Introduction to Super Learning

Ted Westling, PhD Postdoctoral Researcher
Center for Causal Inference
Perelman School of Medicine University of Pennsylvania

September 25, 2018

Learning Goals

- Conceptual understanding of Super Learning (SL)

Learning Goals

- Conceptual understanding of Super Learning (SL)
- Comfort with the SuperLearner R package

Learning Goals

- Conceptual understanding of Super Learning (SL)
- Comfort with the SuperLearner R package
- Awareness of the mathematical backbone of SL

Outline

I. Motivation and description of SL (30 minutes)
II. Lab 1: Vanilla SL for a continuous outcome (30 minutes)
III. Mathematical presentation of SL (20 minutes)
IV. Lab 2: Vanilla SL for a binary outcome (30 minutes)

15 minute break

Outline

15 minute break

V. Bells and whistles: Screens, weights, and CV-SL (30 minutes)
VI. Lab 3: Binary outcome redux (40 minutes)
VII. Lab 4: Case-control analysis of Fluzone vaccine (30 minutes)

I. Motivation and description of Super Learning

Notation

- Y is a univariate outcome

Notation

- Y is a univariate outcome
- \mathbf{X} is a p-variate set of predictors

Notation

- Y is a univariate outcome
- \mathbf{X} is a p-variate set of predictors
- We observe n independent copies

$$
\left(Y_{1}, \mathbf{X}_{1}\right), \ldots,\left(Y_{n}, \mathbf{X}_{n}\right)
$$

from the joint distribution of (Y, \mathbf{X}).

The problem

- We want to estimate a function, e.g.:

The problem

- We want to estimate a function, e.g.:
- Conditional mean (regression) function

The problem

- We want to estimate a function, e.g.:
- Conditional mean (regression) function
- Conditional quantile function

The problem

- We want to estimate a function, e.g.:
- Conditional mean (regression) function
- Conditional quantile function
- Conditional density function

The problem

- We want to estimate a function, e.g.:
- Conditional mean (regression) function
- Conditional quantile function
- Conditional density function
- Conditional hazard function

The problem

- We want to estimate a function, e.g.:
- Conditional mean (regression) function
- Conditional quantile function
- Conditional density function
- Conditional hazard function
- Super Learning can be applied in all of the above settings

The problem

- We want to estimate a function, e.g.:
- Conditional mean (regression) function
- Conditional quantile function
- Conditional density function
- Conditional hazard function
- Super Learning can be applied in all of the above settings
- We will focus on estimating the regression function

$$
\mu(\mathbf{x}):=E[Y \mid \mathbf{X}=\mathbf{x}] .
$$

Why?

1. Exploratory analysis

Why?

1. Exploratory analysis
2. Imputation of missing values

Why?

1. Exploratory analysis
2. Imputation of missing values
3. Prediction for new observations

Why?

1. Exploratory analysis
2. Imputation of missing values
3. Prediction for new observations
4. Assessing prediction quality/comparing competing estimators

Why?

1. Exploratory analysis
2. Imputation of missing values
3. Prediction for new observations
4. Assessing prediction quality/comparing competing estimators
5. Use as a nuisance parameter estimator

Why?

1. Exploratory analysis
2. Imputation of missing values
3. Prediction for new observations
4. Assessing prediction quality/comparing competing estimators
5. Use as a nuisance parameter estimator
6. Confirmatory analysis/hypothesis testing

Why?

1. Exploratory analysis
2. Imputation of missing values
3. Prediction for new observations
4. Assessing prediction quality/comparing competing estimators
5. Use as a nuisance parameter estimator
6. Confirmatory analysis/hypothesis testing (not our goal here)

We want to estimate $\mu(\mathbf{x})=E[\boldsymbol{Y} \mid \mathbf{X}=\mathbf{x}]$. How should we do it?

We want to estimate $\mu(\mathbf{x})=E[Y \mid \mathbf{X}=\mathbf{x}]$. How should we do it?

We want to estimate $\mu(\mathbf{x})=E[Y \mid \mathbf{X}=\mathbf{x}]$. How should we do it?

We want to estimate $\mu(\mathbf{x})=E[Y \mid \mathbf{X}=\mathbf{x}]$. How should we do it?

We want to estimate $\mu(\mathbf{x})=E[Y \mid \mathbf{X}=\mathbf{x}]$. How should we do it?

We want to estimate $\mu(\mathbf{x})=E[Y \mid \mathbf{X}=\mathbf{x}]$. How should we do it?

How do we choose which algorithm to use?

Super Learning is:

An ensemble method for combining predictions from many candidate machine learning algorithms

Measuring algorithm performance

- Suppose $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$ are candidate estimators of μ.

Measuring algorithm performance

- Suppose $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$ are candidate estimators of μ.
- k will always index estimators, and i will always index observations (e.g. study participants)

Measuring algorithm performance

- Suppose $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$ are candidate estimators of μ.
- k will always index estimators, and i will always index observations (e.g. study participants)
- The mean squared error of $\hat{\mu}_{k}$,

$$
\operatorname{MSE}\left(\hat{\mu}_{k}\right)=E\left[\left(Y-\hat{\mu}_{k}(\mathbf{X})\right)^{2}\right]
$$

measures the performance of $\hat{\mu}_{k}$ as an estimator of μ.

Measuring algorithm performance

- Suppose $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$ are candidate estimators of μ.
- k will always index estimators, and i will always index observations (e.g. study participants)
- The mean squared error of $\hat{\mu}_{k}$,

$$
\operatorname{MSE}\left(\hat{\mu}_{k}\right)=E\left[\left(Y-\hat{\mu}_{k}(\mathbf{X})\right)^{2}\right]
$$

measures the performance of $\hat{\mu}_{k}$ as an estimator of μ.

- If we knew $\operatorname{MSE}\left(\hat{\mu}_{k}\right)$, we could choose the $\hat{\mu}_{k}$ with the smallest $\operatorname{MSE}\left(\hat{\mu}_{k}\right)$.

Estimating MSE

$$
\operatorname{MSE}\left(\hat{\mu}_{k}\right)=E\left[\left(Y-\hat{\mu}_{k}(\mathbf{X})\right)^{2}\right]
$$

Estimating MSE

$$
\operatorname{MSE}\left(\hat{\mu}_{k}\right)=E\left[\left(Y-\hat{\mu}_{k}(\mathbf{X})\right)^{2}\right]
$$

- It is tempting to take $\widehat{\operatorname{MSE}}\left(\hat{\mu}_{k}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[Y_{i}-\hat{\mu}_{k}\left(\mathbf{X}_{i}\right)\right]^{2}$.

Estimating MSE

$$
\operatorname{MSE}\left(\hat{\mu}_{k}\right)=E\left[\left(Y-\hat{\mu}_{k}(\mathbf{X})\right)^{2}\right]
$$

- It is tempting to take $\widehat{\operatorname{MSE}}\left(\hat{\mu}_{k}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[Y_{i}-\hat{\mu}_{k}\left(\mathbf{X}_{i}\right)\right]^{2}$.
- This estimator will favor $\hat{\mu}_{k}$ which are overfit, because $\hat{\mu}_{k}$ are trained on the same data used to evaluate the MSE.

Estimating MSE

$$
\operatorname{MSE}\left(\hat{\mu}_{k}\right)=E\left[\left(Y-\hat{\mu}_{k}(\mathbf{X})\right)^{2}\right]
$$

- It is tempting to take $\widehat{\operatorname{MSE}}\left(\hat{\mu}_{k}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[Y_{i}-\hat{\mu}_{k}\left(\mathbf{X}_{i}\right)\right]^{2}$.
- This estimator will favor $\hat{\mu}_{k}$ which are overfit, because $\hat{\mu}_{k}$ are trained on the same data used to evaluate the MSE.
- Analogy: a student has the exam questions before taking the exam!

Estimating MSE

$$
\operatorname{MSE}\left(\hat{\mu}_{k}\right)=E\left[\left(Y-\hat{\mu}_{k}(\mathbf{X})\right)^{2}\right]
$$

- It is tempting to take $\widehat{\operatorname{MSE}}\left(\hat{\mu}_{k}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[Y_{i}-\hat{\mu}_{k}\left(\mathbf{X}_{i}\right)\right]^{2}$.
- This estimator will favor $\hat{\mu}_{k}$ which are overfit, because $\hat{\mu}_{k}$ are trained on the same data used to evaluate the MSE.
- Analogy: a student has the exam questions before taking the exam!
- Instead, we estimate MSE using cross-validation.

Cross-validation

1. Split the data in to V "folds" of size roughly n / V.

Cross-validation

1. Split the data in to V "folds" of size roughly n / V.
2. For each fold $v=1, \ldots, V$:

- the data in folds other than v is called the training set;
- the data in fold v is called the test/validation set.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9
10	10	10	10	10	10	10	10	10	10

Schematic of 10 -fold cross-validation. Gray: training sets. Yellow: validation sets.

Cross-validation

1. Split the data in to V "folds" of size roughly n / V.
2. For each fold $v=1, \ldots, V$:

- the data in folds other than v is called the training set;
- the data in fold v is called the test/validation set.

Cross-validation

1. Split the data in to V "folds" of size roughly n / V.
2. For each fold $v=1, \ldots, V$:

- the data in folds other than v is called the training set;
- the data in fold v is called the test/validation set.
- we obtain $\hat{\mu}_{k, v}$ using the training set;

Cross-validation

1. Split the data in to V "folds" of size roughly n / V.
2. For each fold $v=1, \ldots, V$:

- the data in folds other than v is called the training set;
- the data in fold v is called the test/validation set.
- we obtain $\hat{\mu}_{k, v}$ using the training set;
- we obtain $\hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)$ for \mathbf{X}_{i} in the validation set \mathcal{V}_{v}.

Cross-validation

1. Split the data in to V "folds" of size roughly n / V.
2. For each fold $v=1, \ldots, V$:

- the data in folds other than v is called the training set;
- the data in fold v is called the test/validation set.
- we obtain $\hat{\mu}_{k, v}$ using the training set;
- we obtain $\hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)$ for \mathbf{X}_{i} in the validation set \mathcal{V}_{v}.

3. Our cross-validated MSE is

$$
\widehat{\operatorname{MSE}}_{C V}\left(\hat{\mu}_{k}\right)=\frac{1}{V} \sum_{v=1}^{v} \frac{1}{\left|\mathcal{V}_{v}\right|} \sum_{i \in \mathcal{V}_{v}}\left[Y_{i}-\hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)\right]^{2}
$$

Cross-validation

1. Split the data in to V "folds" of size roughly n / V.
2. For each fold $v=1, \ldots, V$:

- the data in folds other than v is called the training set;
- the data in fold v is called the test/validation set.
- we obtain $\hat{\mu}_{k, v}$ using the training set;
- we obtain $\hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)$ for \mathbf{X}_{i} in the validation set \mathcal{V}_{v}.

3. Our cross-validated MSE is

$$
\widehat{\operatorname{MSE}}_{C V}\left(\hat{\mu}_{k}\right)=\frac{1}{V} \sum_{v=1}^{v} \frac{1}{\left|\mathcal{V}_{v}\right|} \sum_{i \in \mathcal{V}_{v}}\left[Y_{i}-\hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)\right]^{2}
$$

We average the MSEs of the V validation sets.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 CV preds.

1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9
10	10	10	10	10	10	10	10	10	10	10

Schematic of 10 -fold cross-validation. Gray: training sets. Yellow: validation sets.

How do we choose V ?

- Large V:

How do we choose V ?

- Large V:
- more training data, so better for small n

How do we choose V ?

- Large V:
- more training data, so better for small n
- more computation time

How do we choose V ?

- Large V:
- more training data, so better for small n
- more computation time
- well-suited to high-dimensional covariates

How do we choose V ?

- Large V:
- more training data, so better for small n
- more computation time
- well-suited to high-dimensional covariates
- well-suited to complicated or non-smooth μ

How do we choose V ?

- Large V:
- more training data, so better for small n
- more computation time
- well-suited to high-dimensional covariates
- well-suited to complicated or non-smooth μ
- Small V:

How do we choose V ?

- Large V:
- more training data, so better for small n
- more computation time
- well-suited to high-dimensional covariates
- well-suited to complicated or non-smooth μ
- Small V:
- more test data

How do we choose V ?

- Large V:
- more training data, so better for small n
- more computation time
- well-suited to high-dimensional covariates
- well-suited to complicated or non-smooth μ
- Small V:
- more test data
- less computation time.

How do we choose V ?

- Large V:
- more training data, so better for small n
- more computation time
- well-suited to high-dimensional covariates
- well-suited to complicated or non-smooth μ
- Small V:
- more test data
- less computation time.
(People typically use $V=5$ or $V=10$.)

"Discrete" Super Learner

- At this point, we have cross-validated MSE estimates

$$
\widehat{\operatorname{MSE}}_{C V}\left(\hat{\mu}_{1}\right), \ldots, \widehat{\operatorname{MSE}}_{C V}\left(\hat{\mu}_{K}\right)
$$

for each of our candidate algorithms.

"Discrete" Super Learner

- At this point, we have cross-validated MSE estimates

$$
\widehat{\operatorname{MSE}}_{C V}\left(\hat{\mu}_{1}\right), \ldots, \widehat{\operatorname{MSE}}_{C V}\left(\hat{\mu}_{K}\right)
$$

for each of our candidate algorithms.

- We could simply take as our estimator the $\hat{\mu}_{k}$ minimizing these cross-validated MSEs.

"Discrete" Super Learner

- At this point, we have cross-validated MSE estimates

$$
\widehat{\operatorname{MSE}}_{C V}\left(\hat{\mu}_{1}\right), \ldots, \widehat{\operatorname{MSE}}_{C V}\left(\hat{\mu}_{K}\right)
$$

for each of our candidate algorithms.

- We could simply take as our estimator the $\hat{\mu}_{k}$ minimizing these cross-validated MSEs.
- We call this the "discrete Super Learner".

Super Learner

- Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{K}\right)$ be an element of \mathcal{S}_{K}, the K-dimensional simplex: each $\lambda_{k} \in[0,1]$ and $\sum_{k} \lambda_{k}=1$.

Super Learner

- Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{K}\right)$ be an element of \mathcal{S}_{K}, the K-dimensional simplex: each $\lambda_{k} \in[0,1]$ and $\sum_{k} \lambda_{k}=1$.
- Super Learner considers as its set of candidate algorithms all convex combinations $\hat{\mu}_{\boldsymbol{\lambda}}:=\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}$.

Super Learner

- Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{K}\right)$ be an element of \mathcal{S}_{K}, the K-dimensional simplex: each $\lambda_{k} \in[0,1]$ and $\sum_{k} \lambda_{k}=1$.
- Super Learner considers as its set of candidate algorithms all convex combinations $\hat{\mu}_{\boldsymbol{\lambda}}:=\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}$.
- The Super Learner is $\hat{\mu}_{\hat{\lambda}}$, where

$$
\widehat{\boldsymbol{\lambda}}:=\underset{\boldsymbol{\lambda} \in \mathcal{S}_{K}}{\arg \min } \widehat{M S E}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}\right)
$$

(We use constrained optimization to compute the argmin.)

Super Learner

$$
\widehat{\lambda}:=\underset{\lambda \in \mathcal{S}_{K}}{\arg \min } \widehat{M S E}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}\right) .
$$

Super Learner

$$
\begin{gathered}
\widehat{\boldsymbol{\lambda}}:=\underset{\lambda \in \mathcal{S}_{K}}{\arg \min } \widehat{M S E}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}\right) . \\
\widehat{\operatorname{MSE}}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}\right)=\frac{1}{V} \sum_{v=1}^{V} \frac{1}{\left|\mathcal{V}_{v}\right|} \sum_{i \in \mathcal{V}_{v}}\left[Y_{i}-\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)\right]^{2} .
\end{gathered}
$$

Super Learner

$$
\begin{gathered}
\widehat{\boldsymbol{\lambda}}:=\underset{\lambda \in \mathcal{S}_{K}}{\arg \min } \widehat{M S E}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}\right) . \\
\widehat{\operatorname{MSE}}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}\right)=\frac{1}{V} \sum_{v=1}^{V} \frac{1}{\left|\mathcal{V}_{v}\right|} \sum_{i \in \mathcal{V}_{v}}\left[Y_{i}-\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)\right]^{2} .
\end{gathered}
$$

Super Learner: steps

Putting it all together:

Super Learner: steps

Putting it all together:

1. Define a library of candidate algorithms $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$.

Super Learner: steps

Putting it all together:

1. Define a library of candidate algorithms $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$.
2. Obtain the CV-predictions $\hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)$ for all k, v and $i \in \mathcal{V}_{v}$.

Super Learner: steps

Putting it all together:

1. Define a library of candidate algorithms $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$.
2. Obtain the CV-predictions $\hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)$ for all k, v and $i \in \mathcal{V}_{v}$.
3. Use constrained optimization to compute the SL weights

$$
\widehat{\boldsymbol{\lambda}}:=\arg \min _{\lambda \in \mathcal{S}_{K}} \widehat{M S E}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}\right) .
$$

Super Learner: steps

Putting it all together:

1. Define a library of candidate algorithms $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$.
2. Obtain the CV-predictions $\hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)$ for all k, v and $i \in \mathcal{V}_{v}$.
3. Use constrained optimization to compute the SL weights

$$
\widehat{\boldsymbol{\lambda}}:=\arg \min _{\boldsymbol{\lambda} \in \mathcal{S}_{K}} \widehat{M S E}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}\right) .
$$

4. Take $\hat{\mu}_{S L}=\sum_{k=1}^{K} \hat{\lambda}_{k} \hat{\mu}_{k}$.

II. Lab 1: Vanilla SL for a continuous outcome

III. Into the weeds: a mathematical presentation of SL

Review

Recall the construction of SL for a continuous outcome:

Review

Recall the construction of SL for a continuous outcome:

1. Define a library of candidate algorithms $\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}$.
2. Obtain the CV-predictions $\hat{\mu}_{k, v}\left(\mathbf{X}_{i}\right)$ for all k, v and $i \in \mathcal{V}_{v}$.
3. Use constrained optimization to compute the SL weights

$$
\widehat{\boldsymbol{\lambda}}:=\arg \min _{\lambda \in \mathcal{S}_{K}} \widehat{M S E}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\mu}_{k}\right)
$$

4. Take $\hat{\mu}_{S L}=\sum_{k=1}^{K} \hat{\lambda}_{k} \hat{\mu}_{k}$.

In this section, we generalize this procedure to estimation of any summary of the observed data distribution given an appropriate loss for the summary of interest.

Loss and risk: setup

- Denote by \mathbf{O} the observed data unit - e.g. $\mathbf{O}=(Y, \mathbf{X})$.

Loss and risk: setup

- Denote by \mathbf{O} the observed data unit - e.g. $\mathbf{O}=(Y, \mathbf{X})$.
- Denote by \mathcal{O} the sample space of \mathbf{O}

Loss and risk: setup

- Denote by \mathbf{O} the observed data unit - e.g. $\mathbf{O}=(Y, \mathbf{X})$.
- Denote by \mathcal{O} the sample space of \mathbf{O}
- Let \mathcal{M} denote our statistical model.

Loss and risk: setup

- Denote by \mathbf{O} the observed data unit - e.g. $\mathbf{O}=(Y, \mathbf{X})$.
- Denote by \mathcal{O} the sample space of \mathbf{O}
- Let \mathcal{M} denote our statistical model.
- Denote by $P_{0} \in \mathcal{M}$ the true distribution of \mathbf{O}.

Loss and risk: setup

- Denote by \mathbf{O} the observed data unit - e.g. $\mathbf{O}=(Y, \mathbf{X})$.
- Denote by \mathcal{O} the sample space of \mathbf{O}
- Let \mathcal{M} denote our statistical model.
- Denote by $P_{0} \in \mathcal{M}$ the true distribution of \mathbf{O}.
- Thus, we observe i.i.d. copies $\mathbf{O}_{1}, \ldots, \mathbf{O}_{n} \sim P_{0}$.

Loss and risk: setup

- Denote by \mathbf{O} the observed data unit - e.g. $\mathbf{O}=(Y, \mathbf{X})$.
- Denote by \mathcal{O} the sample space of \mathbf{O}
- Let \mathcal{M} denote our statistical model.
- Denote by $P_{0} \in \mathcal{M}$ the true distribution of \mathbf{O}.
- Thus, we observe i.i.d. copies $\mathbf{O}_{1}, \ldots, \mathbf{O}_{n} \sim P_{0}$.
- Suppose we want to estimate a parameter $\theta: \mathcal{M} \rightarrow \boldsymbol{\Theta}$.

Loss and risk: setup

- Denote by \mathbf{O} the observed data unit - e.g. $\mathbf{O}=(Y, \mathbf{X})$.
- Denote by \mathcal{O} the sample space of \mathbf{O}
- Let \mathcal{M} denote our statistical model.
- Denote by $P_{0} \in \mathcal{M}$ the true distribution of \mathbf{O}.
- Thus, we observe i.i.d. copies $\mathbf{O}_{1}, \ldots, \mathbf{O}_{n} \sim P_{0}$.
- Suppose we want to estimate a parameter $\theta: \mathcal{M} \rightarrow \boldsymbol{\Theta}$.
- Denote $\theta_{0}:=\theta\left(P_{0}\right)$ the true parameter value.

Loss and risk

- Let L be a map from $\mathcal{O} \times \boldsymbol{\Theta}$ to \mathbb{R}.

Loss and risk

- Let L be a map from $\mathcal{O} \times \boldsymbol{\Theta}$ to \mathbb{R}.
- We call L a loss function for θ if it holds that

$$
\theta_{0}=\underset{\theta \in \Theta}{\arg \min } E_{P_{0}}[L(\mathbf{O}, \theta)]
$$

Loss and risk

- Let L be a map from $\mathcal{O} \times \boldsymbol{\Theta}$ to \mathbb{R}.
- We call L a loss function for θ if it holds that

$$
\theta_{0}=\underset{\theta \in \Theta}{\arg \min } E_{P_{0}}[L(\mathbf{O}, \theta)]
$$

- $R_{0}(\theta)=E_{P_{0}}[L(\mathbf{O}, \theta)]$ is called the oracle risk.

Loss and risk

- Let L be a map from $\mathcal{O} \times \boldsymbol{\Theta}$ to \mathbb{R}.
- We call L a loss function for θ if it holds that

$$
\theta_{0}=\underset{\theta \in \Theta}{\arg \min } E_{P_{0}}[L(\mathbf{O}, \theta)]
$$

- $R_{0}(\theta)=E_{P_{0}}[L(\mathbf{O}, \theta)]$ is called the oracle risk.
- These definitions of loss and risk come from the statistical learning literature (see, e.g. Vapnik, 1992, 1999, 2013) and are not to be confused with loss and risk from the decision theory literature (e.g. Ferguson, 2014).

Loss and risk: MSE example

MSE is the oracle risk corresponding to a
squared-error loss function

Loss and risk: MSE example

MSE is the oracle risk corresponding to a
squared-error loss function

- $\mathbf{O}=(Y, \mathbf{X})$.

Loss and risk: MSE example

MSE is the oracle risk corresponding to a squared-error loss function

- $\mathbf{O}=(Y, \mathbf{X})$.
- $\theta(P)=\mu(P)=\left\{\mathbf{x} \mapsto E_{P}[Y \mid \mathbf{X}=\mathbf{x}]\right\}$

Loss and risk: MSE example

MSE is the oracle risk corresponding to a squared-error loss function

- $\mathbf{O}=(Y, \mathbf{X})$.
- $\theta(P)=\mu(P)=\left\{\mathbf{x} \mapsto E_{P}[Y \mid \mathbf{X}=\mathbf{x}]\right\}$
- $L(\mathbf{O}, \mu)=[Y-\mu(\mathbf{X})]^{2}$ is the squared-error loss.

Loss and risk: MSE example

MSE is the oracle risk corresponding to a

squared-error loss function

- $\mathbf{O}=(Y, \mathbf{X})$.
- $\theta(P)=\mu(P)=\left\{\mathbf{x} \mapsto E_{P}[Y \mid \mathbf{X}=\mathbf{x}]\right\}$
- $L(\mathbf{O}, \mu)=[Y-\mu(\mathbf{X})]^{2}$ is the squared-error loss.
- $R_{0}(\mu)=\operatorname{MSE}(\mu)=E_{P_{0}}[Y-\mu(\mathbf{X})]^{2}$.

Estimating the oracle risk

$$
\begin{gathered}
\theta_{0}=\underset{\theta \in \boldsymbol{\Theta}}{\arg \min } R_{0}(\theta) \\
R_{0}(\theta)=E_{P_{0}}[L(\mathbf{O}, \theta)]
\end{gathered}
$$

Estimating the oracle risk

$$
\begin{gathered}
\theta_{0}=\underset{\theta \in \boldsymbol{\Theta}}{\arg \min } R_{0}(\theta) \\
R_{0}(\theta)=E_{P_{0}}[L(\mathbf{O}, \theta)]
\end{gathered}
$$

- Suppose that $\hat{\theta}_{1}, \ldots, \hat{\theta}_{K}$ are candidate estimators.

Estimating the oracle risk

$$
\begin{gathered}
\theta_{0}=\underset{\theta \in \boldsymbol{\Theta}}{\arg \min } R_{0}(\theta) \\
R_{0}(\theta)=E_{P_{0}}[L(\mathbf{O}, \theta)]
\end{gathered}
$$

- Suppose that $\hat{\theta}_{1}, \ldots, \hat{\theta}_{K}$ are candidate estimators.
- As before, we need to estimate $R_{0}(\theta)$ to evaluate each $\hat{\theta}_{k}$.

Estimating the oracle risk

$$
\begin{gathered}
\theta_{0}=\underset{\theta \in \boldsymbol{\Theta}}{\arg \min } R_{0}(\theta) \\
R_{0}(\theta)=E_{P_{0}}[L(\mathbf{O}, \theta)]
\end{gathered}
$$

- Suppose that $\hat{\theta}_{1}, \ldots, \hat{\theta}_{K}$ are candidate estimators.
- As before, we need to estimate $R_{0}(\theta)$ to evaluate each $\hat{\theta}_{k}$.
- The naive estimator is $\widehat{R}\left(\hat{\theta}_{k}\right)=\frac{1}{n} \sum_{i=1}^{n} L\left(\mathbf{O}_{i}, \hat{\theta}_{k}\right)$.

Estimating the oracle risk

$$
\begin{gathered}
\theta_{0}=\underset{\theta \in \boldsymbol{\Theta}}{\arg \min } R_{0}(\theta) \\
R_{0}(\theta)=E_{P_{0}}[L(\mathbf{O}, \theta)]
\end{gathered}
$$

- Suppose that $\hat{\theta}_{1}, \ldots, \hat{\theta}_{K}$ are candidate estimators.
- As before, we need to estimate $R_{0}(\theta)$ to evaluate each $\hat{\theta}_{k}$.
- The naive estimator is $\widehat{R}\left(\hat{\theta}_{k}\right)=\frac{1}{n} \sum_{i=1}^{n} L\left(\mathbf{O}_{i}, \hat{\theta}_{k}\right)$.
- We instead estimate $R_{0}(\theta)$ using the cross-validated risk

$$
\widehat{R}_{C V}\left(\hat{\theta}_{k}\right)=\frac{1}{V} \sum_{v=1}^{v} \frac{1}{\left|\mathcal{V}_{v}\right|} \sum_{i \in \mathcal{V}_{v}} L\left(\mathbf{O}_{i}, \hat{\theta}_{k, v}\right)
$$

Super Learner: general steps

Using this framework, we can generalize the SL recipe:

Super Learner: general steps

Using this framework, we can generalize the SL recipe:

1. Define a library of candidate algorithms $\hat{\theta}_{1}, \ldots, \hat{\theta}_{K}$.

Super Learner: general steps

Using this framework, we can generalize the SL recipe:

1. Define a library of candidate algorithms $\hat{\theta}_{1}, \ldots, \hat{\theta}_{K}$.
2. Obtain the CV-Risks $\widehat{R}_{C V}\left(\hat{\theta}_{k}\right), k=1, \ldots, K$.

Super Learner: general steps

Using this framework, we can generalize the SL recipe:

1. Define a library of candidate algorithms $\hat{\theta}_{1}, \ldots, \hat{\theta}_{K}$.
2. Obtain the CV-Risks $\widehat{R}_{C V}\left(\hat{\theta}_{K}\right), k=1, \ldots, K$.
3. Use constrained optimization to compute the SL weights

$$
\widehat{\boldsymbol{\lambda}}:=\arg \min _{\lambda \in \mathcal{S}_{K}} \widehat{R}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\theta}_{k}\right)
$$

Super Learner: general steps

Using this framework, we can generalize the SL recipe:

1. Define a library of candidate algorithms $\hat{\theta}_{1}, \ldots, \hat{\theta}_{K}$.
2. Obtain the CV-Risks $\widehat{R}_{C V}\left(\hat{\theta}_{K}\right), k=1, \ldots, K$.
3. Use constrained optimization to compute the SL weights

$$
\widehat{\boldsymbol{\lambda}}:=\arg \min _{\lambda \in \mathcal{S}_{K}} \widehat{R}_{C V}\left(\sum_{k=1}^{K} \lambda_{k} \hat{\theta}_{k}\right)
$$

4. Take $\hat{\theta}_{S L}=\sum_{k=1}^{K} \hat{\lambda}_{k} \hat{\theta}_{k}$.

Theoretical guarantees

van der Vaart et al. (2006) showed that, under some conditions, the oracle risk of the SL estimator is as good as the oracle risk of the oracle minimizer up to a multiple of $\frac{\log n}{n}$ as long as the number of candidate algorithms is polynomial in n.

Loss functions for a binary outcome

We return to $\mathbf{O}=(Y, \mathbf{X}), \theta=\mu$.

Loss functions for a binary outcome

We return to $\mathbf{O}=(Y, \mathbf{X}), \theta=\mu$.

- For continuous Y, we used squared-error loss.

Loss functions for a binary outcome

We return to $\mathbf{O}=(Y, \mathbf{X}), \theta=\mu$.

- For continuous Y, we used squared-error loss.
- For binary Y, squared-error loss is still valid.

Loss functions for a binary outcome

We return to $\mathbf{O}=(Y, \mathbf{X}), \theta=\mu$.

- For continuous Y, we used squared-error loss.
- For binary Y, squared-error loss is still valid.
- However, there are (at least) two other alternative loss functions for a binary outcome.

Loss functions for a binary outcome

We return to $\mathbf{O}=(Y, \mathbf{X}), \theta=\mu$.

- For continuous Y, we used squared-error loss.
- For binary Y, squared-error loss is still valid.
- However, there are (at least) two other alternative loss functions for a binary outcome.
- Negative log-likelihood loss:

$$
L(\mathbf{O}, \mu)=-Y \log \mu(\mathbf{X})-[1-Y] \log [1-\mu(\mathbf{X})] .
$$

Loss functions for a binary outcome

We return to $\mathbf{O}=(Y, \mathbf{X}), \theta=\mu$.

- For continuous Y, we used squared-error loss.
- For binary Y, squared-error loss is still valid.
- However, there are (at least) two other alternative loss functions for a binary outcome.
- Negative log-likelihood loss:

$$
L(\mathbf{O}, \mu)=-Y \log \mu(\mathbf{X})-[1-Y] \log [1-\mu(\mathbf{X})] .
$$

- AUC loss.

IV. Lab 2: Vanilla SL for a binary outcome

15 minute break

V. Bells and whistles: Screens, weights, and CV-SL

Overview

In this section, we will introduce three of the add-ons to SL that are frequently useful in practice: variable screens, observation weights, and cross-validated SL.

Variable screens

- We think of a candidate algorithm as a two-step procedure:

Variable screens

- We think of a candidate algorithm as a two-step procedure:

1. Select a subset of the covariates.

Variable screens

- We think of a candidate algorithm as a two-step procedure:

1. Select a subset of the covariates.
2. Use the selected subset to fit a model.

Variable screens

- We think of a candidate algorithm as a two-step procedure:

1. Select a subset of the covariates.
2. Use the selected subset to fit a model.

- We call step 1 a screening procedure.

Variable screens

- We think of a candidate algorithm as a two-step procedure:

1. Select a subset of the covariates.
2. Use the selected subset to fit a model.

- We call step 1 a screening procedure.
- While we could program steps 1 and 2 by hand in to each candidate algorithm, the SuperLearner package has built-in functionality to ease this process.

Variable screens

- We think of a candidate algorithm as a two-step procedure:

1. Select a subset of the covariates.
2. Use the selected subset to fit a model.

- We call step 1 a screening procedure.
- While we could program steps 1 and 2 by hand in to each candidate algorithm, the SuperLearner package has built-in functionality to ease this process.

Screening algorithms allow us to guide the SL using our domain knowledge.

Example use-cases of screening

- If we have a high-dimensional set of covariates, we can try different ways of reducing the dimensionality.

Example use-cases of screening

- If we have a high-dimensional set of covariates, we can try different ways of reducing the dimensionality.
- If we have a large number of "raw" measurements, we might try providing a smaller number of summary measures - e.g. mean, median, min, max.

Example use-cases of screening

- If we have a high-dimensional set of covariates, we can try different ways of reducing the dimensionality.
- If we have a large number of "raw" measurements, we might try providing a smaller number of summary measures - e.g. mean, median, min, max.
- If we have measurements collected at multiple time points, we might try providing just baseline, or just the last time point, or some summaries of the trajectory.

Example use-cases of screening

- If we have a high-dimensional set of covariates, we can try different ways of reducing the dimensionality.
- If we have a large number of "raw" measurements, we might try providing a smaller number of summary measures - e.g. mean, median, min, max.
- If we have measurements collected at multiple time points, we might try providing just baseline, or just the last time point, or some summaries of the trajectory.
- We can force certain variables to always be used.

Observation weights

- In some applications, we need to include observation weights in the procedure - e.g. case-control sampling, or as a simple way to account for loss-to-followup.

Observation weights

- In some applications, we need to include observation weights in the procedure - e.g. case-control sampling, or as a simple way to account for loss-to-followup.
- Observation weights can be included directly in a call to SuperLearner, but method.AUC does not make correct use of weights!!!!

Observation weights

- In some applications, we need to include observation weights in the procedure - e.g. case-control sampling, or as a simple way to account for loss-to-followup.
- Observation weights can be included directly in a call to SuperLearner, but method.AUC does not make correct use of weights!!!!
- Note that some SuperLearner wrappers might not make use of observation weights.

Case-control weights

- Let Y represent disease status at the end of a study.

Case-control weights

- Let Y represent disease status at the end of a study.
- Suppose specimens from all $n_{\text {case }}$ cases $\left(Y_{i}=1\right)$ are assayed.

Case-control weights

- Let Y represent disease status at the end of a study.
- Suppose specimens from all $n_{\text {case }}$ cases $\left(Y_{i}=1\right)$ are assayed.
- A random subset of $N_{\text {control }}$ controls ($Y_{i}=0$) (out of $n_{\text {control }}$ total controls) are assayed.

Case-control weights

- Let Y represent disease status at the end of a study.
- Suppose specimens from all $n_{\text {case }}$ cases $\left(Y_{i}=1\right)$ are assayed.
- A random subset of $N_{\text {control }}$ controls $\left(Y_{i}=0\right)$ (out of $n_{\text {control }}$ total controls) are assayed.
- We will use this case-control cohort to predict disease status using the results of the assay and other covariates.

Case-control weights

- We can use SL with observation weights.

Case-control weights

- We can use SL with observation weights.
- Cases have weight $w_{i}=1$.

Case-control weights

- We can use SL with observation weights.
- Cases have weight $w_{i}=1$.
- Controls have weight $w_{i}=n_{\text {control }} / N_{\text {control }}$.

Case-control weights

- We can use SL with observation weights.
- Cases have weight $w_{i}=1$.
- Controls have weight $w_{i}=n_{\text {control }} / N_{\text {control }}$.
- Control weights could also be estimated using a logistic regression of the indicator of inclusion in the control cohort on baseline covariates.

Right-censored outcomes

- Suppose $Y=I\left(T \leq t_{0}\right)$ indicates that disease occurs before time t_{0}.

Right-censored outcomes

- Suppose $Y=I\left(T \leq t_{0}\right)$ indicates that disease occurs before time t_{0}.
- T is subject to right-censoring by C : we observe $Y=\min \{T, C\}$ and $\Delta=I(T \leq C)$.

Right-censored outcomes

- Suppose $Y=I\left(T \leq t_{0}\right)$ indicates that disease occurs before time t_{0}.
- T is subject to right-censoring by C : we observe
$Y=\min \{T, C\}$ and $\Delta=I(T \leq C)$.
- We want to estimate

$$
\mu(\mathbf{x})=P\left(T \leq t_{0} \mid \mathbf{X}=\mathbf{x}\right)=E[Y \mid \mathbf{X}=\mathbf{x}] .
$$

Right-censored outcomes

$$
\mu_{0}=\underset{\mu}{\arg \min } E_{P_{0}}\left\{\frac{\Delta}{G_{0}(Y \mid \mathbf{X})} L((Y, \mathbf{X}), \mu)\right\}
$$

- Here, $G_{0}(t \mid \mathbf{x})=P_{0}(C>t \mid \mathbf{X}=\mathbf{x})$.
- L either squared-error or negative log-likelihood loss.

Right-censored outcomes

$$
\mu_{0}=\underset{\mu}{\arg \min } E_{P_{0}}\left\{\frac{\Delta}{G_{0}(Y \mid \mathbf{X})} L((Y, \mathbf{X}), \mu)\right\}
$$

- Here, $G_{0}(t \mid \mathbf{x})=P_{0}(C>t \mid \mathbf{X}=\mathbf{x})$.
- L either squared-error or negative log-likelihood loss.
- If we knew G_{0}, we could use SL with weight $\frac{\Delta}{G_{0}(Y \mid \mathbf{X})}$.

Right-censored outcomes

$$
\mu_{0}=\underset{\mu}{\arg \min } E_{P_{0}}\left\{\frac{\Delta}{G_{0}(Y \mid \mathbf{X})} L((Y, \mathbf{X}), \mu)\right\}
$$

- Here, $G_{0}(t \mid \mathbf{x})=P_{0}(C>t \mid \mathbf{X}=\mathbf{x})$.
- L either squared-error or negative log-likelihood loss.
- If we knew G_{0}, we could use SL with weight $\frac{\Delta}{G_{0}(Y \mid \mathbf{X})}$.
- Instead, we estimate G_{0} and plug in this estimator to obtain an estimated weight.

Right-censored outcomes

$$
\mu_{0}=\underset{\mu}{\arg \min } E_{P_{0}}\left\{\frac{\Delta}{G_{0}(Y \mid \mathbf{X})} L((Y, \mathbf{X}), \mu)\right\}
$$

- Here, $G_{0}(t \mid \mathbf{x})=P_{0}(C>t \mid \mathbf{X}=\mathbf{x})$.
- L either squared-error or negative log-likelihood loss.
- If we knew G_{0}, we could use SL with weight $\frac{\Delta}{G_{0}(Y \mid \mathbf{X})}$.
- Instead, we estimate G_{0} and plug in this estimator to obtain an estimated weight.
- If $C \Perp T$, we can use a Kaplan-Meier estimator for G_{0}; otherwise we might use a Cox model.

CV-Super Learner

- The standard SL framework gives us CV risks for each candidate algorithm.

CV-Super Learner

- The standard SL framework gives us CV risks for each candidate algorithm.
- However, the SL and discrete SL are obtained using all the data, so their estimated risks will be optimistic.

CV-Super Learner

- The standard SL framework gives us CV risks for each candidate algorithm.
- However, the SL and discrete SL are obtained using all the data, so their estimated risks will be optimistic.
- We can rectify this using a second layer of cross-validation.

CV-Super Learner

- The standard SL framework gives us CV risks for each candidate algorithm.
- However, the SL and discrete SL are obtained using all the data, so their estimated risks will be optimistic.
- We can rectify this using a second layer of cross-validation.

CV-Super Learner

1. Split the data into V_{1} folds.

CV-Super Learner

1. Split the data into V_{1} folds.
2. For $v=1, \ldots, V_{1}$:

CV-Super Learner

1. Split the data into V_{1} folds.
2. For $v=1, \ldots, V_{1}$:
a. Run regular SL on the training set for fold v using
V_{2}-fold CV.

CV-Super Learner

1. Split the data into V_{1} folds.
2. For $v=1, \ldots, V_{1}$:
a. Run regular SL on the training set for fold v using
V_{2}-fold CV.
b. Obtain discrete SL and SL predictions for the validation set for fold v.

CV-Super Learner

1. Split the data into V_{1} folds.
2. For $v=1, \ldots, V_{1}$:
a. Run regular SL on the training set for fold v using
V_{2}-fold CV.
b. Obtain discrete SL and SL predictions for the validation set for fold v.
3. Combine the validation sets to obtain CV-risks for the discrete SL and SL.

VI. Lab 3:

Binary outcome
 redux

VII. Lab 4: Case-control analysis of Fluzone vaccine

FLUVACS trial

- Health adults aged 18-49 years, Michigan, 2007-2008.

FLUVACS trial

- Health adults aged 18-49 years, Michigan, 2007-2008.
- Randomly assigned to:
- Fluzone - inactivated influenza vaccine (IIV)
- FluMist - live-attenuated influenza vaccine (LAIV)
- placebo.

FLUVACS trial

- Health adults aged 18-49 years, Michigan, 2007-2008.
- Randomly assigned to:
- Fluzone - inactivated influenza vaccine (IIV)
- FluMist - live-attenuated influenza vaccine (LAIV)
- placebo.
- We are only interested in Fluzone vs placebo.

FLUVACS trial

- Health adults aged 18-49 years, Michigan, 2007-2008.
- Randomly assigned to:
- Fluzone - inactivated influenza vaccine (IIV)
- FluMist - live-attenuated influenza vaccine (LAIV)
- placebo.
- We are only interested in Fluzone vs placebo.
- Followed for one flu season.
- Endpoint = laboratory-confirmed influenza.

FLUVACS trial

Treatment	Group	No.
Placebo	Total	325
	Cases	30
	Controls	295
LAIV	Total	814
	Cases	54
	Controls	760
IIV	Total	813
	Cases	22
	Controls	791

FLUVACS trial

- All 52 cases and 52 random controls were assayed for a variety of markers (HAI, NAI, MN, AM titers, proteins/virus/peptide magnitude/breadth).

FLUVACS trial

- All 52 cases and 52 random controls were assayed for a variety of markers (HAI, NAI, MN, AM titers, proteins/virus/peptide magnitude/breadth).
- Measured variables:
- Demographics: age, vaccinated in last year (EVERVAX)

FLUVACS trial

- All 52 cases and 52 random controls were assayed for a variety of markers (HAI, NAI, MN, AM titers, proteins/virus/peptide magnitude/breadth).
- Measured variables:
- Demographics: age, vaccinated in last year
(EVERVAX)
- Day 0 markers

FLUVACS trial

- All 52 cases and 52 random controls were assayed for a variety of markers (HAI, NAI, MN, AM titers, proteins/virus/peptide magnitude/breadth).
- Measured variables:
- Demographics: age, vaccinated in last year
(EVERVAX)
- Day 0 markers
- Day 30 markers

FLUVACS trial

- All 52 cases and 52 random controls were assayed for a variety of markers (HAI, NAI, MN, AM titers, proteins/virus/peptide magnitude/breadth).
- Measured variables:
- Demographics: age, vaccinated in last year
(EVERVAX)
- Day 0 markers
- Day 30 markers
- Difference markers = Day 30 markers - Day 0 markers

Variable sets

1. Demo.

Variable sets

1. Demo.
2. Demo. + Day 0 markers

Variable sets

1. Demo.
2. Demo. + Day 0 markers
3. Demo. + Day 30 markers

Variable sets

1. Demo.
2. Demo. + Day 0 markers
3. Demo. + Day 30 markers
4. Demo. + Difference markers

Variable sets

1. Demo.
2. Demo. + Day 0 markers
3. Demo. + Day 30 markers
4. Demo. + Difference markers
5. Demo. + Day 0 markers + EVERVAX \times Day 0 markers

Variable sets

1. Demo.
2. Demo. + Day 0 markers
3. Demo. + Day 30 markers
4. Demo. + Difference markers
5. Demo. + Day 0 markers + EVERVAX \times Day 0 markers
6. Demo. + Day 30 markers + EVERVAX \times Day 30 markers

Variable sets

1. Demo.
2. Demo. + Day 0 markers
3. Demo. + Day 30 markers
4. Demo. + Difference markers
5. Demo. + Day 0 markers + EVERVAX \times Day 0 markers
6. Demo. + Day 30 markers + EVERVAX \times Day 30 markers
7. Demo. + Diff. markers + EVERVAX \times Diff. markers

Variable sets

1. Demo.
2. Demo. + Day 0 markers
3. Demo. + Day 30 markers
4. Demo. + Difference markers
5. Demo. + Day 0 markers + EVERVAX \times Day 0 markers
6. Demo. + Day 30 markers + EVERVAX \times Day 30 markers
7. Demo. + Diff. markers + EVERVAX \times Diff. markers
8. Demo. + Day $0+$ Day $30+$ EVERVAX $\times($ Day $0+$ Day 30)

Variable sets

1. Demo.
2. Demo. + Day 0 markers
3. Demo. + Day 30 markers
4. Demo. + Difference markers
5. Demo. + Day 0 markers + EVERVAX \times Day 0 markers
6. Demo. + Day 30 markers + EVERVAX \times Day 30 markers
7. Demo. + Diff. markers + EVERVAX \times Diff. markers
8. Demo. + Day $0+$ Day $30+$ EVERVAX $\times($ Day $0+$ Day 30)
9. Demo. + Day $0+$ Diff. + EVERVAX $\times($ Day $0+$ Diff. $)$

Analysis goals

- We want to compare the quality of these nine sets of variables for predicting flu status in the placebo and Fluzone arms separately.

Analysis goals

- We want to compare the quality of these nine sets of variables for predicting flu status in the placebo and Fluzone arms separately.
- We also want to compare the predictive quality of $\lg A, \lg G$, and both $\lg A+\lg G$ measurements.

Analysis goals

- We want to compare the quality of these nine sets of variables for predicting flu status in the placebo and Fluzone arms separately.
- We also want to compare the predictive quality of $\lg A, \lg G$, and both $\lg A+\lg G$ measurements.
- We will use cross-validated Super Learning to do this.

Ferguson, T. S. (2014). Mathematical statistics: A decision theoretic approach. Academic Press.
van der Vaart, A. W., Dudoit, S., and van der Laan, M. J. (2006). Oracle inequalities for multi-fold cross validation. Statistics \& Decisions, 24(3):351-371.

Vapnik, V. (1992). Principles of risk minimization for learning theory. In Advances in Neural Information Processing Systems, pages 831-838.

Vapnik, V. (2013). The nature of statistical learning theory. Springer Science \& Business Media.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5):988-999.

