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Motivation: two Phase 3 Dengvaxia trials

» Two randomized placebo-controlled Phase 3 dengue
vaccine trials in 31144 children

» Harmonized trial designs
» Vaccine/placebo administered at months 0, 6, and 12

» Primary clinical endpoint: symptomatic virologically
confirmed dengue (VCD) between months 13 and 25

» Asian trial: VE = 56.5% (95% Cl, 43.8 to 66.4)
> Latin American trial: VE = 60.8% (95% Cl, 52.0 to 68.0)

Does average neutralizing antibody titer, measured in
the vaccine group at month 13, modify VE(13-25)
against VCD in participants free of VCD through
month 13?



Motivation: two Phase 3 Dengvaxia trials

Three-phase case-cohort sampling design

» Baseline serum samples collected from a random sample
(subcohort S) of

» ~ 10% of all participants in the Asian trial
» =~ 20% of all participants in the Latin American trial

» Month 13 serum samples collected from all participants
U

» Phase 1: baseline covariates (e.g., demographics) in all
participants

» Phase 2: biomarker S (NADb titer) at month 13 in a subset
of subcohort S and in all post-month 13 VCD cases

» Phase 3: biomarker’s baseline value S, only in a subset of
subcohort §



Motivation: two Phase 3 Dengvaxia trials

» Sp and S highly correlated, making Sy, ideal as a baseline
immunogenicity predictor! (baseline surrogate measure?)

» All alternative EML and PS methods® require that S;, be
measured from all vaccine recipients with S measured

= These methods would discard data from 80-90% of VCD
endpoint cases in the vaccine group!

! Follmann (2006); Gilbert and Hudgens (2008)

2 Gabriel and Gilbert (2014)

3 Gilbert and Hudgens (2008); Huang and Gilbert (2011); Huang, Gilbert, and Wolfson
(2013); Gabriel and Gilbert (2014); Huang (2017)



Notation

» Z treatment indicator
» X =(Xj,..., Xk) baseline covariate vector

» S discrete or continuous univariate biomarker at fixed
time 7 after randomization

» Sp baseline value of the biomarker

» ¢ and ¢ indicators of measured S and Sy

» Y indicator of clinical endpoint after ~

» Y7 indicator of clinical endpoint at or before

» Y7(2), e(Z2), S(Z), Y(Z) potential outcomes of Y7, ¢, S, Y
under Z

To evaluate S(1) as a modifier of treatment effect on Y,
S needs to be measured prior to Y.
= Analysis restricted to participants with Y™ = 0.



Three-phase case-cohort sampling design

Phase 1: Z, X, Y7, Y measured in all randomized participants
Phase 2 (classic case-cohort design [Prentice, 1986]):

» Bernoulli sample S at baseline

» S measured at 7 in

» a subset of S with Y™ =0, and
» all (or almost all) cases (Y = 1) with Y" =0

Phase 3:
» S, measured at baseline in a subset of S with Y™ =0

Consequence: S, measured only in those cases with Y7 =0
that were sampled into S



Identifiability assumptions

1. (Zi, Xi, 61, 6iSp.i» Y7 (0), Y7 (1), €i(0), €i(0)Si(0), ei(1),
€i(1)Si(1), Y;(0), Yi(1)),i=1,...,n,iid. with no drop-out
2. Standard identifiability assumptions'

a. Stable unit treatment value assumption (SUTVA) and
consistency:
(¥7(0), Y7 (1),€(0), €(0)Si(0), (1), €i(1)Si(1), Yi(0), Yi(1))
L 2, j# i, and (Vi(Z), €/(Z)Si(Z), Yi(Z)) = (Vi,€iSi, i)
b. Ignorable treatment assignment:
Z L
(07, 0iSp,i» Y7 (0), Y7 (1),€i(0),€:(0)Si(0), €i(1), (1) Si(1),
Yi(0), Yi(1)) | X;
c. Equal early clinical risk:
P{Y7(0) =Y (1)} =1"

* Henceforth all unconditional and conditional probabilities of Y(z) = 1 implicitly
conditionon Y7 (1) = Y7(0) = 0.

T Gilbert and Hudgens (2008); Huang and Gilbert (2011); Huang, Gilbert, and Wolfson
(2013); Gabriel and Gilbert (2014); Huang (2017)



Modeling assumptions

3. P{Y(z) =1|X,S(2)} follows a GLM for z =0, 1
» For z =0, it replaces “placebo structural risk” assumption

of all EML and PS methods' that P{Y(0) = 1|X, S(1)}
follows a GLM

4. Conditional independence:
P{Y(0) = 1|X, 5(0), S(1)} = P{Y(0) = 1[X, 5(0)}
5. Time constancy:
f(s1|X = x, S(0) = sp) = f(51|X = X, Sp = ) for all
(s1. X, %0)

T Gilbert and Hudgens (2008); Huang and Gilbert (2011); Huang, Gilbert, and Wolfson
(2013); Gabriel and Gilbert (2014); Huang (2017)



Estimand of interest: mCEP(s;)

» Overall causal treatment effect on Y
CE =h(P{Y(1)=1},P{Y(0)=1})
» h(x,y) a known contrast function
» Marginal causal effect predictiveness curve®?
mCEP(s1) = h(P{Y(1) = 1|S(1) = s1}, P{Y(0) = 1|S(1) = s1})
» Principal stratification estimand* = measures causal
treatment effect on Y for a subgroup with S(1) = s;

» Examples:
h(x,y) =1 — x/y multiplicative risk reduction
h(x,y) = y — x attributable risk

* Gilbert and Hudgens (2008)
T If Sis continuous, this definition abuses notation for simplicity of exposition.
¥ Frangakis and Rubin (2002)



Estimation of mCEP(s4)

> pz(s1) :=P{Y(z2) =1|S(1) = sy} forz= 0,1

> mCEP(s1) = h{p1(s1), Po(s1)}
» Estimate p1(s1) via the specified GLM, accounting for
case-cohort sampling of S

» E.g., using the tps function in the R osDesign package
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Estimation of mCEP(s4)

po(s1) = / PIY(0) = 1]X = x, S(0) = sp} x

. [(s1]S0, X)g(s0| X)r(x) gk
m(sy)

(SOaX)a
m(sy) = [ f(s1]s0, X)g(S0[x)r(x) d**(s0, x)

» Estimate P{Y(0) = 1|X = x, S(0) = sy} via the specified
GLM, accounting for case-cohort sampling of S
> ~Estimate f(51|Sp = sp, X = x) by estimating
f(s1|Sp = So, X = Xx) via nonparametric kernel smoothing,
accounting for the three-phase sampling design
» E.g., using the npcdensbw, npcdens, npudensbw,
npudens functions in the R np package

» Estimate g(sp|x) and r(x) analogously

11



Interval estimation of mCEP(s;)

Bootstrap procedures designed to construct
1. pointwise Wald-type Cl for mCEP(s;) for a given s;

2. simultaneous Wald-type Cl for {mCEP(s;), sy € S}, for an
arbitrary subset S of the support of S(1)

» Cases and controls sampled separately in each bootstrap
sample

12



Simultaneous Wald-type Cl for {mCEP(s;), s1 € S}

v

n(s1) := n{mCEP(s1)} a “symmetrizing” transformation
> h(x,y) =1—-x/y = n{h(x,y)} = log{1 - h(x,y)}

fi(s1) = n{mCEP(s, )}

U® = supq, s [7)(s1) — (s1)|/SE*{ii(s1)}

¢’ empirical quantile of U®), b=1,..., B, at probability

1—«

(1 — &) x 100% Cl as n~(-) transformation of

(la(s1), ud(s1)) = (1) F ¢, SE™{n(s1)}-

v

v

v

v
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Testing hypotheses of interest

Hypothesis tests via simultaneous estimation method of Roy
and Bose (1953) for
1. H} : mCEP(s;) = CE forall 5; € S
2. HZ : mCEP(sy) = cforall sy € Sy C S and a known
constant c € R
3. Hg : mCEP4(81) = mCEP(sy) for all sy € S C S, where
mCEP¢y and mCEP, are each associated with either a
different biomarker (measured in the same units) or a
different endpoint or both
4. H§ : mCEP(s1|X = 1) = mCEP(s{|X = 0) forall sy € Sy C
S, where X is a baseline dichotomous phase 1 covariate of
interest included in X

14



Tests of H} and HZ

H} : mCEP(sy) = CE for all sy € S
Hs : mCEP(s1) = cfor all sy € Sy C S and a known constant ¢ € R

> UP(S, @) := sups,cs [1®(s1) — n(a)|/SE*{ii(s1)}, a € R
» Regions of rejection of H} and H3 at significance level a:

Uy == sup|ii(s1) — n(CE)|/SE*{ii(s1)} > ¢fa

S1€S
Uz := sup [ij(s1) —n(c)|/SE*{ij(s1)} > c3,
S1E€S4
» cj, and c;_, empirical quantiles of U,gb)(S, CE) and
UP(Sy,¢), b=1,...,B, at probability 1 — o
» Two-sided p-values as empirical probabilities that
U,gb)(S,EE) > U; and U7(7b)(81,c) > U
15



Test of H

H3 : mCEP;(sy) = mCEP,(sy) forall 5y € Sy C S, where mCEP; and
mCEP, are each associated with either a different biomarker or a
different endpoint or both

> 0(s1) := n{mCEP1(s1)} — n{mCEP>(s1)}

b . [
Us? = sups, s, [0®)(s1)| /SE*{0(s1)}
Region of rejection of Hg at significance level a:

v

v

Us = sup [6(s1)|/SE*{B(s1)} > c3,

S51€S4

» c3, empirical quantile of U(gb), b=1,...,B, at probability
1—«o

Two-sided p-value as empirical probability that Uéb) > Us

v
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Test of Hj

H§ : mCEP(s¢|X = 1) = mCEP(s{|X = 0) for all sy € Sy C S, where X
is a baseline dichotomous phase 1 covariate of interest

» Estimates of mCEP(s1) in subgroups X =1 and X =0 are
independent

» Test of Hy identical to that of HS except

~

SE*{0(s1)} = {SE"‘2 [n{mCEP(s1|X = 1)}] +

+ SE** [p{mCEP(s4|X = 0)}] }1/2

17



Simulation setup

Three-phase case-cohort sampling design
Phase 1:

» N = 5000 randomized at 1:1 ratioto Z =1 or 0 and
followed for a binary Y (assumed to occur after r at which S(Z) is
measured)

Phase 2:

» Bernoulli sample S at baseline with sampling probability
7 =0.1,0.25,and 0.5

» S(Z) measured at 7 in S and in all cases (Y = 1)
Phase 3:

» S, measured at baseline in S only, i.e., Sp missing in
cases not included in S

18



Simulation setup

Sh 2 1 09 07
’(S(O))NN(<2),<0.9 1 o.7)),
S(1) 3 07 07 1

left-censored at 1.5
» P{Y(z) =1[S(0) = sp, S(1) = 51} =
= &{fo + 1z + (1 — 2)S0 + 3281}, z=0,1
» TE(sy) := mCEP(s;) defined by h(x,y) =1 —x/y
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Simulation setup

Three estimators for TE(s;):

1. NP-TE: nonparametric generalized-product kernel density
estimation of Hall, Racine, and Li (2004); bandwidths
optimized by likelihood cross-validation

2. MLE-TE: Gaussian maximum likelihood density estimation

3. PSN: pseudo-score estimation of Huang (2017) assuming
P{Y(z) =1|S(1) = s1} = ®{70 + 112 + 1251 + 13512},
z=0,1
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Relative bias of TE(s;)

Relative Bias of TE(s;)
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Mean squared error of 'fE(s1)
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Coverage probabilities of pointwise 95% Cls for TE(s1)
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Coverage probabilities of simultaneous 95% CI for
{TE(s1),s1 € S}

m NP-TE MLE-TE

0.1 0.959 0.943
0.25 0.956 0.944
0.5 0.959 0.954

Results based on 103 replicated data sets with 500 bootstrap samples drawn in each data set



Size/power of hypothesis tests

Test of HJ? Test of HZP Test of Hy°
T Size Power Size Power Size Power
NP-TE

0.1 0.01 0.73 0.04 0.83 0.04 0.12
0.25 0.01 0.84 0.05 0.89 0.04 0.15
0.5 0.01 0.89 0.05 0.93 0.04 0.18
MLE-TE

0.1 0.01 0.87 0.06 0.92 0.05 0.17
0.25 0.01 0.91 0.05 0.95 0.05 0.20
0.5 0.01 0.92 0.06 0.96 0.05 0.20
@ H} : TE(sy) = TE forall sy € S

b HZ . TE(s1) =0.5foralls; € S

¢ H3 : TE(s1|X = 1) = TE(s4]X = 0) forall 5y € S

Results based on 103 replicated data sets with 500 bootstrap samples drawn in each data set 25



Analysis of CYD14/CYD15 Dengvaxia trials

v

Current age indication > 9 years

v

Trial-pooled analysis in 24,768 children aged > 9 years at
risk for VCD at month 13

S = average of log, neutralizing antibody titers to 4
dengue vaccine strains at month 13

| Controls (Y =0) Cases (Y =1)

S 2766 502
S 2759 55

Goal: to assess modification of Dengvaxia’s effect on VCD
risk through month 25 by S(1)

v

v

26



Analysis of CYD14/CYD15 Dengvaxia trials

» Two mCEP(s;) estimands:

1. hi(x,y) = log(x/y)
2. hg(X,}/) =y—-X

1. NP: estimate P{Y(z) = 1|X,S(z2)}, z= 0,1, via IPW
logistic regression models
» X = age category (< 11 vs. > 11 years) and country
» Hinge model (Fong et al., 2017) for modeling the effect of
S(z) using the chngptm function in the R chngpt package
2. PSN (Huang, 2017): estimate P{Y(z) = 1|X, S(1)},
z = 0,1, via IPW probit models with the same X and hinge
model

27



Analysis of CYD14/CYD15 Dengvaxia trials
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R package pssmooth on CRAN

Log Relative Risk
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Summary

The proposed methods:
» Provide an alternative to PS estimation methods’, which
do not assume:
» P{Y(0) =1 X, S(0)} follows a GLM
» PS methods instead assume P{Y(0) =1 | X, S(1)} follows
a GLM

» Y(0) L S(1) | X, S(0)

> S(1) | X, S(0) £ S(1) | X, Sp
» Allow flexible nonparametric kernel smoothing
» Provide formal tests of

» H2: mCEP(s{)=c

» HZ : mCEP4(s1) = mCEP(s1)

» Hg : mCEP(s1|X = 1) = mCEP(s¢|X = 0)

' Huang, Gilbert, and Wolfson (2013); Huang (2017)
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Distributions of S(0) and S(1)
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