly selected realization of the null test process L∗n(t, v), using a unit weight

function Hn(·) = 1. The maximum absolute deviation of Ln(t, v) in t is larger than that for all but one of

the null test processes, which is consistent with the fairly small p-value fromÛ2 of 0.058.

With bandwidths bv1 = bv2 set to be one-quarter of the observed range of V for each HIV metric,

we next estimated VEc(36, v) and VEdc(36, v) with 95% pointwise confidence intervals (Figure 4). The

overall vaccine efficacy estimate V̂E
c
(36) = 0.048 is included for reference. The VEc(36, v) curves are

estimated with reasonable precision at mark values v not in the tail regions, and VEdc(36, v) is estimated

with reasonable precision for v not in the left tail, with precision increasing with v. For neutralizing face

core distances the estimates of VEc(36, v) and VEdc(36, v) in the regions of precision diminished with

viral distance, which suggests that the closeness of match of amino acids in the exposing strain versus

vaccine strain in the core amino acids may have impacted the ability of the vaccine to stimulate protective

antibodies that neutralized the exposing strain. However, because the confidence intervals include both 0

and V̂E
c
(36) at all marks v, the evidence for decreasing efficacy with viral distance is not significant. This

result is consistent with the outome of the testing procedures.

For the neutralizing face core + V2/V3 distances, the estimated vaccine efficacy curves are horizontal

in the region of precision, supporting no differential efficacy. In contrast, for the V3 loop distances vaccine

efficacy appears to increase with viral distance (Figure 4(e)). However, the confidence intervals are wide

for large values of v, and a result of increasing VEc(36, v) with v is opposite to the biologically plausible

scenario of decreasing VEc(36, v) with v.

In conclusion, the testing and estimation procedures do not support that vaccine efficacy varied signif-

icantly with any of the three HIV distances studied. This result is expected from the fact that the overall

estimate of vaccine efficacy was near zero. It is intriguing that a trend towards decreasing efficacy with

larger distances from the vaccine antigens was found for the neutralizing face core distance, as this dis-

tance has the soundest biological rationale; three-dimensional structural analysis has demonstrated that the

amino acid positions used for this distance constitute conserved neutralizing antibody epitopes (Wyatt et

al., 1998).

15



6 CONCLUDING REMARKS

The problem addressed here, evaluating the relationship between the relative risk of failure and a continu-

ous mark variable observed only at uncensored failure times, is important and has broad application. For

HIV vaccine trials, the methods can be used for confirmatory assessments of specific viral metrics hypoth-

esized to be associated with vaccine efficacy, and for exploratory assessments, in which the tests are carried

out for many metrics (e.g., based on different sets of sites in the HIV genome and incoporating different

weight functions reflecting the relative immunological significance of different amino acid substitutions)

to generate hypotheses about what attributes of HIV divergence are most immunologically relevant. Both

the confirmatory and exploratory analyses provide critical input into the process of immunogen design to

iteratively improve a candidate vaccine’s breadth of protective efficacy. The testing procedures can also be

used for power calculations in the design of HIV vaccine trials. The test based onÛ1 is preferred for the

monotone alternative H1 and the test based on Û2 is preferred for the two-sided alternative H2.

The situation in which a failure time is measured in two groups and the mark characterizes the causal

agent, encountered in HIV vaccine trials, occurs in many other disease applications. For example, in an

anti-HIV therapeutic trial, subjects randomized to various treatments are followed until treatment failure,

and the genetic sequence or phenotypic susceptibility of the HIV is measured at baseline and at the fail-

ure time (Gilbert et al., 2000). For each failed subject, a viral distance is calculated between the two time

points; this distance is designed to measure the evolution of the virus towards a drug-resistant form. Evalu-

ating the dependency of the relative risk of failure on this accumulated resistance distance assesses whether

the metric is more associated with clinical resistance for one treatment than the other. In other settings it is

of interest to compare treatment groups by the relationship between the risk of death and a quality-of-life

score or a lifetime medical cost. An appeal of the procedures developed here for addressing such problems

is that they are based on a mark-specific version of the widely-applied and well-understood Nelson–Aalen-

type nonparametric maximum likelihood estimator, and naturally extend the scope of methods that have

been developed for competing risks data with discrete (cause-of-failure) marks.
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7 APPENDIX: PROOFS OF THEOREMS

Proposition 1. Given the conditions expressed in Theorem 1,

Ln(t, v) −
√

n1n2

n

∫ t

a
Hn(s)[Λ1(ds, v) − r(s)Λ2(ds, v)] D−→L(t, v) (7.1)

in D([a, τ ] × [0, 1]).

Proof of Proposition 1.

Using the central limit theorem for empirical processes (cf. Gilbert, McKeague and Sun, 2004, (A.4)),

√
nk(Nk(t, v)/nk − γk(t, v), Yk(t)/nk − yk(t))

D−→(G(k)
1 (t, v), G(k)

2 (t)) (7.2)

in D([0, τ ]× [0, 1])×D[0, τ ], where G
(k)
1 (t, v) and G

(k)
2 (t) are continuous mean zero Gaussian processes

with covariances

Cov(G(k)
1 (s, u), G(k)

1 (t, v)) = γk(s ∧ t, u ∧ v) − γk(s, u)γk(t, v),

Cov(G(k)
2 (s), G(k)

2 (t)) = yk(s ∨ t) − yk(s)yk(t),

Cov(G(k)
1 (s, u), G(k)

2 (t)) = (γk(s, u) − γk(t−, u))I(t ≤ s) − γk(s, u)yk(t).

Let Ẑk(t, v) =
√

nk(Λ̂k(t, v)−Λk(t, v)). By the functional delta method as used in (A.7)–(A.8) of Gilbert

et al. (2001), we have

Ẑk(t, v) D−→Zk(t, v) (7.3)

in D([0, τ ] × [0, 1]), where the two processes Z1(t, v) and Z2(t, v) are independent. Applying the almost

sure representation theorem (Shorack and Wellner, 1986, p. 47) as in the proof of Proposition 2 of Gilbert,

McKeague and Sun (2004), we may treat the weak convergence in (7.3) as almost sure convergence uni-

formly on [0, τ ] × [0, 1].

Let r(t) = λ1(t)/λ2(t) and r̂(t) = λ̂1(t)/λ̂2(t). The test process can be decomposed as follows:

Ln(t, v) =
√

n1n2

n

∫ t

a
Hn(s)[Λ̂1(ds, v) − Λ1(ds, v)]

−
√

n1n2

n

∫ t

a
Hn(s)r̂(s)[Λ̂2(ds, v) − Λ2(ds, v)] +

√
n1n2

n

∫ t

a
Hn(s)[Λ1(ds, v) − r̂(s)Λ2(ds, v)]

=
√

n2

n

∫ t

a
Hn(s)Ẑ1(ds, v) −

√
n1

n

∫ t

a
Hn(s)r̂(s)Ẑ2(ds, v)

+
√

n1n2

n

∫ t

a
Hn(s)[r(s) − r̂(s)]Λ2(ds, v) +

√
n1n2

n

∫ t

a
Hn(s)[Λ1(ds, v) − r(s)Λ2(ds, v)]. (7.4)
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Under H0, the last term equals zero. Let â(s) = 1/λ̂2(s) and b̂(s) = λ1(s)/(λ2(s)λ̂2(s)). Let a(s) =

1/λ2(s) and b(s) = λ1(s)/(λ2(s))2. The third term of (7.4) equals√
n1n2

n

∫ t

a
Hn(s)[−â(s)(λ̂1(s) − λ1(s)) + b̂(s)(λ̂2(s) − λ2(s))]Λ2(ds, v). (7.5)

Next, the third term in (7.4) can be approximated by the integrations with respect toẐk(t, 1), k = 1, 2.

Note that

λ̂k(t) =
1
bk

∫ τ+δ

0
K

(
t − s

bk

)
dΛ̂k(s)

and
1
bk

∫ τ+δ

0
K

(
t − s

bk

)
dΛk(s) = λk(t) +

1
2
b2
kλ

′′
k(t)

∫ 1

−1
x2K(x) dx + O(b3

k),

uniformly in t ∈ [a, τ ]. We have, by changing the order of integration and noting the compact support of

the kernel function K(·) on [−1, 1],√
n1n2

n

∫ t

a
Hn(s)â(s)(λ̂1(s) − λ1(s))Λ2(ds, v) (7.6)

=
√

n1n2

n

∫ τ+δ

0

[∫ t

a

1
b1

K

(
s − u

b1

)
Hn(s)â(s)Λ2(ds, v)

]
d(Λ̂1(u) − Λ1(u)) + O(

√
nb3

1)

=
√

n1n2

n

∫ t−b1

a−b1

[∫ t

a

1
b1

K

(
s − u

b1

)
Hn(s)â(s)Λ2(ds, v)

]
d(Λ̂1(u) − Λ1(u))

+
√

n1n2

n

∫ t+b1

t−b1

[∫ t

a

1
b1

K

(
s − u

b1

)
Hn(s)â(s)Λ2(ds, v)

]
d(Λ̂1(u) − Λ1(u)) + O(

√
nb3

1).

By the uniform convergence of Hn(s) to H(s) and â(s) to a(s), and the uniform continuity of H(s) and

a(s), we have

1
b1

∫ t

a
K

(
s − u

b1

)
Hn(s)â(s)Λ2(ds, v) = H(u)a(u)Λ′

2u(u, v) + op(1),

uniformly in u ∈ (a − b1, t + b1), 0 ≤ t ≤ τ , where Λ′
2u(u, v) = ∂Λ2(u, v)/∂u. Further, the process∫ t

a b−1
1 K((s − u)/b1)Hn(s)â(s)Λ2(ds, v) is of bounded variation in u uniformly in n, v ∈ [0, 1] and

t ∈ [0, τ ], and H(u)a(u)Λ′
2u(u, v) is of bounded variation uniformly in v ∈ [0, 1]. It follows from Lemma

A.1 of Lin and Ying (2001) that (7.6) equals√
n1n2

n

∫ t−b1

a−b1

H(u)a(u)Λ′
2u(u, v) d(Λ̂1(u) − Λ1(u)) + O(

√
nb3

1) + O(b1)

=
√

n2

n

∫ t

a
H(s)a(s)Λ′

2s(s, v) Ẑ1(ds, 1) + O(
√

nb3
1) + op(1). (7.7)
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Similarly, √
n1n2

n

∫ t

a
Hn(s)b̂(s)(λ̂2(s) − λ2(s))Λ2(ds, v)

=
√

n1

n

∫ t

a
H(s)b(s)Λ′

2s(s, v) dẐ2(ds, 1) + O(
√

nb3
2) + op(1). (7.8)

By (7.4), (7.6), (7.7) and (7.8), under
√

nb3
k → 0, as n → ∞ for k = 1, 2, we have

Ln(t, v) =
√

n2

n

[∫ t

a
Hn(s)Ẑ1(ds, v) −

∫ t

a
H(s)a(s)Λ′

2s(s, v) Ẑ1(ds, 1)
]

−
√

n1

n

[∫ t

a
Hn(s)r̂(s)Ẑ2(ds, v) −

∫ t

a
H(s)b(s)Λ′

2s(s, v) dẐ2(ds, 1)
]

+
√

n1n2

n

∫ t

a
Hn(s)[Λ1(ds, v) − r(s)Λ2(ds, v)] + op(1).

By Lemma 1 in Bilias, Gu and Ying (1997), we have

Ln(t, v) =
√

n2

n

[∫ t

a
H(s)Ẑ1(ds, v) −

∫ t

a
H(s)a(s)Λ′

2s(s, v) Ẑ1(ds, 1)
]

−
√

n1

n

[∫ t

a
H(s)r(s)Ẑ2(ds, v) −

∫ t

a
H(s)b(s)Λ′

2s(s, v) dẐ2(ds, 1)
]

+
√

n1n2

n

∫ t

a
Hn(s)[Λ1(ds, v) − r(s)Λ2(ds, v)] + op(1).

Note that b(s) = r(s)a(s). It follows by the continuous mapping theorem that

Ln(t, v) −
√

n1n2

n

∫ t

a
Hn(s)[Λ1(ds, v) − r(s)Λ2(ds, v)] D−→L(t, v).

in D([a, τ ] × [0, 1]).

Proof of Theorem 2.

Under H1, the ratio λ1(t, v)/λ2(t, v) increases with v for all t ∈ [0, τ ]. Since λk(t) =
∫ 1
0 λk(t, v) dv,

k = 1, 2, and under H1,
λ1(t, 0)
λ2(t, 0)

≤ λ1(t, v)
λ2(t, v)

≤ λ1(t, 1)
λ2(t, 1)

,

we have
λ1(t, 0)
λ2(t, 0)

≤ λ1(t)
λ2(t)

≤ λ1(t, 1)
λ2(t, 1)

.

Under the assumptions of Theorem 2, λ1(t,v)
λ2(t,v) is continuous in v ∈ [0, 1] for every t ∈ [0, τ ]. By the

intermediate-value theorem, for every ∈ [0, τ ] there exists a vt ∈ [0, 1] such that

r(t) =
λ1(t)
λ2(t)

=
λ1(t, vt)
λ2(t, vt)

.
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Since λ1(t, v)/λ2(t, v) increases with v for all t ∈ [0, τ ], we have

λ1(t, v)
λ2(t, v)

≥ r(t) for v ≥ vt and
λ1(t, v)
λ2(t, v)

≤ r(t) for v ≤ vt.

Further, since
∫ 1
0 H(t)(λ1(t, v) − r(t)λ2(t, v)) dv = 0, we have

∫ v
0 H(t)(λ1(t, v) − r(t)λ2(t, v)) dv ≤ 0

for (t, v) ∈ [0, τ ]× [0, 1]. Note that the inequality in H1 is strict for some (t, v) and the functions λ1(t, v)

and λ2(t, v) are continuous. It follows that under H1, there exists a neighborhood [t1, t2] × [v1, v2] such

that ∫ v

0
H(t)(λ1(t, v) − r(t)λ2(t, v)) dv ≤ c < 0.

Since Hn(t) P−→H(t) > 0 uniformly in t ∈ [0, τ ], we have√
n1n2

n
sup

0≤v≤1
sup

a≤t1≤t2≤τ

(
−

∫ t2

t1

∫ v

0
Hn(s)(λ1(s, v) − r(s)λ2(s, v)) dv ds

)
P−→∞,

as n → ∞. By Proposition 1,

Ln(t2, v) − Ln(t1, v) −
√

n1n2

n

∫ t2

t1

∫ v

0
Hn(s)(λ1(s, v) − r(s)λ2(s, v)) dv ds

D−→L(t2, v) − L(t1, v).

Applying Slusky’s Theorem, we have Û1
P−→∞ as n → ∞.

Now, under H2, by the continuity of the functions, there exist t ∈ [0, τ ] and [v1, v2], such that∣∣∣∣∫ t

0

∫ v2

v1

H(s)(λ1(s, v) − r(s)λ2(s, v)) dv ds

∣∣∣∣ ≥ c > 0.

Since Hn(t) P−→H(t) > 0 uniformly in t ∈ [0, τ ], we have
√

n1n2
n | ∫ t

0

∫ v2

v1
Hn(s)(λ1(s, v)−r(s)λ2(s, v)) dv ds|

P−→∞ as n → ∞. By Proposition 1,

Ln(t, v2) − Ln(t, v1) −
√

n1n2

n

∫ t

0

∫ v2

v1

Hn(s)(λ1(s, v) − r(s)λ2(s, v)) dv ds

D−→L(t, v2) − L(t, v1).

By Slutsky’s Theorem, |Ln(t, v2)−Ln(t, v1)| P−→∞. Therefore Û2
P−→∞ as n → ∞. This completes the

proof.

Proof of the tightness for L∗
n(t, v).
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To show tightness of L∗
n(t, v) given the observed data sequence, it suffices to check a slight extension of

the moment conditions of Bickel and Wichura (1971) for stochastic processes on the plane, cf. McKeague

and Zhang’s (1994, page 506) extension of the moment conditions of Billingsley (1968).

It is sufficient to show that n1
−1/2

∑n1
i=1 ĥ1i(t, v)W1i in (3.6) is tight given the observed data sequence.

The tightness of the second term follows similarly. Let B = [t1, t2] × [v1, v2] and G = [s1, s2] × [x1, x2]

be any pair of neighboring blocks in [0, τ ] × [0, 1]. Let ĥ1i(B) = ĥ1i(t2, v2)− ĥ1i(t2, v1)− ĥ1i(t1, v2) +

ĥ1i(t1, v1) and

∆(B) = n
−1/2
1

n1∑
i=1

ĥ1i(B)W1i.

We show that there exists a finite measure µ0 on [0, τ ] × [0, 1] such that

E

{
∆2(B)

∣∣∣∣{observed data}
}

≤ µ0(B) + op(1) (7.9)

E

{
∆2(B)∆2(G)

∣∣∣∣{observed data}
}

≤ µ0(B)µ0(G) + op(1), (7.10)

where the op(1) term converges to zero in probability independently of (or uniformly in) B and G. Since

a simple linear combination of tight processes is tight, it suffices to check the conditions (7.9) and (7.10)

for each of the four terms in ĥ1i. However, for ease of notation we use ĥ1i to represent any one of the four

terms.

By the uniform convergence of Hn(s), Yk(s), Nk(s, v)/nk , â(s), and Λ̂′
2s(s, v) on [a, τ ] × [0, 1], a

simple probability argument yields that

E

{
∆2(B)

∣∣∣∣{observed data}
}

≤ n−1
1

n1∑
i=1

(ĥ1i(B))2 + op(1) (7.11)

E

{
∆2(B)∆2(G)

∣∣∣∣{observed data}
}

≤ 6n−2
1

n1∑
i=1

(ĥ1i(B))2
n1∑
i=1

(ĥ1i(G))2 + op(1) (7.12)

Then (7.9) and (7.10) follow from working with each of the four terms of ĥ1i in (7.11) and (7.12). The

details are omitted.
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Table 1. Empirical power (× 100%) for testing H1 and H2; hazard and mark independent

VEc(τ) = 0.67 VEc(τ) = 0.33

β1 β1

nk Test 1 0.5 0.25 2-sided 1 0.5 0.25 2-sided

100 (48)1 U1 (16)2 3.4 13.0 49.3 4.0 (32)2 7.1 29.8 85.5 18.0

U2 2.8 5.0 14.9 23.5 6.2 11.0 42.5 61.3

200 (95)1 U1 (31)2 2.7 20.2 81.8 5.6 (64)2 6.5 46.2 99.0 31.9

U2 1.9 5.0 36.7 53.4 5.3 16.8 81.3 91.5

400 (190)1 U1 (62)2 2.3 29.1 99.3 20.8 (128)2 4.4 65.9 100 68.3

U2 1.0 11.0 77.3 89.9 4.0 32.7 99.2 99.7

1Average number of subjects infected in group 2 (placebo).

2Average number of subjects infected in group 1 (vaccine) under H0.
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Table 2. Empirical power (× 100%) for testing H1 and H2; hazard and mark dependent

VEc(τ) = 0.67 VEc(τ) = 0.33

β1 β1

nk Test 1 0.5 0.25 2-sided 1 0.5 0.25 2-sided

100 (48)1 U1 (16)2 3.0 25.6 75.0 4.3 (32)2 5.6 71.7 99.2 26.0

U2 2.8 8.3 35.8 20.8 6.4 34.0 73.7 66.1

200 (95)1 U1 (31)2 1.4 47.4 98.0 8.5 (64)2 5.7 95.2 100 49.5

U2 1.7 18.0 65.1 46.3 6.5 67.2 98.5 92.9

400 (190)1 U1 (62)2 0.6 82.2 100 24.4 (128)2 4.3 99.9 100 83.6

U2 1.8 47.0 95.7 87.0 5.5 94.2 100 99.9

1Average number of subjects infected in group 2 (placebo).

2Average number of subjects infected in group 1 (vaccine) under H0.
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Table 3. Bias of V̂E
c
(36, v) and 95% coverage probability of VEc(36, v); hazard and mark independent

VEc(τ) = 0.67 VEc(τ) = 0.33

β1 β1

nk v 1 0.5 0.25 1 0.5 0.25

Average Bias × 100

100 (48)1 0.3 −2.3 −6.3 −31.6 −2.5 −5.0 −20.8

0.5 −1.3 −2.6 −13.7 −3.6 −3.6 −9.0

0.8 −3.7 −3.0 −3.6 −5.2 −5.1 −9.6

200 (95)1 0.3 −0.1 −1.6 −13.0 −0.9 −1.6 −9.0

0.5 −0.0 −0.9 −4.8 −1.0 −2.2 −6.0

0.8 −0.5 −0.6 −1.5 −2.1 −2.7 −5.4

400 (190)1 0.3 −0.0 −0.4 −3.7 −0.2 −0.1 −3.0

0.5 −0.1 −0.8 −3.6 −0.0 −0.9 −4.6

0.8 −0.3 0.1 −0.9 −0.3 −0.2 −2.4

Coverage Probability × 100%

100 (48)1 0.3 97.9 96.0 73.9 97.2 97.3 86.6

0.5 98.6 97.5 90.0 97.5 97.9 95.2

0.8 96.0 96.2 95.4 94.6 94.9 96.1

200 (95)1 0.3 96.5 96.8 77.1 97.8 97.1 88.0

0.5 96.7 97.5 93.8 96.8 97.5 96.5

0.8 94.4 95.3 95.8 94.5 95.6 95.9

400 (190)1 0.3 95.4 96.4 87.8 96.8 97.3 92.2

0.5 96.3 95.9 93.6 96.5 97.2 96.4

0.8 96.0 96.3 96.7 96.2 96.8 96.8

1Average number of subjects infected in group 2 (placebo).
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Figure Captions

Figure 1. The figure shows the true VE(36, v) (solid lines) and true VEc(36, v) (dashed lines) used in

the simulation study for (a) VEc(36) = 0.67, mark and hazard independent (indep), 1-sided alternative;

(b) VEc(36) = 0.33, indep, 1-sided; (c) VEc(36) = 0.67, indep, 2-sided; (d) VEc(36) = 0.33, in-

dep, 2-sided; (e) VEc(36, v = 0.5) = 0.67, mark and hazard dependent (dep), 1-sided alternative; (f)

VEc(36, v = 0.5) = 0.33, dep, 1-sided; (g) VEc(36, v = 0.5) = 0.67, dep, 2-sided; (h) VEc(36, v =

0.5) = 0.33, dep, 2-sided.

Figure 2. For the VaxGen HIV vaccine trial, the figure shows boxplots of amino acid Hamming distances

in HIV gp120 between the infecting viruses and the nearest vaccine strain MN or GNE8, for distances

computed in (a) the neutralizing face core, (b) the neutralizing face core plus the V2/V3 loops, and (c) the

V3 loop.

Figure 3. For the VaxGen HIV vaccine trial and neutralizing face core distances, the top-left panel shows

the observed test process Ln(t, v) and the other panels show 8 randomly selected realizations of the sim-

ulated null test process L∗
n(t, v).

Figure 4. For the VaxGen HIV vaccine trial, the left panels show point and 95% confidence interval es-

timates of VEc(36, v) = 1 − F1(36, v)/F2(36, v) versus the HIV gp120 amino acid distance between

infecting viruses and the nearest vaccine antigen MN or GNE8, for distances computed in (a) the neu-

tralizing face core, (c) the neutralizing face core plus the V2/V3 loops, and (e) the V3 loop. The right

panels show corresponding point and interval estimates of VEdc(36, v) = 1 − P (T1 ≤ 36, V1 ≤ v)/

P (T2 ≤ 36, V2 ≤ v) for these three distances.
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(b) Neutralizing Face Core 
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(c) Neutralizing Face Core + V2/V3 
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(d) Neutralizing Face Core + V2/V3 
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(e) V3 loop 
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(f) V3 loop
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