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Motivation: two Phase 3 Dengvaxia trials

I Two randomized placebo-controlled Phase 3 dengue
vaccine trials in 31144 children

I Harmonized trial designs
I Vaccine/placebo administered at months 0, 6, and 12
I Primary clinical endpoint: symptomatic virologically

confirmed dengue (VCD) between months 13 and 25
I Asian trial: V̂E = 56.5% (95% CI, 43.8 to 66.4)
I Latin American trial: V̂E = 60.8% (95% CI, 52.0 to 68.0)

Does average neutralizing antibody titer, measured in
the vaccine group at month 13, modify VE(13–25)
against VCD in participants free of VCD through

month 13?
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Motivation: two Phase 3 Dengvaxia trials

Three-phase case-cohort sampling design
I Baseline serum samples collected from a random sample

(subcohort S) of
I ≈ 10% of all participants in the Asian trial
I ≈ 20% of all participants in the Latin American trial

I Month 13 serum samples collected from all participants

⇓

I Phase 1: baseline covariates (e.g., demographics) in all
participants

I Phase 2: biomarker S (NAb titer) at month 13 in a subset
of subcohort S and in all post-month 13 VCD cases

I Phase 3: biomarker’s baseline value Sb only in a subset of
subcohort S
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Motivation: two Phase 3 Dengvaxia trials

I Sb and S highly correlated, making Sb ideal as a baseline
immunogenicity predictor1 (baseline surrogate measure2)

I All alternative EML and PS methods3 require that Sb be
measured from all vaccine recipients with S measured

⇒ These methods would discard data from 80–90% of VCD
endpoint cases in the vaccine group!

1 Follmann (2006); Gilbert and Hudgens (2008)
2 Gabriel and Gilbert (2014)
3 Gilbert and Hudgens (2008); Huang and Gilbert (2011); Huang, Gilbert, and Wolfson
(2013); Gabriel and Gilbert (2014); Huang (2017)
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Notation

I Z treatment indicator
I X = (X1, . . . ,Xk ) baseline covariate vector
I S discrete or continuous univariate biomarker at fixed

time τ after randomization
I Sb baseline value of the biomarker
I ε and δ indicators of measured S and Sb

I Y indicator of clinical endpoint after τ
I Y τ indicator of clinical endpoint at or before τ
I Y τ (Z ), ε(Z ), S(Z ), Y (Z ) potential outcomes of Y τ , ε, S, Y

under Z

To evaluate S(1) as a modifier of treatment effect on Y ,
S needs to be measured prior to Y .

⇒ Analysis restricted to participants with Y τ = 0.
5



Three-phase case-cohort sampling design

Phase 1: Z , X , Y τ , Y measured in all randomized participants
Phase 2 (classic case-cohort design [Prentice, 1986]):

I Bernoulli sample S at baseline
I S measured at τ in

I a subset of S with Y τ = 0, and
I all (or almost all) cases (Y = 1) with Y τ = 0

Phase 3:
I Sb measured at baseline in a subset of S with Y τ = 0

Consequence: Sb measured only in those cases with Y τ = 0
that were sampled into S
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Identifiability assumptions

1. (Zi ,X i , δi , δiSb,i ,Y τ
i (0),Y τ

i (1), εi(0), εi(0)Si(0), εi(1),
εi(1)Si(1),Yi(0),Yi(1)), i = 1, . . . ,n, i.i.d. with no drop-out

2. Standard identifiability assumptions†

a. Stable unit treatment value assumption (SUTVA) and
consistency:
(Y τ

i (0),Y τ
i (1), εi (0), εi (0)Si (0), εi (1), εi (1)Si (1),Yi (0),Yi (1))

⊥⊥ Zj , j 6= i , and (Vi (Zi ), εi (Zi )Si (Zi ),Yi (Zi )) = (Vi , εiSi ,Yi )
b. Ignorable treatment assignment:

Zi ⊥⊥
(δi , δiSb,i ,Y τ

i (0),Y τ
i (1), εi (0), εi (0)Si (0), εi (1), εi (1)Si (1),

Yi (0),Yi (1)) | X i
c. Equal early clinical risk:

P{Y τ
i (0) = Y τ

i (1)} = 1*

* Henceforth all unconditional and conditional probabilities of Y (z) = 1 implicitly
condition on Y τ (1) = Y τ (0) = 0.
† Gilbert and Hudgens (2008); Huang and Gilbert (2011); Huang, Gilbert, and Wolfson
(2013); Gabriel and Gilbert (2014); Huang (2017)
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Modeling assumptions

3. P{Y (z) = 1|X ,S(z)} follows a GLM for z = 0,1
I For z = 0, it replaces “placebo structural risk” assumption

of all EML and PS methods† that P{Y (0) = 1|X ,S(1)}
follows a GLM

4. Conditional independence:
P{Y (0) = 1|X ,S(0),S(1)} = P{Y (0) = 1|X ,S(0)}

5. Time constancy:
f (s1|X = x ,S(0) = s0) = f̃ (s1|X = x ,Sb = s0) for all
(s1,x , s0)

† Gilbert and Hudgens (2008); Huang and Gilbert (2011); Huang, Gilbert, and Wolfson
(2013); Gabriel and Gilbert (2014); Huang (2017)
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Estimand of interest: mCEP(s1)

I Overall causal treatment effect on Y
CE = h(P{Y (1) = 1},P{Y (0) = 1})

I h(x , y) a known contrast function
I Marginal causal effect predictiveness curve∗,†

mCEP(s1) = h(P{Y (1) = 1|S(1) = s1},P{Y (0) = 1|S(1) = s1})
I Principal stratification estimand‡ ⇒ measures causal

treatment effect on Y for a subgroup with S(1) = s1

I Examples:
h(x , y) = 1− x/y multiplicative risk reduction
h(x , y) = y − x attributable risk

∗ Gilbert and Hudgens (2008)
† If S is continuous, this definition abuses notation for simplicity of exposition.
‡ Frangakis and Rubin (2002)
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Estimation of mCEP(s1)

I pz(s1) := P{Y (z) = 1|S(1) = s1} for z = 0,1
I mCEP(s1) = h{p1(s1),p0(s1)}
I Estimate p1(s1) via the specified GLM, accounting for

case-cohort sampling of S
I E.g., using the tps function in the R osDesign package
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Estimation of mCEP(s1)

p0(s1) =

∫
P{Y (0) = 1|X = x ,S(0) = s0}×

× f (s1|s0,x)g(s0|x)r(x)

m(s1)
dk+1(s0,x),

m(s1) =
∫

f (s1|s0,x)g(s0|x)r(x) dk+1(s0,x)

I Estimate P{Y (0) = 1|X = x ,S(0) = s0} via the specified
GLM, accounting for case-cohort sampling of S

I Estimate f (s1|S0 = s0,X = x) by estimating
f̃ (s1|Sb = s0,X = x) via nonparametric kernel smoothing,
accounting for the three-phase sampling design

I E.g., using the npcdensbw, npcdens, npudensbw,
npudens functions in the R np package

I Estimate g(s0|x) and r(x) analogously
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Interval estimation of mCEP(s1)

Bootstrap procedures designed to construct
1. pointwise Wald-type CI for mCEP(s1) for a given s1

2. simultaneous Wald-type CI for {mCEP(s1), s1 ∈ S}, for an
arbitrary subset S of the support of S(1)

I Cases and controls sampled separately in each bootstrap
sample
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Simultaneous Wald-type CI for {mCEP(s1), s1 ∈ S}

I η(s1) := η{mCEP(s1)} a “symmetrizing” transformation
I h(x , y) = 1− x/y ⇒ η{h(x , y)} = log{1− h(x , y)}

I η̂(s1) = η{m̂CEP(s1)}
I U(b) := sups1∈S

∣∣η̂(b)(s1)− η̂(s1)
∣∣/SE∗{η̂(s1)}

I c∗α empirical quantile of U(b), b = 1, . . . ,B, at probability
1− α

I (1− α)× 100% CI as η−1(·) transformation of

(lηα(s1),uηα(s1)) = η̂(s1)∓ c∗α SE∗{η̂(s1)}.
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Testing hypotheses of interest

Hypothesis tests via simultaneous estimation method of Roy
and Bose (1953) for

1. H1
0 : mCEP(s1) ≡ CE for all s1 ∈ S

2. H2
0 : mCEP(s1) ≡ c for all s1 ∈ S1 ⊆ S and a known

constant c ∈ R
3. H3

0 : mCEP1(s1) = mCEP2(s1) for all s1 ∈ S1 ⊆ S, where
mCEP1 and mCEP2 are each associated with either a
different biomarker (measured in the same units) or a
different endpoint or both

4. H4
0 : mCEP(s1|X = 1) = mCEP(s1|X = 0) for all s1 ∈ S1 ⊆

S, where X is a baseline dichotomous phase 1 covariate of
interest included in X
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Tests of H1
0 and H2

0

H1
0 : mCEP(s1) ≡ CE for all s1 ∈ S

H2
0 : mCEP(s1) ≡ c for all s1 ∈ S1 ⊆ S and a known constant c ∈ R

I U(b)
η (S,a) := sups1∈S

∣∣η̂(b)(s1)− η(a)
∣∣/SE∗{η̂(s1)}, a ∈ R

I Regions of rejection of H1
0 and H2

0 at significance level α:

U1 := sup
s1∈S

∣∣η̂(s1)− η(ĈE)
∣∣/SE∗{η̂(s1)} > c∗1α

U2 := sup
s1∈S1

∣∣η̂(s1)− η(c)
∣∣/SE∗{η̂(s1)} > c∗2α

I c∗1α and c∗2α empirical quantiles of U(b)
η (S, ĈE) and

U(b)
η (S1, c), b = 1, . . . ,B, at probability 1− α

I Two-sided p-values as empirical probabilities that
U(b)
η (S, ĈE) > U1 and U(b)

η (S1, c) > U2
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Test of H3
0

H3
0 : mCEP1(s1) = mCEP2(s1) for all s1 ∈ S1 ⊆ S, where mCEP1 and

mCEP2 are each associated with either a different biomarker or a
different endpoint or both

I θ(s1) := η{mCEP1(s1)} − η{mCEP2(s1)}
I U(b)

θ := sups1∈S1

∣∣θ̂(b)(s1)
∣∣/SE∗{θ̂(s1)}

I Region of rejection of H3
0 at significance level α:

U3 := sup
s1∈S1

∣∣θ̂(s1)
∣∣/SE∗{θ̂(s1)} > c∗3α

I c∗3α empirical quantile of U(b)
θ , b = 1, . . . ,B, at probability

1− α
I Two-sided p-value as empirical probability that U(b)

θ > U3
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Test of H4
0

H4
0 : mCEP(s1|X = 1) = mCEP(s1|X = 0) for all s1 ∈ S1 ⊆ S, where X

is a baseline dichotomous phase 1 covariate of interest

I Estimates of mCEP(s1) in subgroups X = 1 and X = 0 are
independent

I Test of H4
0 identical to that of H3

0 except

SE∗{θ̂(s1)} =
{

SE∗
2[
η{m̂CEP(s1|X = 1)}

]
+

+ SE∗
2[
η{m̂CEP(s1|X = 0)}

]}1/2
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Simulation setup

Three-phase case-cohort sampling design
Phase 1:

I N = 5000 randomized at 1:1 ratio to Z = 1 or 0 and
followed for a binary Y (assumed to occur after τ at which S(Z ) is
measured)

Phase 2:
I Bernoulli sample S at baseline with sampling probability
π = 0.1, 0.25, and 0.5

I S(Z ) measured at τ in S and in all cases (Y = 1)
Phase 3:

I Sb measured at baseline in S only, i.e., Sb missing in
cases not included in S
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Simulation setup

I

 Sb
S(0)
S(1)

 ∼ N

 2
2
3

 ,

 1 0.9 0.7
0.9 1 0.7
0.7 0.7 1

,

left-censored at 1.5
I P{Y (z) = 1|S(0) = s0,S(1) = s1} =

= Φ{β0 + β1z + β2(1− z)s0 + β3zs1}, z = 0,1
I TE(s1) := mCEP(s1) defined by h(x , y) = 1− x/y

1.5 2.0 2.5 3.0 3.5 4.0 4.5

s1

Tr
ue

 T
E

(s
1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

19



Simulation setup

Three estimators for TE(s1):
1. NP-TE: nonparametric generalized-product kernel density

estimation of Hall, Racine, and Li (2004); bandwidths
optimized by likelihood cross-validation

2. MLE-TE: Gaussian maximum likelihood density estimation
3. PSN: pseudo-score estimation of Huang (2017) assuming

P{Y (z) = 1|S(1) = s1} = Φ{γ0 + γ1z + γ2s1 + γ3s1z},
z = 0,1
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Relative bias of T̂E(s1)
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Mean squared error of T̂E(s1)
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Coverage probabilities of pointwise 95% CIs for TE(s1)
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Coverage probabilities of simultaneous 95% CI for
{TE(s1), s1 ∈ S}

π NP-TE MLE-TE

0.1 0.959 0.943
0.25 0.956 0.944
0.5 0.959 0.954

Results based on 103 replicated data sets with 500 bootstrap samples drawn in each data set
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Size/power of hypothesis tests

Test of H1a
0 Test of H2b

0 Test of H4c
0

π Size Power Size Power Size Power

NP-TE
0.1 0.01 0.73 0.04 0.83 0.04 0.12

0.25 0.01 0.84 0.05 0.89 0.04 0.15
0.5 0.01 0.89 0.05 0.93 0.04 0.18

MLE-TE
0.1 0.01 0.87 0.06 0.92 0.05 0.17

0.25 0.01 0.91 0.05 0.95 0.05 0.20
0.5 0.01 0.92 0.06 0.96 0.05 0.20

a H1
0 : TE(s1) ≡ TE for all s1 ∈ S

b H2
0 : TE(s1) ≡ 0.5 for all s1 ∈ S

c H4
0 : TE(s1|X = 1) = TE(s1|X = 0) for all s1 ∈ S

Results based on 103 replicated data sets with 500 bootstrap samples drawn in each data set 25



Analysis of CYD14/CYD15 Dengvaxia trials

I Current age indication ≥ 9 years
I Trial-pooled analysis in 24,768 children aged ≥ 9 years at

risk for VCD at month 13
I S = average of log10 neutralizing antibody titers to 4

dengue vaccine strains at month 13

Controls (Y = 0) Cases (Y = 1)

S 2766 502
Sb 2759 55

I Goal: to assess modification of Dengvaxia’s effect on VCD
risk through month 25 by S(1)
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Analysis of CYD14/CYD15 Dengvaxia trials

I Two mCEP(s1) estimands:
1. h1(x , y) = log(x/y)
2. h2(x , y) = y − x

1. NP: estimate P{Y (z) = 1|X ,S(z)}, z = 0,1, via IPW
logistic regression models

I X = age category (≤ 11 vs. > 11 years) and country
I Hinge model (Fong et al., 2017) for modeling the effect of

S(z) using the chngptm function in the R chngpt package

2. PSN (Huang, 2017): estimate P{Y (z) = 1|X ,S(1)},
z = 0,1, via IPW probit models with the same X and hinge
model
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Analysis of CYD14/CYD15 Dengvaxia trials
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R package pssmooth on CRAN

Month 13 Average Titer of Vaccinees

<10   10 100 103 104

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

0
1
2

Lo
g 

R
el

at
iv

e 
R

is
k

99

95
90
80
50
0
−100

V
ac

ci
ne

 E
ffi

ca
cy

 (
%

)

Proposed NP Estimator

Pointwise 95% CI
Simultaneous 95% CI

Hinge Point = 57  

H0
1 : p < 0.001

H0
2 : p < 0.001

Month 13 Average Titer of Vaccinees

<10   10 100 103 104
−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
is

k 
D

iff
er

en
ce

 (
P

la
ce

bo
 −

 V
ac

ci
ne

) Proposed NP Estimator

H0
1 : p = 0.16

H0
2 : p < 0.001

https://cran.r-project.org/
package=pssmooth

29



Summary

The proposed methods:
I Provide an alternative to PS estimation methods1, which

do not assume:
I P{Y (0) = 1 | X ,S(0)} follows a GLM

I PS methods instead assume P{Y (0) = 1 | X ,S(1)} follows
a GLM

I Y (0) ⊥⊥ S(1) | X ,S(0)

I S(1) | X ,S(0)
d
= S(1) | X ,Sb

I Allow flexible nonparametric kernel smoothing
I Provide formal tests of

I H2
0 : mCEP(s1) ≡ c

I H3
0 : mCEP1(s1) = mCEP2(s1)

I H4
0 : mCEP(s1|X = 1) = mCEP(s1|X = 0)

1 Huang, Gilbert, and Wolfson (2013); Huang (2017)
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Distributions of S(0) and S(1)
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Background. In the CYD14 and CYD15 Phase 3 trials of the CYD-TDV dengue vaccine, estimated vaccine efficacy (VE) against 
symptomatic, virologically confirmed dengue (VCD) occurring between months 13 and 25 was 56.5% and 60.8%, respectively.

Methods. Neutralizing antibody titers to the 4 dengue serotypes in the CYD-TDV vaccine insert were measured at month 13 in 
a randomly sampled immunogenicity subcohort and in all VCD cases through month 25 (2848 vaccine, 1574 placebo) and studied 
for their association with VCD and with the level of VE to prevent VCD.

Results. For each trial and serotype, vaccinees with higher month 13 titer to the serotype had significantly lower risk of VCD 
with that serotype (hazard ratios, 0.19–0.43 per 10-fold increase). Moreover, for each trial, vaccinees with higher month 13 average 
titer to the 4 serotypes had significantly higher VE against VCD of any serotype (P < .001).

Conclusions. Neutralizing antibody titers postdose 3 correlate with CYD-TDV VE to prevent dengue. High titers associate with 
high VE for all serotypes, baseline serostatus groups, age groups, and both trials. However, lowest titers do not fully correspond to 
zero VE, indicating that other factors influence VE.

Keywords: case cohort; immune correlate of protection; neutralizing antibodies; surrogate endpoint; vaccine efficacy trial.
 

Although a satisfactory immune correlate of protection 
(CoP)—a biomarker measuring an immune response to vac-
cination that is strongly statistically associated with vaccine 
efficacy (VE) [1]—has not been established, a leading hypoth-
esis is that a dengue vaccine must elicit functional neutraliz-
ing antibodies against all 4 serotypes to achieve high efficacy to 
prevent infection and disease. Indeed, neutralizing antibodies 
are an established CoP (not necessarily mechanistic) for related 
flavivirus vaccines [2]. The ideal dengue vaccine would protect 
individuals seronegative to dengue, as well as individuals par-
tially immune to dengue or to nondengue flaviviruses; these 
categories may have different CoPs.

Some studies have identified neutralizing antibody titers 
associated with protection from polymerase chain reac-
tion-confirmed dengue infection [3] or symptomatic, virologi-
cally confirmed dengue (VCD) [4, 5], but others have suggested 
that the humoral response alone is not reliably predictive [6–8]. 

Moreover, CD4+ and CD8+ T cells contribute to protection 
against disease-accompanying infections with heterotypic den-
gue viruses [9–13], highlighting the complexity of dengue and 
the need to identify reliable CoPs.

CYD-TDV (Dengvaxia, Sanofi Pasteur) is a licensed recombi-
nant, live, attenuated tetravalent dengue vaccine [14]. In 2 Phase 
3 trials, CYD14 in 2- to 14-year-olds in Asia (NCT01373281) and 
CYD15 in 9- to 16-year-olds in Latin America (NCT01374516), 
estimated VE of CYD-TDV was 56.5% and 60.8% for the pre-
vention of symptomatic, VCD of any serotype (DENV-Any) 
between 28 days after the third injection at 12 months through 
25  months [15, 16]. Vaccine efficacy significantly varied by 
serotype, estimated at 50.0% (50.3%), 35.0% (42.3%), 78.4% 
(74.0%), and 75.3% (77.7%) against DENV-1, -2, -3, and -4 in 
CYD14 (CYD15) [15, 16]. However, the proportion of vaccine 
recipients with month 13 50% plaque reduction neutralization 
test (PRNT50) responses [17] above the lower limit of quanti-
tation (LLOQ) (93.8%, 98.5%, 96.7%, and 96.8% in CYD14; 
94.9%, 98.5%, 98.4%, and 98.1% in CYD15 for DENV-1, -2, -3, 
and -4) far exceeded the VE estimates [15, 16]. This discordance 
between VE rates and neutralization response rates, also seen 
in [7], indicated that PRNT50 neutralization response is not a 
completely valid CoP. However, this aggregate data analysis 
provides less information about CoPs than an analysis incor-
porating individual-level titer data. Accordingly, a case-cohort 
study was conducted to investigate the association of month 13 
neutralizing antibody titers with dengue occurrence through 
month 25 and with the level of VE to prevent dengue, for each 
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