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SUMMARY

In preventative HIV vaccine efficacy trials it is of interest to determine whether random-
ization to vaccine affects post-infection outcomes that may be right censored. A few
examples include time from infection diagnosis to initiation of antiretroviral therapy or
time from infection diagnosis to AIDS. Here we present sensitivity analysis methods for
making causal comparisons on these post-infection outcomes. We focus on estimating the
survival causal effect, defined as the difference between probabilities of not yet experienc-
ing the event in the vaccine and placebo arms, conditional on being infected regardless
of treatment assignment. Our key assumption is monotonicity, that subjects random-
ized to the vaccine arm who become infected would have been infected if randomized to
placebo. We propose non-parametric, semiparametric, and parametric methods which
can be thought of as extending the work of Hudgens, Hoering, and Self (2003); Gilbert,
Bosch, and Hudgens (2003); and Shepherd, Gilbert, Jemiai, and Rotnitzky (2005) to han-
dle right-censored outcomes. These methods are applied to the first Phase III preventative
HIV vaccine trial (VaxGen’s trial of AIDSVAX B/B).
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1 INTRODUCTION

In preventative HIV vaccine efficacy trials it is of interest to assess vaccine effects on
outcomes that occur only in infected individuals (Nabel, 2001; Graham, 2002; Gilbert et
al., 2005). Of such outcomes, some of the most important are time-to-event outcomes:
for example the time from HIV infection diagnosis until the onset of AIDS or until the

initiation of antiretroviral therapy (ART).

In efficacy trials, such as VaxGen’s trial of AIDSVAX B/B, several thousands of
individuals are randomized to either the vaccine or placebo arm. As in a typical clinical
trial, they are followed for a certain amount of time, with the primary endpoint being
HIV infection. Those that get infected are then enrolled in a post-infection study, and

monitored for several additional years.

Comparisons of outcomes between vaccine and placebo recipients who become in-
fected during the course of the trial could be misleading, because they condition on a
post-randomization variable (infection) and therefore are susceptible to selection bias
(Rosenbaum, 1984; Halloran and Struchiner, 1995). One could perform an intention-to-
treat (ITT) analysis using all randomized individuals, ignoring infection status and defin-
ing the outcome of interest as the post-infection outcome (e.g., time from randomization
until AIDS). However, this is problematic because the majority of trial participants will
not get infected and are therefore not followed past the time that the initial study con-
cludes, 7. If one censors these uninfected individuals at 7y, then one induces dependent
censoring and the Kaplan-Meier method provides a biased estimate that under-estimates
the survival probability for ¢ > 75. On the other hand, if one assumes that the post-
infection outcome occurs in none of the individuals who are not infected at time 7y and
censors these individuals at the time when the post-infection study ends, 79 + 7, then

one is most likely over-estimating the survival probability for ¢ > 7y, particularly if 7 is



large. An unbiased I'TT analysis would be to censor everyone who does not experience
the post infection event at 7y. This is, of course, unattractive because much information
is thrown away. From a statistical standpoint, the ideal trial design would not have an
initial stopping point, but would follow all individuals for the entire study time, 79 + 7.

However, resource constraints make an efficacy trial trial of this type infeasible.

The method we propose here is based on principles of causal inference. Our anal-
ysis addresses a different question than an ITT analysis: among those who would have
been infected regardless of treatment assignment, does assignment to the vaccine in-
crease/decrease the probability of being AIDS free ¢ months post-infection? It has been
pointed out by many that comparing an outcome on the subgroup of individuals who
would have been infected regardless of treatment assignment is a causal comparison
(Kalbfleish and Prentice 1980; Robins 1995; Rubin 2000; Robins and Greenland 2000;
Frangakis and Rubin 2002). This subgroup has been referred to as the always infected
principal stratum (Hudgens, et al., 2003; Gilbert, et al., 2003). An analysis conditioning
on membership in the always infected principal stratum is particularly of interest when
one wants to know whether or not there exists a mechanism through which the vaccine
alters a time-to-event outcome in infected individuals. Identifying and understanding any
possible biological mechanisms may help future vaccine development. This also addresses
a clinically important question: If a subject is going to be infected whether or not he
takes the vaccine, will the vaccine be nonetheless beneficial? The current wave of can-
didate HIV vaccines undergoing efficacy testing have been specifically designed to alter

disease progression/post-infection outcomes (www.hvtn.org).

Because one does not known which participants would have been infected regardless of
treatment assignment, assumptions must be made to answer the causal question. Our key

assumption is that any participant in the vaccine arm who becomes infected would have



been infected if randomized to placebo. Under this assumption, we advocate a sensitivity
analysis approach where the probability of infection if assigned vaccine, given infection
in the placebo arm and time from infection to some event of interest, is of a known form

indexed by an assumed sensitivity parameter.

This work extends the sensitivity analysis methods reported in Hudgens, et al. (2003)
(HHS); Gilbert et al. (2003) (GBH); and Shepherd, et al. (in press) (SGJR) to a time-to-
event outcome defined post-randomization. In Section 2 we discuss notation, assumptions,
and estimands; in Section 3 we discuss estimation; in Section 4 we explore the finite sample
properties of our estimators; and in Section 5 we apply our methods to investigate the
effect of vaccination on the time to ART initiation in VaxGen’s trial of AIDSVAX B/B.

Section 6 discusses the methods and results. Technical details are found in the Appendix.

2 NOTATION, CAUSAL ESTIMAND, AND ASSUMPTIONS

Consider a study in which N subjects, independently and randomly selected from a given
population of interest, are randomized to either placebo or vaccine. Let Z; = 1 if subject
i, 1 = 1,..., N, is randomized to vaccine and Z; = 0 if randomized to placebo. Trial
participants are monitored for HIV infection for a predetermined period of time; the
infection status during the study follow-up period for subject 7 is the indicator S; where
S; = 1 if infected and S; = 0 if not. Let 7} be the time from infection diagnosis until some
event for subject ¢, and define C; as the time from infection diagnosis until censoring. We
observe Y; = min(T;, C;) and A; = I(Y; = T;). Notice that T;, C;, Y;, and A; only exist if

S; = 1; otherwise they are assigned the value x.

To define the estimand of interest, we use potential outcomes/counterfactuals (Ney-
man 1923; Rubin 1978; Robins 1986). Specifically, define S; (0) to be the infection status

indicator if, possibly contrary to fact, subject i is assigned placebo. Define S; (1) to be



the infection status indicator if subject i is assigned vaccine. Similarly, define 7; (0) to be
the time-to-event outcome if participant 7 is assigned placebo and T; (1) the time-to-event
outcome if assigned vaccine. The potential outcomes C;(z), Y;(z), and A;(z) are similarly
defined for z = 0, 1. For a subject who does not become infected if assigned treatment z,
ie., S;(z) = 0, we define T; (z2) = Y;(2) = C;(z) = A;(z) = =. This notation implicitly
assumes that the potential outcomes of each trial participant are not influenced by the
treatment assignments of other participants, an assumption known as the Stable Unit
Treatment Value Assumption (SUTVA) (Rubin, 1978). SUTVA may be violated in vac-
cine studies of infectious disease when a local population is treated intensively, producing
herd immunity. It is a reasonable assumption when study participants are geographically

dispersed, as in our example.

Assuming the study participants make up a random sample from a large population of
interest, the potential outcomes W; = (Z;,5; (0),S; (1),7;(0),7;(1),C; (0),C; (1)), i =
1,..., N,areii.d. copies of arandom vector W = (S (0),S (1),7(0),7(1),C(0),C (1), Z),
and similarly the observed data O; = (Z;,S;,Y;, A;), i = 1,..., N, are i.i.d. copies of

O =(Z,5,Y,A). Randomization ensures that

(S(0),S(1),T(0),T(1),C(0),C (1)1 Z (2.1)

because (S (0),S(1),7(0),7(1),C (0),C (1)) can be considered an unobserved baseline
characteristic of each subject. Here, for random variables A, B and C, AII B | C indicates

conditional independence of A and B given C.

The four principal strata (Frangakis and Rubin, 2002) can be defined in terms of the
counterfactual pair (S (0),S (1)): the never infected are those with S (0) = S (1) = 0, the
harmed are those with S (0) = 0 and S (1) = 1, the protected are those with S (0) = 1

and S (1) = 0, and the always infected (ai) are those with S (0) =S (1) = 1.



For a subject ¢ who is in the ai principal stratum, a causal effect on his/her time-to-
event outcome is some measure of discrepancy between T; (0) and 7; (1). For example, the
difference T; (1) — T; (0) was used by HHS and GBH, with the average causal effect in the
ai stratum defined as ACE = E[T (1) — T (0)]S(0) = S (1) = 1]. With right-censored
outcomes, such an estimand may not be idenfiable without modeling the distribution of
the time-to-event outcome; alternatively, one could compare restricted means (Chen and
Tsiatis, 2001). However, it is often of primary interest to compare the probabilities of
being event-free at time ¢, defined in the ai stratum as 1 — P(T;(z) < t]5;(0) = S;(1) = 1)
for z = 0,1 (where ¢ = 0 corresponds to the time of infection diagnosis). We take this

approach; our estimand of interest is the “survival” causal effect in the az stratum:

SCE(t) = P(T;(0) < ]5:(0) = Si(1) = 1) = P(Ty(1) < 1IS;(0) = Si(1) = 1)

= F%(t) — F%(t).

p

In order to estimate SCE(t), we will make the following key assumptions:
A.1: Monotonicity: S;(1) < S;(0).
A.2: Independent Censoring: C;(z) L T;(2)|S;(2) = 1.

The first of these assumptions implies that no individual is in the harmed principal
stratum. This is a strong assumption but is quite plausible in randomized double-blinded
placebo-controlled vaccine trials. The second assumption is common when analyzing
time-to-event data, with the only difference being that this independence is made at the

counterfactual level and is conditional on infection (otherwise C;(z) = T;(z) = *).

From these assumptions, F*(t) = F,(t), the distribution of the time-to-event out-
come given vaccine and infection, and is therefore identified. However, in order to estimate
SCE(t), we must also be able to identify F(t) which is still not identifiable. The identi-

fiable distribution, F,(¢), is a mixture of the distribution of the time-to-event outcome for
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placebos in the always infected stratum, F;i (t), and the distribution of the time-to-event
outcome for placebos in the protected principal stratum, F;’”’t(t). The mixing parameter
is VE =1-P(S(1) = 1)/P(S(0) = 1), which under (2.1) and A.1 is one minus the

probability of being in the always infected principal stratum.

From this information, one can write an expression for the bounds of F(t):

Foi () = min {% 1} , (2.2)

F%E(t) = max {%, O} . (2.3)

This is equivalent to writing

Fyi(t)

a-vey [ w(s)dEy(s).

where w(t) = P(S(1) = 1/S(0) = 1,7(0) = t) and w(t) = Iy<a-vey recovers Fi(t) =
FobU(t) and w(t) = Iysevey recovers F(t) = Fy"(t), with ¢'=V* and ¢"” being the

(1 - VE)™ and VE™ quantiles of T'(0), respectively.

There might be scientific reasons why these sharp bounds are too conservative. A
different sensitivity analysis approach would be to use subject-matter knowledge to restrict
the possible range for F*(t). This was the approach of GBH and is specified by making

the following additional assumption:
A3: P(S(1) = 1|5(0) = 1,7(0)) = w(T(0); B), where w(t; 8) = ®{a+g(t;p)}, B is
fixed and known, ® (-) is a known cdf, « is an unknown parameter, and for each 3, g (-; §)

is a known function of T.

If one assumes A.3, then F;i(t) is identified. Of course, the parameter S is not
identified by the observed data. It is regarded as fixed and known, and then varied
over a plausible range of values as a form of sensitivity analysis (Scharfstein et al., 1999;

GBH). One choice for w(t; 3) is the expit function, i.e. w(t;8) = (1 + exp(—a — Bt))~!
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used by GBH. For this choice of w(-), the sensitivity parameter § has a log odds ratio
interpretation. Using the expit function and choosing f = 0 is the same as assuming
T(0)II S(1)|S(0) = 1, or equivalently that the distribution of the time-to-event outcome
under placebo is the same in the ai and in the protected principal strata. Choosing

B = —oo and 8 = oo corresponds to the sharp bounds of HHS.

3 ESTIMATION

3.1 Non-Parametric Estimation: Sharp Bounds

Under SUTVA, (2.1), A.1, and A.2, and for t < 7, where 7 is the maximum post-
randomization follow-up time, the sharp bounds given by (2.2) and (2.3) are consistently

estimated as

Ny F(t
F;”U(t):min p(/)\,l ,
1-VFE

L F,(t)—VE
ESbE(t) = max M,O ,
1-VE

where VE = min{1l—(n,N,)/(n,N,), 0} (N, [n,] as the number of individuals randomized
to [infected in] treatment arm z, where N, + N, = N) and F}(t) is the standard Kaplan-
Meier estimator of F,(t). Since under monotonicity, F%(t) = F,(t), estimated sharp
bounds for SCE(t) are F9L(t) — F,(¢) and FoU(t) — F,(t), where F,(t) is the Kaplan-

Meier estimator of F,(t).

Under certain conditions, Fzﬁ”’U (t) and F;”’L(t) are asymptotically normal. Specifi-
cally, VE is asymptotically normal if 0 < VE < 1, or equivalently 0 < P(S(0) = 1)
and 0 < P(S(1) = 1) < P(S(0) = 1). The Kaplan-Meier estimate, F,(t), is asymp-
totically normal under the usual conditions (Fleming and Harrington, 1991). There-

fore, F;i’U(t) and sz“"L (t) are asymptotically normal if, in addition to these conditions,



0 < Fy(t) <1—=VE and VE < Fy(t) < 1, respectively. (These latter conditions are a
result of (2.2) and (2.3). If these conditions are violated then, by definition, F;*V(t) and
FobL(t) are 1 and 0, respectively, and hence estimates will not be asymptotically normal.)
This follows from the asymptotic normality of (F},(-), @), the Hadamard differentiability
of the maps F},(t)/(1— ﬁ) and (F,(t) — @)/(1 - ﬁ), and the functional delta method

(Andersen et al., 1992). Under these conditions, expressions for the asymptotic variance

obtained via the functional delta method are

var (F0 (1)) = (@)202@) . (Fp<t>)2 m(l=p) (Fp@po ) p(1-p)

4 2 P 2Np i Ny 2
var (F;i,L(t)) _ (i_(l)) o2(t) + (1 —pf:p(t)) Po(lj\; Po) N ((1 —Z%(t))po) pl(lj\; Pl),

where o?(t) is the variance of the Kaplan-Meier estimate, py = P(S = 1|Z = 0), and
m =po(1—VE) = P(S =1|Z =1). From these equations one may estimate variances

in the usual manner, by plugging in parameter estimates.

Variances may alternatively be estimated using a standard bootstrap procedure.
Specifically, from (O, - - - , Oy ) sample with replacement N vectors O;, creating (O, -+ ,O%).
Compute SCE (t) based on the bootstrap sample (O7F,---,0%). Repeat this process K
times, and estimate the variance of 5'/075(15) by the sample variance of the SCE (t)’s.
100(1 — «)%- level confidence intervals may be constructed using the resulting variance
estimate (Wald-intervals), by the «/2- and (1 — «/2)-quantiles of S/C’\E*(t) (percentile

intervals), or by studentizing with the asymptotic variance estimate.
3.2 Parametric Estimation

In addition to SUTVA, (2.1), A.1, and A.2, assume A.3, and make the following modeling

assumption:



e M.1: The distribution of T'(1) given S(1) = 1 is known up to a finite dimensional
parameter 7;; that is, frqysa)=1 (¢[S (1) = 1) = fy(t;m) where 7, is unknown and

for each ny, f,(-;m1) is a known density.
Also make one of the following two assumptions on the distribution of T(0):

e M.2a: The distribution of 7°(0) given S(0) = 1, is known up to a finite dimensional
parameter 7g; that is, fro)s@)=1 (t[S (0) = 1) = f,(t;n§), where ng is unknown and

for each ng, f,(+;n§) is a known density.

e M.2b: The distribution of 7'(1) given S(0) = S(1) = 1 is known up to a finite
dimensional parameter 7g; that is, fr(o)s)=s@)=1 (t[S(0) =S5 (1) =1) = f(t;n5),

where 7 is unknown and for each 7, f&(-;nf) is a known density.

For ease of reference, we call the model defined by SUTVA, (2.1), A.1, A.2, A.3, M.1,
and M.2a model M,. We call M, the model defined like M, except replacing M.2a with

M.2b and demanding that w(t; 8) > 0 for all ¢.

Under M,, SCE(t) is a function of unknown parameters (a,n§,m). Specifically,
SCE(t) = SCE,(t; a,n§,m) where

_ fo s;a, B) fp(s;m5)d
SCE,(t;a,mg,m) = T w(s: 0, B)  (s: 1) ds / fo(s;m)d

Similarly, under model M;, SCE(t) = SCEy(t;nl,m) = fot [ (s;mp)ds — fot fo(s;m1)ds.
The maximum likelihood estimators of SCE(t) under M, and M, are therefore equal to
the functions SCE,(t; -, -, -) and SCE,(t; -, -) evaluated at the ML estimators of («, n§, m)

and (778, 771) under models M, and M,, respectively.

In the absence of censoring, the likelihood induced by these assumptions (minus A.2)

is given in SGJR. This likelihood can be easily modified to account for independent post-
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infection censoring:
Lo (o,mi,m) o H{[f yis )™ (1= F, (yi;m)" ‘”po/w y; v, B) [ y,no)dy}
X {1—170/ (y; @, B) fp(y; mb dy }
X {[fp(yi§778)5i (1= F, (yis )" ‘sipo} (1—po)'~ 51}1 BRNCY)

under model M,. Under model M, the likelihood L£,(-) is defined as L,(-) but with

* ) ,ﬂ fp )
falys aump) = fw_l(f,’, ,ﬂ)) i Zj))dy replacing f,(y; n§)-

Provided the protected principal stratum is non-empty, then under sufficiently smooth
parameterizations the ML estimators of the model parameters are asymptotically normally
distributed. The variance of the normal limiting distribution can be consistently estimated
with either the observed or the (estimated) expected information. These, in turn, can
be used in conjunction with the delta method to obtain consistent variance estimators of

SCE(t) for each fixed ¢. Sensitivity analyses are performed by varying the range of 3.

It is worth noting that this likelihood can easily be extended to condition on baseline
covariates. Likelihood based methods when the outcome of interest is not right censored

were extensively studied in SGJR, and general principles stated there apply here.

3.3 Semi-Parametric Estimation

Consider estimation under SUTVA, (2.1), A.1, A.2, and A.3; i.e., performing sensitivity
analyses by modeling w(-) but leaving the distributions of 7'(0) and 7°(1) unspecified. One

can think of this as extending GBH to time-to-event outcomes.

The estimating equations GBH used to estimate F*(t) when n,/N, < n,/N, can be

11



written as

N (1= Z)(S; — po
0= pipo,) = > imi( )(Si — po) (35)

Ei]ilzi( —po [y w taﬁdF())
Similar to Section 3.1, a natural approach would use these same equations, only now
estimating F,(t) with the Kaplan-Meier estimate. In practice, however, this approach
may not be feasible because F}(t) is not well defined for ¢ > 7. This implies that the

integral in the second estimating equation of (3.5) cannot be computed for ¢ > 7.

One way to fix this problem would be to assume some distributional form for the
tail of F},(-). This approach would be similar to the parametric methods of Section 3.2,
however, and in this section we want to leave F),(-) unspecified. Another approach would
change the form of w(-), making it constant after time 7. For example, consider w(-)

defined as follows:

(14 exp(—a — Bt)) 'fort <7
(1+ exp(—a— 1)) Hfor t > 7.

Another choice for w(-) could be

-1

w(t; «, ﬁ) = (1 + exp(—a - BI{t>t0})) (37)

for some ¢ty < 7. Both (3.6) and (3.7) define w(-) with the expit function, but do so in a

manner such that w(-) is constant for ¢ > 7, allowing one to write:
/ w(s; o, B)dE,(s) = / w(s; o, B)dE,(s) + w(T; a, B) (1 — ﬁ‘p(T)) .
0 0

Of course, these choices of w(-) have implications with regards to interpretation.
Under (3.6) the interpretation of 5 is technically the following: Given infection in the

placebo arm, the odds of infection if randomized to the vaccine arm for 7" = ¢; versus
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T = ty are exp{S[min (t;,7) — min (t2,7)]}. This more complex interpretation might
appear troublesome. However, over the range of ¢ for which there are data, 5 has the usual
log odds ratio interpretation. Under (3.7), # has a standard odds ratio interpretation,
except now we have dichotomized w(-), assigning a particular probability of being in the

at stratum for ¢ > t;, and another for ¢ < ;.

With w(-) modeled by either (3.6) or (3.7), an extension of GBH using the Kaplan-
Meier estimates for F,(t) is the semi-parametric MLE. In the appendix we show that
under these same assumptions and 0 < VFE < 1, py > 0, and for a properly specified
well-behaved w(-) (i.e., constant for ¢ > 7, twice differentiable, and bounded), Flj”(t) is
consistent and asymptotically normal for ¢ € (0, 7]. Therefore, S/C\E(t) is also consistent

and asymptotically normal.

Because S/C\E(t) is asymptotically normal, pointwise Wald-based confidence intervals
based on the bootstrap will be valid for large sample sizes. It is also possible to obtain
an analytic form for the asymptotic variance of S/C??(t) This variance estimate relies
on being able to approximate F),(t) with a sum of ii.d. random variables. Such an
approximation can be obtained from Stute (1995). Using this result, one can augment
(3.5) by including additional estimating equations:

N N

0,---,0)" = {2(1 — Z)8; (Vi — Fy(t1) -+, > (1= Z3)S; (Vi — Fp(tk))} :

i=1 i=1

where £ is the number of distinct failure times in the placebo arm, ¢; is the jth ordered
failure time, and for a specific j, Vj; are i.i.d. random variables for 7 = 1,--- | N. One
can then estimate the variance of parameter estimates using a sandwich estimator type
approach, and from there one can estimate the variance of SCE (t) using the delta method.

Details are given in the appendix.
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4 SIMULATIONS

To evaluate the small-sample performance of our estimators of SCE(t) we conducted a
2 x 4 factorial simulation experiment, corresponding to generating data under VE =
P(S(1) =0]S(0) =1) = 0.3 or 0.6, and 5 = 0.1,0.2,1, or co. Each simulation generated

1000 vectors W according to the following steps:
Step 1. The first 500 vectors were set at Z = 0, the second 500 were set at Z = 1.

Step 2. S(0) was drawn from a Bernoulli(pg) distribution with py = 0.25 (this choice
yields an expected number of infections in the placebo arm of 125, which is typical for a

Phase III vaccine trial).

Step 8. T(0) was generated for all realizations with S(0) = 1 according to the
distribution F},(¢;n) with F,(-) a Weibull distribution and 7 = (shape = 0.5, scale = 25).
This distribution was chosen to reflect the distribution of the time from infection diagnosis
to initiation of antiretroviral therapy (ART) in the VaxGen trial, in which approximately

50% of infected participants started ART by 24 months post-infection diagnosis.

Step 4.  Given T'(0), for each realization with Z = 1 and S(0) = 1, S(1) was
drawn from a Bernoulli(w (7 (0); 8, «)) distribution. For § = 0.1,0.2, and 1, w(t; 5, @)
was defined as in (3.6) with 7 = 24 months. To ensure that VE ~ 0.3, « was set at
—0.2,-0.9, or —3.6, when [ was set at 0.1,0.2, or 1 respectively; and to ensure that
VE =~ 0.6, o was set at —1.8, —3.4, or —20, when 8 = 0.1,0.2, or 1. For # = oo,

w(t) = Iysqvey as discussed in Section 2, where ¢** = 3.18 and ¢*® = 21.0.
Step 5. For the realizations with Z =1 and S(1) = 1, T(1) was set equal to 7(0).

Step 6. For the realizations with S = 1, C; was generated from a Weibull distribution

with shape and scale parameters 3 and 35. Then C was set as min(r, Ct).
Step 7. For all realizations with S =1, Y was chosen as min(C,T) and § = Ijy—r}.
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It is easily verifed that these steps result in simulating data under SUTVA, (2.1), A.1,

A.2, A3, and model (3.6), with SCE(t) = 0 for all ¢.

For each simulated dataset, we computed ﬁ’;i(t) and S/C\E(t) for t = 24 months,
assuming the true model for w(-) and the true value for 5. Wald-based 95% confidence
intervals were constructed by estimating the standard error of estimates using both the

bootstrap and asymptotic variance estimates.

Table 1 reports the performance of ,@(t) based on 1000 simulation iterations.
Since SCE (t) is the difference between Fg’(t) and F,(t), it is also useful to examine the
performance of the estimates of F;i (t). Table 2 does this using the same simulations and
analyses reported in Table 1. In addition to presenting the coverage of the untransformed
95% Wald-confidence intervals for F;i (t), Table 2 also presents confidence intervals by

transforming symmetric confidence limits for log[—log{ F;**(t)}].

In most cases, bias is minimal and coverage is good using either the bootstrap or
the asymptotic variance estimate. The only exceptions are when VE ~ 0.6 and f is
large. The poor coverage probabilities here are due to a boundary issue. Consider first
the simulations with § = oco. As discussed in Section 3.1, as N — oo, under the usual
assumptions and if VE < F,(t) then F2(¢) (which is equivalent to £%(t) with 8 = oo)
will be asymptotically normal and Wald-based confidence intervals will cover at their
nominal level. However, in these simulations Fj,(¢) = 0.625 for ¢ = 24 months, which
is very close to VE = 0.600. Therefore, due to stochastic variation and our relatively
small sample size, VE is often greater than F)(t) resulting in F;i (t) = 0 in nearly half
of the simulations. Consequently, the distribution of F;i(t) is far from normal; therefore
these confidence intervals that assume normality have poor coverage. (Notice that in this
particular setting, Wald-based confidence intervals extended outside the [0, 1] range; and

log-log transformed confidence intervals could not be computed because the estimated
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value of F;i(t) was often 0.) Interestingly, the 2.5- and 97.5- bootstrapped percentile
confidence intervals for F¢*(t) and SCE(t) have coverage probabilities of 0.938 and 0.964,

respectively, for the simulations with VE = 0.6, = oo.

The same logic explains why coverage and bias were also poor for the simulations
with VE = 0.6, 8 = 1. Under these settings a value of 5 = 1 is quite large: for example,
the odds of being infected in the vaccine arm given infection in the placebo arm from
t =12 and ¢t = 24 (a difference of one year) multiplicatively increase exp(12) =~ 163, 000!
Analyses based on the assumption that § = 1 are not too different from analyses assuming
B = 0o. Again, the distribution of F;’ (t) is far from normal. Figure 1 shows a histogram
of F;i(t = 24) for the simulations with VE ~ 0.6, = 1, as well as a similar histogram
with VE a 0.3, 8 = 1 (where the method worked well) for purpose of comparison. Figure
1 also shows the true values of F,(t) and F(t) under these simulation settings. Notice

how close F#*(t) is to 0 at ¢ = 24 months.

5 EXAMPLE

We illustrate our methods using data from the VaxGen vaccine trial. This was a ran-
domized, double-blind, placebo-controlled Phase III trial of AIDSVAX B/B conducted
between 1998 and 2003. This study recruited 5,403 HIV negative, at risk individuals from
61 sites spanning large cities of North America and the Netherlands. The ratio of vaccine
to placebo assignment was 2:1. Overall, the vaccine was not found to protect against HIV
infection (VE\? = 0.048), although interaction tests suggested that the vaccine might par-
tially prevent infection for non-whites. Among non-whites vaccine efficacy was estimated
as 0.469. Detailed study results are found in Flynn et al. (2005). Here we compare the
time from infection diagnosis to the initiation of antiretroviral therapy (ART) between the

vaccine and placebo arms among participants (overall and within the non-white subgroup)
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who would have been infected regardless of randomization assignment. Specifically, we
perform sensitivity analyses to test the hypothesis Hy : SCE(t) = 0 for ¢ = 1.17 and
2 years, time points pre-specified for analysis by the VaxGen protocol. A vaccine effect
to delay ART is beneficial to an individual because it delays exposure to drug toxicities,

drug resistance, and the depletion of future therapy options.

A total of 368 subjects were infected during the trial, and of these, 347 enrolled into
the post-infection study phase (225 in the vaccine arm). There was presumably little, if
any, interaction between trial participants, so SUTVA seemed reasonable. As discussed
in SGJR, A.1 was also thought to be plausible. In addition, the censoring mechanism
did not appear to be informative based on similar drop-out rates for participants with

different levels of behavioral risk; hence there is no evidence that A.2 is violated.

The three plots in Figure 2 show analyses looking at the time from infection diagnosis
to the initiation of ART. Figure 2A shows the Kaplan-Meier estimates for both the vaccine
and placebo arms for the probability of not yet starting ART. The plot also includes the
estimates of the upper and lower bounds of F(t), described in Section 3.1. Figures
2B and 2C are semiparametric sensitivity analyses looking at SCE(t) for t = 1.17 and
2 years. The plots contain both the estimate for SCE(t) and 95% Wald confidence
intervals (constructed using the asymptotic variance approximation and the bootstrap,
with 500 bootstrap replications). In these analyses (and all other sensitivity analyses in
this section), we modeled the probability of infection in the vaccine arm given infection
in the placebo arm, w(t; a, ), with (3.6). Before performing these analyses, we elicited
a plausible range for the sensitivity parameter 5 from a subject matter expert, Dr. Marc
Gurwith of VaxGen. His best “guess” for a range for exp(f) was 0.70 to 1.1, corresponding
to  from -0.36 to 0.1. Figures 2B and 2C show the estimates of SCE(t) over a much

larger range, for § from -3 to 3. The open circles (and ‘+’ and ‘X’ signs) in the plots
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represent the sharp bounds of SCE(t) (and 95% Wald and percentile confidence intervals,
respectively, for these bounds based on 500 bootstrap replications), corresponding to an
analysis with 8 = +o00. (Confidence intervals based on the analytic variance were similar.)
Regardless of the range, it is clear from the Figure 2 that the vaccine is having no causal

effect on the initiation of ART.

It may be of more interest to look at the effect of vaccination on the time-to-event
outcomes for the non-white subgroup, where the vaccine appeared to partially protect
against HIV infection. These analyses are shown in Figure 3. Because the estimate for
V E is much larger in the non-white cohort, the bounds for Fp‘” (t) are farther apart, as
seen in Figure 3A. This is also reflected in plots B and C, as the estimates for SCE(t)
cover a wider range. Of course, the smaller sample size (N = 914 non-whites, of which 59
became infected) also inflates the length of the confidence intervals. It should be noted
that 95% Wald-based confidence intervals of SCE(t) at § = oo (where F;i’L (t) =1) using

the analytic variance expression were much wider than the bootstrap confidence intervals.

Notice that for these analyses in the non-white cohort, if 5 > 0.5 0or 0 for ¢ = 1.17 or 2
years, respectively, then Hy : SCE(t) = 0 is rejected at the 0.05-level. Let us specifically
consider the analysis for ¢ = 2 years. This means that given infection in the placebo arm,
if the odds of infection if randomized to vaccine are greater for someone who has a longer
time to the initiation of ART, then there is evidence that the vaccine is causing non-
white participants to have a higher probability of starting ART by 2 years post-infection
diagnosis. This would imply that among non-whites the vaccine is having a detrimental
effect, causing more rapid post-infection progression. Interestingly, this value of 3 is just
inside Dr. Gurwith’s plausible range for non-whites, -0.92 to 0.18. Therefore, both the
null and the alternative are favored in the range. However, it is worth noting that nowhere

in this range is the point estimate positive; hence, the analysis provides no support for
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the vaccine being effective in non-whites.

6 DISCUSSION

As candidate vaccines continue to be developed and enter the clinical trial phase, there is
particular interest in looking at the effect of vaccination on post-infection outcomes. In
this paper, we have proposed sensitivity analysis methods for evaluating the causal effect
of vaccination on outcomes defined as the time from infection diagnosis to some post-
infection event. We discussed non-parametric, parametric, and semiparametric estimation
approaches, applying our methods to investigate the causal effect of VaxGen’s AIDSVAX

B/B vaccine on the time from infection diagnosis to initiation of ART.

From our VaxGen analysis in the non-white cohort, different conclusions were drawn
over the chosen range. To many, the fact that our analyses produce more than one
answer may not be attractive. We believe, however, that it is an honest way to present
the data and allows scientists to look at results and draw their own conclusions. Based on
our experience with Dr. Gurwith, eliciting a range for sensitivity parameters is feasible,

although admittedly, different subject matter experts may choose different ranges for 5.

It should be noted that the asymptotic normality of these estimators relies on the
assumption that VE > 0. For VE near the boundary VE = 0, Wald-based confidence
intervals may have poor coverage (see Jemiai and Rotnitzky (submitted, 2005) for further
discussion). In the VaxGen trial, using the entire cohort the estimate for V E was 0.048.
We performed an additional simulation investigating the performance of Wald-based 95%
confidence intervals of SCE(t = 24 months) under the same settings as described in
the Section 5 only generating data under the assumption that VE = 0.05 and 5 = 0.1.
Coverage using the bootstrap and analytic variance estimates was good, 0.941 and 0.938

respectively. Of course, in the VaxGen trial we do not know the true V E so it may be
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misleading to read too much into these simulations. This is not an issue for the analysis of
the non-white cohort where VE = 0.469. However, the asymptotic normality of F;i’L (t)

for t = 1.17 and 2 years could be questioned since VE > EL(t).

Future research related to this work would therefore be to study methods for creat-
ing confidence intervals near the boundaries. Other extensions to this work that may be
useful areas of future research include the development of simultaneous confidence bands,
construction of a “log-rank” type test, accomodating informative censoring, and semi-
parametric methods allowing the inclusion of continuous baseline covariates. Although
these methods were designed specifically for HIV vaccine trials, they may apply in other
situations where causal comparisons conditioning on post-randomization variables are of

interest, so long as the basic assumptions (particularly monotonicity) are reasonable.
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APPENDIX

A.1 Asymptotic Normality Semiparametric Estimator

Suppose that data are collected over a finite interval [0, 7] where 7 is fixed as the sample
size N — oo. Assume SUTVA, (2.1), A.1, A2, A3,0< VE < 1,py > 0,and let t € [0, 7].
Furthermore, assume 0 < w(t; o, 5) < 1 for all t > 0, r, and S; is constant for t > 7; and
is twice continuously differentiable with respect to «, with a bounded second derivative.

Then .ﬁ’;”(t) is consistent and asymptotically normal.

Proof. The estimates (pg, &) are the solutions to the estimating equations given by (3.5).
It is easily seen that the unique solution to the first equation is py = n,/N,. The second

equation can therefore be written as
Un(a) E/ w(t; o, B)dF,(t) — (1 — ‘//E) = 0.
0

Using the empirical distribution of O;, one can show that the process F,(-) in D[0,7]

and VE are jointly asymptotically normal, where D[0, 7] is the space of cadlag functions
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(i.e., right continuous whose limits from the left exist) on [0, 7]. The map (Fp(-), @) —
Un(«) is Hadamard differentiable (this follows from Problem 7, Chapter 20, van der Vaart

(1998)); therefore, by the functional delta method, Uy () is asymptotically normal.
From Taylor’s expansion one can write

VN - a) —VNUy(2)

"~ Uh(@) + U5 (0") (6 — a)?

where o* is some value between o and &, and Uy (o) =[5 w"(t; o, B)dE,(t). Notice
that UY (a*) is bounded because |w”(t; a, 8)| is bounded. Therefore, because Ul () =7
Ula) = fooo w'(t; o, B)dF,(t) by the continuous mapping theorem, & —% «a by Lemma
5.10 of van der Vaart (1998), U () is bounded, and Uy («) is asymptotically normal; &

is asymptotically normal. Finally, consider the map:

(5, 5)) v Ja 01010 910F5(0)

p

0 ! Fei(t).
Jo wit; & B)dE,(t)

That the process F;’() in DJ0, 7] is asymptotically normal follows from Hadamard dif-

ferentiability of this map, the chain rule, and the functional delta method. O
A.2 Asymptotic Variance of Semiparametric Estimator

From Stute (1995), we learn that [ ¢(t)dE},(t) can be written as a sum of ii.d. terms
plus some remainder term, R, , where |R, | = o(ny Y %), and ¢(t) is some well-behaved
function of t. Define k as the number of distinct failure times, and let ¢, - - - , t; represent
the distinct ordered failure times. Omne could think of there being £ + 2 parameters to

estimate, (po, o, Fy(t1), F,(ta),- - -, F,(tx)) = 0, adding k estimating equations to (3.5):
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(

(1 - Zi)(Si - po)
Z; (Si — po [ w(s; o, B)dFy(s))

Vi) =\ (1= Z,)S; (Vi — F,(t1))

| (1= 20)5i (Vi — Fp(te))
with Vj; for j=1,--- ,kand i =1,---, N defined as

Vii = ¢ (Yi)v0(Y3)di + v1(Yi)(1 — &;) — v52(Yi), where

9;(Y:) = Iivi<t;,

Y(Y;) = exp (/_);_ 1%0;?’(22)) ’

1009 = 4777 [ f{m}as]( ) 70(w) ' (o),

'7]2 // I{V<Y V<w}¢J ( )Ho(d )Hl(dw),
2(1 —_ ZZ)SZ(I — 61)I{E§y}

H(y) =Py(Y <y,6 =0) =

Z(l — Zi)Si ’
1 — z)sibiliv,<y)
Hl :P Y< 6:122( Z'Ll{z_y
(y) N( Y, ) Z(l _ Zz’)si J
> (1= zi)sil{vi<y)
H(y) =Py(Y <y) = =7
(y) N( > y) Z(l _ Zi)si
To be clear and to simplify further notation:
o k41
| wtsi s = 2 ws(e) () = )

where w;(a) = w(t;; o, B), wgt1(e) = w(T; »(to) =0, and F,(tx+1) = 1.

)
From Appendix A.2 we know that v N (é 0) —4 N (0, ¥), where

(%ww))T]
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Y wi(@)(Fy(ty) — Fy(t-)
g(@) - k+1 )
> i wi(e) (Fp(ty) — Fp(tj-1))

where #; =sup(t;) such that t; < t. Therefore g(d) = Fp‘”(t) By the delta method,

VN (9(0) - 9(0)) = N (0,4'(0)09'(0)") -
One may estimate ¢'(f) with ¢'(f) and ¥ with

N -1

=1 =1
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Table 1: Bias of estimates and coverage probability of

Wald-based 95% confidence intervals for SCE(t) with

t = 24 months.

VE B Bias Coverage Probability
Mean Median Bootstrap Analytic

~0.3 0.1 -0.002  0.000 0.946 0.948

0.2 -0.007  -0.007 0.943 0.949

1 -0.006  -0.003 0.943 0.946

00 -0.007  0.005 0.948 0.953

~0.6 0.1 0.003  0.006 0.939 0.940

0.2 0.013  0.015 0.945 0.945

1 0.042  0.020 0.933 0.912

00 0.035  0.000 0.935 -

Analytic coverage probabilities when VE =~ 0.6, =

oo are not given because in many simulations, there

were no failures in the vaccine arm.
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Table 2: Bias of estimates and coverage probability of Wald-based 95% confidence intervals
for F¢*(t) with ¢ = 24 months.

VE B Bias Coverage Probability
Standard Log-log transformation

Mean Median Bootstrap Analytic Bootstrap  Analytic

~0.3 0.1 -0.001  -0.002 0.939 0.941 0.946 0.942
0.2 -0.006  -0.002 0.932 0.939 0.938 0.949
1 0.001  -0.005 0.940 0.953 0.959 0.973
00 -0.007  0.002 0.934 0.947 0.957 0.967

~0.6 0.1 0.001 0.003 0.939 0.942 0.947 0.947
0.2 0.015  0.011 0.929 0.927 0.938 0.937
1 0.045  0.010 0.903 0.819 0.902 0.859
o) 0.036  -0.016 0.889 0.948 - -
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Figure 1: Histograms of ﬁ‘;i(t) for t = 24 and plots of F,(t) and F*(t) at different levels of V E for § = 1.
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Figure 2: Sensitivity analyses of the causal effect of vaccination on the probability of not yet initiating ART.
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Figure 3: Sensitivity analyses of the causal effect of vaccination on the probability of not yet initiating ART in the non-white

cohort.



