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Summary. Estimating the effects of a toxin on fetal development in animal models such as mice can be
problematic, because the number of pups that develop and survive until birth may simultaneously affect
developmental outcomes such as birth weight and be affected by the introduction of a toxin into the fetal
environment. Also, comparing pups that survived until birth at a high dose of the toxin with pups that
survived at low doses may underestimate the effect of the toxin, because the lower dose means include the
less healthy pups that would not survive if exposed to a higher level of toxin. We consider this problem in a
potential outcomes framework that defines the effect of the dose on the outcome as the difference between
what the outcome would have been for a pup had the dam in which the pup develops been exposed to dose
level Z = z∗ rather than dose level Z = z. To disentangle the direct effect of dose from the effect of litter
size, we focus on effects defined within principal strata that are a function of the survival status of the pups
at each of the possible dose levels. A unique contribution to the potential outcomes literature is that we
allow the outcome for a subject to be dependent on the principal stratum to which other subjects within a
cluster belong.
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1. Introduction
In developmental toxicology, the number of pups that develop
and survive until birth may simultaneously affect develop-
mental outcomes such as birth weight and be affected by the
introduction of a toxin into the fetal environment. Catalano
and Ryan (1992) attempted to adjust for this effect by in-
cluding litter size as a covariate in their model, which consid-
ered a joint outcome of birth weight and fetal malformation.
Dunson, Chen, and Harry (2003) considered a latent variable
model that modeled birth weight, fetal malformation, and live
pup litter size using a random effect common to both model
components to induce dependence. However, these approaches
do not directly address the fact that, if experiments are be-
ing conducted in placental mammals where multiple births
are common (e.g., mice), had the developmental environment
been different, a different number of pups might have sur-
vived to birth, affecting the amount of nutrients and space
available for growth in the womb. Further, pups that survive
to birth at a high dose level of a toxin might be healthier on
average, and thus any comparison between the observed out-
come under high doses with the observed outcome under low
doses might underestimate the effect of the toxin, because the
lower dose means include the less healthy pups that would not
survive if exposed to a higher level of toxin.

To deal with these issues we consider an alternative
“counterfactual” or “potential outcomes” approach (Neyman,
1923; Rubin, 1974, 1978) in which the effect of the dose on
the outcome is defined as the difference between what the out-
come would have been for the mice in a dam had the dam been
exposed to dose level Z = z∗ rather than dose level Z = z. A
particular problem that we encounter in making an inference
in this context is censoring by death (Robins, 1986; Frangakis
and Rubin, 2002; Gilbert, Bosch, and Hudgens, 2003): mice
pups might survive under one dose assignment and not an-
other, which implies that we are comparing different subsets
of mice under the different dosing regimes, as well as failing
to account for the effect of the differing numbers of surviving
pups under the different dosing regimes. Hence, we develop
principal strata (Imbens and Rubin, 1997; Frangakis et al.,
2004) that are a function of the survival status of the pups
at each of the possible dose levels, and obtain estimates of
“principal effects” as intent-to-treat (ITT) contrasts within
principal strata (Frangakis and Rubin, 2002). As in Frangakis,
Rubin, and Zhou (2002), we accommodate correlation within
a litter “cluster” of pups for both the outcome and principal
strata. Our primary contribution to the potential outcomes
literature is that, in order to account for the potentially differ-
ent number of surviving littermates under the different dosing
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regimes, we allow the outcome for a subject to be dependent
on the principal stratum (PS) to which other subjects within
a cluster belong.

Section 2 discusses developmental toxicology analyses,
defines principal strata in terms of the potential survival sta-
tus at each dose level, and describes models for the princi-
pal strata and the potential outcomes at each dose level in
terms of the principal strata of both the index pup and the
other pups in the litter. Section 2 also discusses the within-
principal-strata contrasts or “principal effects,” which might
be direct effects relevant to contrasts in which the number of
surviving pups is unchanged at different potential doses, or
litter-size-adjusted effects that account for the differing num-
ber of surviving pups under different potential doses. Sec-
tion 3 considers an application of the method to data from
a developmental toxicology study of ethylene glycol in mice
conducted by the National Toxicology Program (NTP) (Price
et al., 1985). Section 4 discusses the results of the NTP analy-
sis in relation to previous analyses of these data, and considers
limitations of the approach as well as future extensions.

2. Methodology
2.1 Developmental Toxicology Data
In a typical type II toxicology experiment, each of j =
1, . . . ,N dams are impregnated by male mice. Shortly after
impregnation, a toxin of quantity x(Zj ) at level Zj = 0, . . . ,L
is administered at random to the jth dam. Just before birth,
the dam is sacrificed and the individual pups i = 1, . . . ,nj

in its litter are examined. Survival status Dij for each pup is
determined, usually as a three-level variable: alive, dead, and
resorbed, where the latter are ascertained from implantation
sites on the uterus. Outcomes Yij such as birth weight and de-
velopmental deformities are also determined, which typically
are defined only if the pup is alive at the time of sacrifice.

In our application to the National Toxicology Program data
on exposure to ethylene glycol (Price et al., 1985), we make a
“monotonicity” assumption that is critical to the identifiabil-
ity of the model presented: that pups that die under a given
dose of toxin would also die if exposed to a higher dose. We
make three additional simplifications in order to not overly
complicate the presentation of key ideas. First, we restrict
the outcome Y to birth weight only. Second, as only 12 of the
1192 pups were considered dead at sacrifice, we combine these
with the 152 resorbed pups into a single category, denoted as
“dead” below. Third, we assume that the litter size nj , which
includes both the live and dead/resorbed pups, is the same at
the time of exposure as at the time of sacrifice.

2.2 Defining Principal Strata and Principal Effects
The dose level of the administered toxin is considered to be
a potential “controllable factor” with levels z = 0, . . . ,L. De-
note the potential survival status of the ith pup in the jth
litter by D

(z)
ij : D

(z)
ij = 0 if the pup would have died at dose

level z and D
(z)
ij = 1 if it would have survived. Denote the ob-

served survival status by D
(Zj )
ij . Similarly denote the potential

outcome at dose level z by Y
(z)
ij and the observed outcome at

the actual dose level assignment Zj by Y
(Zj )
ij . Our models as-

sume Y
(z)
ij is defined only if D

(z)
ij = 1. We then define a PS by

the vector of “survival” statuses D
(z)
ij at each of the potential

dose levels: (D
(0)
ij , . . . ,D

(L)
ij )′, and denote the PS to which the

pup belongs by the scalar random variable Sij that represents
a particular pattern of (D

(0)
ij , . . . ,D

(L)
ij )′. Denote the vector of

potential outcomes at dose z for all pups in the jth litter by
Y

(z)
j = {Y (z)

1j , . . . , Y
(z)
njj

}, and similarly denote Sj . The goal of
our analysis is to compare potential outcomes under the dif-
ferent dose levels z∗ within a PS level s, which Frangakis and
Rubin (2002) term “principal effects”:{

Y
(z∗)
ij : Sij = s

}
and

{
Y

(z)
ij : Sij = s

}
.

These principal effects may be viewed as ITT contrasts within
principal strata. We consider ITT contrasts of functions of
Y

(z)
ij under a specific parametric model that accounts for the

PS memberships of the other pups in the litter.
We make three standard assumptions to assist in the iden-

tification of the potential outcomes model: randomization,
stable unit treatment value assumption or SUTVA, and mono-
tonicity. Because of the randomization mechanism, we assume
that the potential birth weight and survival outcome at each
dose level are independent of the actual dose: Y

(0)
ij , . . . ,Y

(L)
ij ,

Sij ⊥ Zj . Thus, the PS to which a pup belongs is independent
of its dose assignment. Also, because the assignment of dose
Zij ≡ Zj is the same for all of the pups within a litter, and
we assume that the potential birth weight outcomes are in-
dependent across litters, the SUTVA (Rubin, 1990) that the
birth weight of the ith pup in the jth litter is not affected
by the assignment of dose to the i′th pup in the j ′th litter is
preserved: if j ′ = j, then the dose assigned to the ith and i′th
pup must be the same; if j ′ �= j, then the dose assigned to the
ith pup will not affect the outcome for the i′ pup. Finally, if
we make the monotonicity assumption that a pup that dies at
level z will also die at z∗ > z, then D

(z∗)
ij ≤ D

(z)
ij for all z∗ > z,

and Table 1 illustrates that there are L + 2 possible patterns
of survival statuses that define the values of Sij . S = 1, then,
consists of the pups that would survive at all dose levels, or
the “healthiest” mice pups. Less “healthy” mice belonging to
higher principal strata: S = 2 consists of the pups that sur-
vive at all but the highest dose level, S = 3 consists of those
that survive only at dose levels below the highest two, and so
on, up to S = L + 1, which consists of pups that survive only
at zero dose level, and S = L + 2, which consists of pups that
die at all dose levels. Even though we observe D

(z)
ij only for

the observed dose Zj , under the assumption of monotonicity
we might observe the PS membership for some pups when the
jth dam is assigned to either Zj = 0—dead pups at the lowest
dose belong to Sij = L + 2, or Zj = L—surviving pups at the

Table 1
Definition of principal strata under monotonicity assumption.
D(z) indicates survival status (0 = dead, 1 = alive) at dose

Z = z.

S Z = 0 Z = 1 · · · Z = L − 1 Z = L

1 D(0) = 1 D(1) = 1 · · · D(L−1) = 1 D(L) = 1
2 D(0) = 1 D(1) = 1 · · · D(L−1) = 1 D(L) = 0
...

...
...

...
...

...

L + 1 D(0) = 1 D(1) = 0 · · · D(L−1) = 0 D(L) = 0
L + 2 D(0) = 0 D(1) = 0 · · · D(L−1) = 0 D(L) = 0
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highest dose belong to Sij = 1. Parametric assumptions about
the potential outcome also assist in model identification, be-
cause the resulting mixture models will have mixing fractions
that are independent of dose under randomization.

2.3 Modeling Principal Strata and Potential Outcomes
We consider the joint distribution of potential outcomes
and survival statuses by factoring f(Y (z), S) into f(S) and
f(Y (z) |S). The PS to which the ith pup in the jth litter be-
longs is modeled using a “proportional odds random effect”
model that assumes that the log odds of a pup belonging to
PS level l versus l − 1 changes by bj for all pups within the
jth litter, relative to the log odds for the overall population

logit(P (Sij ≤ s) | bj) = θs + bj , s = 1, . . . , L + 2 (1)

bj ∼ N
(
0, τ 2

b

)
,

where by definition θ0 = −∞ and θL+2 = ∞. The random
effect bj is used to account for any within-litter correlations
of PS memberships. Assuming that the vector of PS mem-
berships Sj is known for all pups i in litter j, the potential
outcome for the birth weight of the ith pup in the jth litter
at the zth dose level is modeled as

Y
(z)
ij

∣∣µs, βs, γs
0 , γ

s
1 , σ

2
s, aj , Sj

ind∼


N

(
µs + βsx(z) + γs

0n
(z)
0ij if D

(z)
ij = 1 for Sij = s

+ γs
1n

(z)
1ij + aj , σ

2
s

)
does not exist if D

(z)
ij = 0 for Sij = s

(2)

aj ∼ N(0, τ 2),

where x(z) is the quantity of the toxin received at dose level

z, n
(z)
dij =

∑
k,k �=i

I(D
(z)
kj = d) is the number of pups in litter j

other than pup i with survival status d at dose level z (which
would be known if Sj was known), and s is the PS mem-

Table 2
Potential littermate status for a two-pup litter, under a two-dose regime, where dam receives high dose,

under different observed survival patterns for the pups. NA indicates that a principal stratum membership
pattern is impossible, given the observed survival statuses and dose assignment.

Potential littermate survival status

n
(z)
0ij n

(z)
1ij

Pup S1j S2j z = 0 z = 1 z = 0 z = 1

D
(Zj=1)
1j = 1,D

(Zj=1)
2j = 1 i = 1 1 1 0 0 1 1

1 2,3 NA NA NA NA
2,3 1,2,3 NA NA NA NA

i = 2 1 1 0 0 1 1
2,3 1 NA NA NA NA
1,2,3 2,3 NA NA NA NA

D
(Zj=1)
1j = 1,D

(Zj=1)
2j = 0 i = 1 1 1 NA NA NA NA

1 2 0 1 1 0
1 3 1 1 0 0
2,3 1,2,3 NA NA NA NA

D
(Zj=1)
1j = 0,D

(Zj=1)
2j = 1 i = 2 1 1 NA NA NA NA

2 1 0 1 1 0
3 1 1 1 0 0
1,2,3 2,3 NA NA NA NA

bership of the ijth pup. This model assumes that there is a
PS-specific intercept µs, a PS-specific linear dose effect βs,
and PS-specific linear litter size effects that may differ by
whether the littermates are dead (γs

0) or alive (γs
1). The ran-

dom effect aj common to all pups in the litter is used to ac-
count for any within-litter correlations of birth weights. Under
the monotonicity assumption the number of potential birth
weight outcomes for a pup in the sth PS is restricted to L +
2 − s, because Y

(z)
ij exists if and only if D

(z)
ij = 1.

Litter size is associated with birth weight (see Figure 1 in
Dunson et al., 2003), and it is included in the birth weight

model through n
(z)
dij , the littermate survival status in (2). It is

important to understand that littermate survival status n
(z)
dij

is a potential outcome like Y
(z)
ij —at each dose level z the sur-

vival status of each pup in the litter could be observed and
n

(z)
dij computed. Because n

(z)
dij is a deterministic function of the

PS of the other pups in a litter and of z, the dose regime under
the control of the investigator, it meets the requirements of a
potential outcome in the sense of Rubin (1978). Hence, across
all pups in the jth litter, there are (L + 2)nj patterns of PS
memberships to be considered before any data are collected;
the actual dose received and the observed survival status of
the pups restrict the PS membership possibilities to a sub-
set of these. To make this clearer, consider a litter with two
pups, and assume that the experiment consists of the dam
being exposed to one of two dose levels. Thus, there are three
PS: S = 1 is defined by pups that survive at both dose lev-
els, S = 2 by pups that survive only at the lowest dose level,
and S = 3 by pups that do not survive at any dose level.
Table 2 illustrates the littermate survival status potential out-
comes when Zj = 1 (dam received high dose). If both pups
survive, then S1j = S2j = 1, and we have that n

(0)
0ij = n

(1)
0ij = 0

and n
(0)
1ij = n

(1)
1ij = 1 for i = 1, 2. If only the first pup survives,

then we know that S1j = 1 and that S2j = 2 or S2j = 3. If
S2j = 2, then the second pup would survive at the low dose
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level, and thus n
(0)
01j = 0, n

(1)
01j = 1 and n

(0)
11j = 1, n

(1)
11j = 0. If

S2j = 3, then the second pup does not survive at either dose

level, and thus n
(0)
01j = n

(1)
01j = 1 and n

(0)
11j = n

(1)
11j = 0. A similar

pattern is observed when only the second pup survives, with
the first and second pup indices permuted. When neither pup
survives, then determination of n

(z)
dij is irrelevant, because nei-

ther pup will be used to estimate the effect of dose on birth
weight.

2.4 Estimation
Consider the complete data to consist of the dose assignments,
the potential survival statuses for each pup at each dose level
that define the principal strata, and the potential outcomes at
each dose level that, in the analysis below, are defined only if
the pup survives at the given dose level. For each litter, then,
the complete data distribution is given by

f
(
Z1, . . . , ZN , Y

(0)
11 , . . . , Y

(L)
11 , Y

(0)
21 , . . . , Y

(L)
21 , . . . ,

Y
(0)
n1,1, . . . , Y

(L)
n1,1, . . . , . . . , Y

(0)
nN ,N , . . . , Y

(L)
nN ,N ,

D
(0)
11 , . . . ,D

(L)
11 ,D

(0)
21 , . . . ,D

(L)
21 , . . . ,D

(0)
n1,1, . . . ,

D
(L)
n1,1, . . . , . . . ,D

(0)
nN ,N , . . . ,D

(L)
n1,N

)
=

∏
j

f(Zj = z)f
(
Y

(0)
1j , . . . , Y

(L)
1j , Y

(0)
2j , . . . , Y

(L)
2j , . . . ,

Y
(0)
njj

, . . . , Y
(L)
njj

,D
(0)
1j , . . . ,D

(L)
1j ,

D
(0)
2j , . . . ,D

(L)
2j , . . . ,D

(0)
njj

, . . . ,D
(L)
njj

)
, (3)

where equality in (3) follows from the SUTVA and randomiza-
tion assumptions. As our inference of interest is with respect
to Y and D, we integrate out the unobserved potential out-
comes from each of the j elements in the right factor in (3).
Thus

f
(
Y

(Zj )
j ,D

(Zj )
j

∣∣ aj , bj , ζ
Y , ζS

)
=

∫ ∫
f
(
Y

(0)
1j , . . . , Y

(L)
1j , Y

(0)
2j , . . . , Y

(L)
2j , . . . , Y

(0)
njj

, . . . ,

Y
(L)
njj

,D
(0)
1j , . . . ,D

(L)
1j ,D

(0)
2j , . . . ,D

(L)
2j , . . . ,

D
(0)
njj

, . . . ,D
(L)
njj

∣∣ aj , bj , ζ
Y , ζS

)
dY mis

j dDmis
j

=
∏
i

∫ ∫
f
(
Y

(0)
ij , . . . , Y

(L)
ij

∣∣D(0)
1j , . . . ,D

(L)
1j ,D

(0)
2j , . . . ,

D
(L)
2j , . . . ,D

(0)
njj

, . . . ,D
(L)
njj

, aj , ζ
Y
)

× f
(
D

(0)
ij , . . . ,D

(L)
ij

∣∣ bj , ζS) dY mis
j dDmis

j

=
∏
i

∫ ∫
f
(
Y

(0)
ij , . . . , Y

(L)
ij

∣∣S1j , . . . , Snjj , aj , ζ
Y
)

× f
(
Sij | bj , ζS

)
dY mis

j dDmis
j

=
∏
i

L−Zj+1∑
s=1

p
(
Sij = s

∣∣ bj , ζS)
× p

(
Y

(Zj )
ij

∣∣Sj , aj , ζ
Y
)
I(Dij (Zj) = 1

)
+

L+2∑
L−Zj+2

p
(
Sij = s

∣∣ bj , ζS)
I(Dij (Zj) = 0), (4)

where Y mis
j and Dmis

j contain the elements of {Y (0)
j , . . . ,Y

(L)
j }

and {D(0)
j , . . . ,D

(L)
j } for which z �= Zj , ζY = (µ1, . . . ,µL+2,

β1, . . . ,βL+2, γ1
0, . . . , γ

L+2
0 , γ1

1, . . . , γ
L+2
1 , σ2

1, . . . ,σ
2
L+2, τ

2) pa-
rameterizes the outcome of interest, and ζS = (θ1, . . . , θL+1,
τ 2
b) parameterizes PS membership. The second equality in (4)

follows from the PS model (1), which assumes that the poten-
tial survival statuses of the pups within a litter are indepen-
dently conditional on a common random effect bj ; the birth

weight model (2), which implies that Y
(z)
ij ⊥ Y

(z)
ij′ | aj , Sj , that

is, only the survival status of the other pups in the litter af-
fects the outcome of a given pup, conditional on the common
outcome random effect aj ; and the independence assumption
of aj and bj . The third equality in (4) follows from the princi-
pal strata notation. The fourth equality in (4) follows from the
structure of the missing potential observations—living pups
at observed dose Zj must belong to principal strata 1 through
L − Zj + 1, while those dead at dose Zj must belong to prin-
cipal strata L − Zj + 2 through L + 2.

Taking a fully hierarchical Bayesian approach, then, the
posterior distribution of ζY and ζZ is given by

f(ζY , ζS | Y (Z),D(Z))

∝
[∏

j

∫ ∫
f
(
Y

(Zj )
j ,D

(Zj )
j

∣∣ aj , bjζ
Y , ζS

)

× p
(
aj

∣∣τ 2
)
p
(
bj

∣∣τ 2
b

)
daj dbj

]
p(ζY , ζS), (5)

where p(aj | τ 2)
ind∼ N(0, τ 2), p(bj | τ 2

b )
ind∼ N(0, τ 2

b ), and
p(ζY , ζS) =

∏
s[p(µ

s, βs, γs
0 , γs

1)p(θ
s)p(σ2

s)]p(τ
2)p(τ 2

b) for

p(µs, βs, γs
0 , γ

s
1 )

ind∼ N(β0,Ω), p(θs
ind∼ N(θ0,Σ), p(σ2

s) ∼ Inv −
χ2
a(b), p(τ

2) ∼ Inv − χ2
c(d), p(τ

2
b ) ∼ Inv − χ2

e(f). Hyperpriors
β0, Ω, θ0, Σ, a, b, c, d, e, and f are assumed known. Sim-
ulations from the posterior distribution (5) are obtained
using a Markov chain Monte Carlo (MCMC) approach that
combines Gibbs sampling (Gelfand and Smith, 1990) with
Metropolis–Hastings draws. To facilitate computation, we
obtain draws of aj , bj , and Sij as part of the MCMC sampling
routine. The full conditional draws are as follows:

1. f(Sij | rest) ∼ Multi(1, πs∗
ij ) where



πs∗
ij =

πsjφ
(
Y ∗

ij ; η
s
ij , σ

2
s

)
L−Zj+1∑

s=1

πsjφ
(
Y ∗

ij ; η
s
ij , σ

2
s

) if Dij (Zj) = 1,

πs∗
ij =

πsj

L+2∑
s=L−Zj+2

πsj

if Dij (Zj) = 0,

where πsj =
exp(θs + bj )

1 + exp(θs + bj ) −
exp(θs−1 + bj )

1 + exp(θs−1 + bj ) , Y
∗
ij = Y

(Zj )
ij −

aj , φ(z;µ, σ2) is the probability density function (PDF)
of a normal distribution evaluated at z with mean µ and

variance σ2, and ηs
ij = µs + βsx(Zj) + γs

0n
(Zj )
0ij + γs

1n
(Zj )
1ij .

2. f(θ | rest) is obtained via sampling importance resam-
pling (Smith and Gelfand, 1992): proposal draws of
f(θ | rest) are obtained by first fitting a multinomial
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model to the latest PS membership draws with offsets
given by the litter effects bj , and then drawing from a
multivariate normal model centered at the multinomial
logit intercept parameter estimates with the associated
parameter estimate covariance matrix, inflated by the
factor c to ensure domination of the target distribution.

3. f(bj | rest) is obtained via sampling importance resam-
pling: proposal draws of f(bj | rest) are obtained from an
N(0, cτ 2

b) distribution where c again ensures domination
of the target distribution.

4. f(τ 2
b | rest) ∼ Inv − χ2

e+N (f + Q∗
b), where Q∗

b =
N−1

∑
j
b2
j .

5. f(µs, βs, γs
0 , γ

s
1 | rest) ∼N((Ds)−1ds , (Ds)−1) where Ds =

X TWsX + Ω−1 and ds = X TWsY ∗ + Ω−1β0, X is a
design matrix consisting of an intercept, observed dose
x(Z), and observed dead and living littermate sizes n

(Z)
0

and n
(Z)
1 , and Ws is a diagonal matrix with diagonal ele-

ments equal to σ−2
s if Sij = s and Dij = 1 and 0 otherwise.

6. f(σ2
s | rest) ∼ Inv−χ2

a+Ns
(b + Qs) where Ns =

∑
i

∑
j
×

I(Sij = s)I(Dij (Zj) = 1) and Qs = N−1
s

∑
i

∑
j
I(Sij =

s)(Y ∗
ij − ηs

ij )
2.

7. f(aj | rest) ∼ N(âj , Vaj
) where Vaj

= (
∑

i

∑
s
I(Sij =

s)σ−2
s + τ−2)−1 and âj = (

∑
i

∑
s
I(Sij = s)Ỹ s

ij /σ
2
s)/Vaj

for Ỹ s
ij = Y

(Zj )
ij − ηs

ij .
8. f(τ 2 | rest) ∼ Inv − χ2

c+N (d + Q∗) where Q∗ =
N−1

∑
j
a2
j .

2.5 Principal Effects of Interest
Our focus is on estimating principal effects, that is, the poste-
rior predictive distribution of ITT contrasts among pups that
belong to a given PS and that have a common survival pattern
across the potential dosing regimes. Alternatively, we might
estimate the posterior predictive distribution of ITT contrasts
among all pups for whom the potential outcomes exist at both
dose levels Z = z and Z = z∗, which may require averaging
over several PS.

The posterior predictive distribution of the potential out-
comes and survival statuses Y (z), D(z) ≡ S is given by

f(Y (z), S | Y (Z),D(Z)) =

∫ ∫
f(Y (z) | ζY , S)f(S | ζS)

× f(ζY , ζS | Y (Z),D(Z)) dζY dζZ .

Our MCMC sampling algorithm outlined above yields draws
from f(ζY , ζS |Y (Z), D(Z)) and from f(S | ζS). To obtain a

draw Ỹ
(z)
ij from f(Y (z) | ζY , S), let

Ỹ
(z)
ij = µs + βsx(z) + γs

0n
(z)
0ij + γs

1n
(z)
1ij + aj + ε

(z)
ij ,

where ε
(z)
ij ∼ N(0, σ2

s) and Corr(ε
(z∗)
ij , ε

(z)
ij ) = ρP . The ob-

served data tell us nothing about the within-pup correlation
structure among potential outcomes Y

(0)
ij , . . . ,Y

(L)
ij (Rubin,

1990; Imbens and Rubin, 1997); for ease of presentation
and analysis, we consider ρP = 1, and thus a draw of

Ỹ
(z)
ij is given by Y

(Zj )
ij + βs(x(z) − x(Zj)) + γs

0 (n
(z)
0ij − n

(Zj )
0ij ) +

γs
1 (n

(z)
1ij − n

(Zj )
1ij ). But by the law of large numbers the results

are very insensitive to the choice of ρP if N is large, because
the principal effects we consider below are sums of linear con-
trasts of potential outcomes.

We consider the posterior predictive distribution of two
principal effects

Ψs
1(z

∗, z) = (Ns)−1
∑
i

∑
j

I(Sij = s)

×
(
Ỹ

(z∗)
ij − Ỹ

(z)
ij

∣∣Sij = s, n
(z∗)
dij = n

(z)
dij

)
= βs(x(z∗) − x(z))

Ψs
2(z

∗, z) = (Ns)−1
∑
i

∑
j

I(Sij = s)

×
(
Ỹ

(z∗)
ij − Ỹ

(z)
ij

∣∣Sij = s, n
(z∗)
dij , n

(z)
dij

)
= βs(x(z∗) − x(z)) + γ0

(
n̄s

0(z∗) − n̄s
0(z)

)
+ γ1

(
n̄s

1(z∗) − n̄s
1(z)

)
,

where Ns =
∑

i

∑
j
I(Sij = s) and n̄s

d(z) = N−1
s

∑
i

∑
j
×

I(Sij = s)n
(z)
dij . We restrict the set of z∗, z for which contrasts

are made to those for which D(z∗) = D(z) = 1 when S = s.
Contrast Ψs

1 , which we term as the “direct” effect of dose of
birth weight, considers the effect of the change in dose from z
to z∗ within a PS s among pups for whom n

(z∗)
dij = n

(z)
dij for all

d, that is, among pups in the subset of litters where the sur-
vival status of all pups in the litter happens to be unchanged
between dose level z and z∗. This may be an important mea-
sure in extrapolating results to human effects, where singleton
births are the norm. Alternatively, we might interpret the ITT
effect of Ψs

1 as the direct effect of the change in dose from z
to z∗ assuming that the survival status of pups in the lit-
ter could somehow be fixed to be the same under each dose
level (Robins and Greenland, 1992; Pearl, 2001). Contrast Ψs

2 ,
which we term the “litter-size-adjusted” effect of dose on birth
weight, considers the difference in the sample average of the
expected birth weights at level z∗ and z among all pups be-
longing to PS level s. We also consider the posterior predictive
distribution of the average of the principal effects over the set
of principal strata for which contrasts between Z = z∗ and Z
= z are defined, assuming z∗ > z:

Ψ3(z
∗, z) =

L−z∗+1∑
s=1

NsΨ
s
1(z

∗, z)

/L−z∗+1∑
s=1

Ns

Ψ4(z
∗, z) =

L−z∗+1∑
s=1

NsΨ
s
2(z

∗, z)

/L−z∗+1∑
s=1

Ns.

All contrasts considered assume that the total number of
pups nj in a litter is not directly affected by the dose. A
marginal association between number of pups surviving and
dose is induced by the assumption of monotonicity and the
specific values of θs.

3. Application to National Toxicology Program Data
We consider an application of this method using data from
a developmental toxicology study of ethylene glycol in mice
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Table 3
Total number of litters (NZ ), total number of observed pups
(nZ ), percentage surviving, and mean birth weight, by dose

x(Z) of ethylene glycol

Dose Dose x(Z) No. No. Percentage Mean birth
level Z (mg/kg) litters NZ pups nZ surviving weight (g)

3 3.0 23 283 79.9 0.704
2 1.5 22 266 86.1 0.764
1 0.75 24 310 89.0 0.877
0 0 25 333 89.2 0.972

conducted by the National Toxicology Program (Price et al.,
1985). Pregnant mice (dams) were exposed to ethylene glycol
during organogenesis at one of four different dose levels: 0,
0.75, 1.5, and 3 mg/kg. These data have also been considered
in Catalano and Ryan (1992), Molenberghs and Ryan (1999),
Gueorguieva and Agresti (2001), and Dunson et al. (2003),
among others.

We obtain our prior on the birth weight regression param-
eters β0 as β̂0, the maximum likelihood regression estimates
from linear regression of the observed birth weights on an in-
tercept, the observed dose, the observed number of dead pups
in the litter, and the observed number of surviving pups in
the litter minus one (i.e., the number of surviving pups other
than the index pup), and set Ω to nVβ̂0

, where Vβ̂0
is the asso-

ciated maximum likelihood covariance matrix of β̂0. Also, in
the same very weak data-driven prior spirit, we set the prior
inverse chi-square parameters for the birth weight mixture
variance as a = 1, b = 0.012, equivalent to one observation
with a residual variance equal to the estimated residual vari-
ance obtained from the same linear regression. Although both
are “data-based” priors, they are extremely weak, yet ensure
that posterior is proper and help stabilize the mixture model
estimation. For the hyperprior inverse chi-square parameters
for the between-litter variances, we chose the nearly nonin-
formative values c = d = e = f = 0.01. For the prior on the
proportional odds intercept parameters, we fit a multinomial
logit model with 10 outcomes in each of L + 2 categories, us-
ing the parameter estimates and associated covariance matrix
for θ0 and Σ, again a relatively weak prior given that the total
sample size is 1192. We initially considered a model that al-
lows PS-specific estimates of litter survival status effects but
found their estimation to be very unstable, and not inconsis-
tent with the assumption that the effect of the other pups on
birth weight is independent of the PS to which they belong.

Table 4
Posterior means and 95% posterior predictive intervals (PPI) in subscript from birth weight model (2).

expit(x) = exp(x)/(1 + exp(x)).

Principal stratum s

Parameter 1 2 3 4

PS fraction
(expit(θs) − expit(θs−1)) 0.791(0.734,0.846) 0.024(0.007,0.056) 0.097(0.025,0.166) 0.088(0.062,0.122)

Intercept (µs) 1.12(1.05,1.20) 0.95(0.76,1.15) 1.16(0.94,1.26) NA
Dose effect (βs) −0.092(−0.107,−0.078) −0.123(−0.263,−0.000) −0.125(−0.224,0.037) NA
Intra-litter correlation

(τ 2/(τ 2 + σ2
s)) 0.52(0.40,0.65) 0.35(0.13,0.67) 0.72(0.27,0.88) NA

Hence, we proceeded under a model that assumed common
litter survival status effects (γs

0 = γ0 and γs
1 = γ1 for all s).

Table 3 presents the total number of litters, total number
of pups across all litters, percentage of pups surviving until
birth, and mean birth weight among surviving pups, by dose
level. Under the simplifying assumption that τ 2

b = 0 (inde-
pendence of PS within litter), the fraction of pups belonging

to PS 1, π1 = exp(θ1)
1 + exp(θ1) , could be estimated as the fraction

of live pups in the highest dose group; similarly π1 + π2,
the fraction of pups belonging to PS 1 or PS 2, could be
estimated as the fraction of surviving pups in the second-
highest dose groups, and so forth. Hence, as in Frangakis
et al. (2004), we can estimate the fraction of pups belong-
ing to PS 2 by the difference between the survival fractions
in the second-highest and highest dose group, the fraction of
pups belonging to PS 3 by the difference between the survival
fractions in the third-highest and second-highest dose group,
and so on. Estimates of the five PS sampling fractions un-
der the assumption of within-litter independence are given
by π̂1 = 0.799, π̂2 = 0.062, π̂3 = 0.029, π̂4 = 0.002, π̂5 = 0.108.
Because π̂s ≥ 0 for all principal strata, the assumption of
monotonicity appears satisfied; however, because the propor-
tion of the population that belongs to PS 4 is so small, we will
collapse it with PS 3, thus assuming that any mouse pup that
survives at dose level 0 would also have survived had it re-
ceived dose level 1 (0.75 mg/kg). All further analyses assume
four principal strata.

To obtain draws from the joint posterior distribution (5),
we ran three chains starting with widely divergent starting
values, obtaining 2500 iterations after a 2500 iteration burn-
in. The maximum Gelman–Rubin statistic (Gelman et al.,
2004, p. 296–297) was 1.030, suggesting a high degree of con-
vergence. The results are given in Table 4. The model-based
estimates suggest that a greater fraction of pups belongs to
S = 3 (pups that survive only up to 0.75 mg/kg) and a smaller
fraction of pups belongs to S = 2 (pups that survive up to
1.5 mg/kg of ethylene glycol) than the nonparametric esti-
mates derived from Table 3 in the previous paragraph. There
is evidence that the dose effect is greater in pups belonging to
S = 2 and S = 3 than S = 1: (P (β2 < β1 |data) = 0.69);
(P (β3 < β1 |data) = 0.81), consistent with their more
“fragile” status.

The “dead pup” effect on birth weight is −0.007 (95%
PPI = −0.015, 0.002) g/pup, while the “live pup” effect is
−0.016 (95% PPI = −0.022, −0.010) g/pup, consistent with
increasing resource draws from the dam for pups born alive
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Table 5
Posterior means and 95% PPI in subscript of “direct” dose effect Ψs

1(z
∗, z) and “litter-size-adjusted” dose

effect Ψs
2(z

∗, z), by principal stratum, and averaged over the principal stratum for which the contrast exists:
Ψ3(z

∗, z) and Ψ4(z
∗, z)

Principal stratum s

Effect 1 2 3 Average

Direct
0.75 vs. 0 −0.069(−0.080,−0.059) −0.092(−0.198,−0.000) −0.094(−0.168,0.028) −0.073(−0.084,−0.061)
1.5 vs. 0 −0.137(−0.160,−0.117) −0.185(−0.395,−0.000) NA −0.139(−0.162,−0.118)
3.0 vs. 0 −0.275(−0.320,−0.235) NA NA −0.275(−0.320,−0.235)

Litter-size-adjusted
0.75 vs. 0 −0.069(−0.080,−0.059) −0.092(−0.198,−0.000) −0.094(−0.168,0.028) −0.073(−0.083,−0.061)
1.5 vs. 0 −0.128(−0.154,−0.107) −0.173(−0.386,0.010) NA −0.129(−0.156,−0.108)
3.0 vs. 0 −0.263(−0.311,−0.224) NA NA −0.263(−0.311,−0.224)

rather than dead or resorbed. The within-litter birth weight
correlation was lower for PS 2 and greater for PS 3 as com-
pared to PS 1. The posterior between-litter variance for the
proportional odds of PS membership was 0.82 (95% PPI =
0.38, 1.47), suggesting a moderate degree of within-litter cor-
relation.

Table 5 shows the “litter-size-adjusted” and the “direct”
principal effects of dose of birth weight. We see that the
“litter-size-adjusted” effect at the higher dose levels is atten-
uated somewhat over the unadjusted “direct” effect that es-
timates the effect of dose on pups in litters whose number
of live births is unaffected by dose. This is consistent with
γ1 < γ0, i.e., the negative effect of live pups on birth weight
is stronger than the effect of dead pups, meaning that birth
weights in the observed high dosage group include a positive
effect of fewer live pups competing for resources over what
would have been the case had the dam been assigned to a
placebo group, while the birth weight for the S = 1 pups in
the Z = 0 dosage group includes a negative effect of more live
pups for resources over what would have been the case had
the dam been assigned to a high dosage group. The direct
and litter-size-adjusted effects are the same when estimating
the effect of the 0.75 mg/kg dose, because we have assumed
that all pups that survive at the zero dose level also survive at
the 0.75 mg/kg dose level. The results obtained by averaging
over the PS for which the contrast is defined are also given in
Table 5.

Figure 1a plots the litter mean of the posterior means of
the PS membership for each pup, by the litter total size (both
living and dead pups) and the litter dose level. Very small
and very large litter sizes were associated with more pups
belonging to “weaker” PS. This is consistent with small lit-
ters being born to dams that are somehow “weaker,” either
because of genetic or environmental variability, while large lit-
ters may depress the survival capability of the individual pups
even in the “stronger” dams. This result is sensitive to the
nj = 3 and nj = 5 litters; no statistically significant associa-
tion between litter size and mean PS membership remains af-
ter removing these litters. Figure 1b plots the posterior mean
of the litter level random effect of PS memberships bj against
the proportion of the pups observed to survive, indicating
the expected negative relationship between the proportional

Figure 1. (a) Posterior means of principal stratum member-
ships in each litter, by total litter size; (b) observed survival
rate in a litter, by posterior mean of random effect bj on prin-
cipal stratum membership of pups in the jth litter. (—) shows
(a) smoothed estimate of mean of posterior means of princi-
pal stratum membership by total litter size and (b) smoothed
estimate of the proportion of pups that die for a given litter
effect bj ; (- - -) gives 95% CI.

odds random effect and the observed survival rate within a
litter.

4. Discussion
This manuscript considers a potential outcomes approach to
estimating the effect of a toxin on birth weight, accommodat-
ing the effect of changes in litter survival status that might
occur in a given litter had the litter been exposed to differing
levels of the toxin. This method also restricts the estimates
of birth weight change between given dose levels to the set of
pups estimated to survive at both dose levels under the mono-
tonicity assumption that a pup that dies at a given dose level
will die at a higher dose level. This approach parallels the ITT
contrasts within compliance classes in the Rubin causal model
(Holland, 1986; Imbens and Rubin, 1997), where causal ef-
fect of a treatment is estimated within the set of “compliers”
that would have received the treatment if and only if ran-
domized to treatment. Our method can accommodate both
the fact that only “healthier,” and more likely heavier, pups
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survive at high dose levels, which in turn frees up additional
space and nutrients for these survivors in comparison to what
would have happened had the dam been exposed to lower dose
levels.

Catalano and Ryan (1992), who adjusted for surviving pup
litter size as a fixed covariate in a joint outcomes model, es-
timated a dose effect of −0.095 g/mg/kg (95% CI = −0.111,
−0.078) g/mg/kg, yielding estimated birth weight changes
of −0.071, −0.142, and −0.285 g/mg/kg for 0.75, 1.5, and
3.0 mg/kg of ethylene glycol, respectively. This is an under-
estimate of the principal dose effect at lower levels and an
overestimate of the principal dose effect at higher levels. This
difference occurs because the potential outcomes approach un-
tangles a mixture of slopes and intercepts that suggest the
toxin has a stronger effect on pups that can tolerate only low
doses than it does on pups that can tolerate higher doses.
Dunson et al. (2003), who estimated fetal outcome and lit-
ter size via a shared latent variable model (Sammel, Ryan,
and Legler, 1997), estimated a dose effect of −0.088 g/mg/kg
(95% HPD = −0.105, −0.071) g/mg/kg, yielding estimated
birth weight changes of −0.066, −0.132, and −0.264 g/mg/kg
for 0.75, 1.5, and 3.0 mg/kg of ethylene glycol, respectively.
The Dunson et al. estimate is closer to what we obtained in
the potential outcomes framework at higher doses, although
it underestimates the principal effect at low doses because no
direct adjustment was made for the effect of other pups on
birth weight.

One limitation of this approach is the monotonicity as-
sumption that pups that would die at a given dose level would
also die if the dose level were higher. This is admittedly a
strong assumption, although not contradicted by the data,
because survival rates at higher dose levels are monotonically
lower. Unfortunately, this assumption is required to have an
identifiable model; otherwise it would be impossible to deter-
mine the pups that belong to the lowest and highest stratum,
and thus to identify the mixture components for the regres-
sion model.

Another limitation of the approach considered here is that
the litter size nj is assumed to be the same at the time of sac-
rifice as it was at the time of exposure to the toxin. However, if
this assumption is incorrect, and if unobserved implantation
sites are more common at higher doses, then our approach
may not fully account for the effect of litter size at different
doses. While this assumption is plausible because the expo-
sure to the toxin occurs after mating and embryo implan-
tation, Table 3 hints that it may not have held—the mean
total litter size declines from 13.3 pups/litter at Z = 0 to
12.3 pups/litter at Z = 3 (p = 0.102). To accommodate these
“missing pups,” it may be possible to add a third outcome
(“missing”) to the dead/alive pup status and extend the PS
membership table under the monotonicity assumption that
pups that die at a given dose do not survive at a higher dose,
and pups that are missing at a given dose are also missing at
a higher dose.
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