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Appendix A: Unbiased Biomarker Characterization Accounting for the Sam-

pling Design of the CoR Study

Consider a 2-phase sampling design (without-replacement) withK participant strata

defined by variables measured in all study participants. Let N∗

1k (N∗

0k) be the num-

ber of vaccine recipient cases (controls) in stratum k at-risk at τ (i.e., with Y τ = 0),

and N1k (N0k) be the numbers observed to be at-risk at τ (i.e., with Xτ = 0), with

N∗

z ≡ ∑K
k=1

N∗

zk and Nz ≡
∑K

k=1
Nzk for z = 0, 1. The unstarred quantities are not ob-

served (unless there is no dropout by τ) but their expectations can easily be estimated

by the numbers of randomized subjects observed to be cases and controls multiplied

by an estimate of the probability of primary endpoint occurrence by τ (e.g., a Kaplan-

Meier estimate). Let n1k (n0k) be the number of vaccine recipient cases (controls) in

stratum k observed to be at-risk at τ from whom immune responses are measured at

τ . In practice n1k is set to include all N1k subjects who have available specimens at τ

(typically slightly less than N1k). Different approaches may be taken to choose the n0k;

for example one approach achieves an overall case-control ratio r ≡ ∑K
k=1

n0k/
∑K

k=1
n1k

with r in the range of 2 to 5, where the n0k may all equal r × n1k or may upweight

certain strata judged to be important.

A consideration for the sampling design is that vaccine trials with a correlates

objective also have the objective to characterize the immunogenicity of the vaccine.

To represent the trial population this analysis should provide unbiased descriptive

and inferential analysis for the population of vaccine recipients at-risk at τ (possibly



within strata) not conditioning on case status. Both approaches can straightforwardly

be used to provide inference on parameters of interest using all n1 ≡ ∑K
k=1

n1k and

n0 ≡
∑K

k=1
n0k subjects, for example by using inverse probability weighting. However,

for graphical analysis, the prospective case-cohort approach straightforwardly provides

a correct random sample, whereas the outcome-dependent sampling plan does not.

This problem can be remedied by defining each nIS
1k ≤ n1k (k = 1, · · · , K) to be the

number of cases included in the immunogenicity characterization analysis selected to

maintain a controls:cases ratio of sampled subjects equal to the controls:cases ratio of

the entire study cohort, i.e., to satisfy the constraint

n0k

nIS
1k

=
Ê[N0k]

Ê[N1k]
. (1)

The estimates Ê[N0k] and Ê[N1k] are determined independently of considerations of

the immunogenicity and correlates studies, and any choices of n0k and nIS
1k satisfying

(1) will allow unbiased immunogenicity analysis within each covariate subgroup k.

While this approach provides unbiased immunogenicity analysis for each stratum k

separately, if certain strata k are over-sampled it may provide biased analysis for the

overall study population. We can obtain unbiased analysis of the overall population by

including the immune response data from all n∗

0
controls and from n∗

1
≡ fkn

IS
1k cases,

where the constants fk ≤ 1 are selected to achieve each fkn
∗

1k being equal to an integer

and n∗

0
/nIS

1
= Ê[N0]/Ê[N1], where nIS

1
≡ ∑K

k=1
nIS
1k .

One way to implement the above approach is to first choose the n0k (k = 1, · · · , K)

to achieve adequate power for the overall correlates analysis, which determines the nIS
1k

by equation (1) (rounding to the nearest integer). Then, if necessary for the overall

analysis, add the second fix on top of this fix. This discussion shows that it is straight-

forward to conduct an unbiased immunogenicity characterization study regardless of

whether the correlates analysis uses prospective case-cohort or retrospective 2-phase

sampling.

2



Appendix B: Selected Mathematical Details of Power Calculations

Computing Sensitivity, Specificity, False Positives, and False Negatives

Given inputs σ2

obs, ρ, P
lat
0

, P lat
2

, P0, and P2, the following steps yield Sens, Spec

FP 1, FP 2, FN1, and FN2 defined in the main manuscript.

1. Set σ2

e = (1 − ρ)σ2

obs and solve for θ2 in the equation P lat
2

= P (X∗ > θ2): θ2 =

√
ρσobsΦ

−1(1 − P lat
2

). Similarly solve for θ0 in the equation P lat
0

= P (X∗ ≤ θ0):

θ0 =
√
ρσobsΦ

−1(P lat
0

).

2. Simulate a large number M of realizations ofX∗ and S∗ from normal distributions

N(0, ρσ2

obs) and N(0, σ2

obs), respectively (e.g., M = 100, 000).

3. With P2(θ2) ≡ P (S∗ > θ2) and P0(θ0) ≡ P (S∗ ≤ θ0), determine the cut-points

θ2 and θ0 that solve equations

P2 = Sens ∗ P lat
2

+ FP 2 ∗ P lat
1

+ FP 1 ∗ P lat
0

and

P0 = Spec ∗ P lat
0

+ FN2 ∗ P lat
1

+ FN1 ∗ P lat
2

in the main manuscript, which are the solutions to

P2(θ2) = Sens(θ2)P
lat
2

+ FP 2(θ2)P
lat
1

+ FP 1(θ2)P
lat
0

(1)

P0(θ0) = Spec(θ0)P
lat
0

+ FN2(θ0)P
lat
1

+ FN1(θ0)P
lat
2

. (2)

The solution θ2 is obtained by estimating (P2(θ2), Sens(θ2), FP 1(θ2),

FP 2(θ2)) for each of the M realizations and picking the θ2 = θ that gives the

closest solution. Similarly the solution θ0 is obtained by estimating (P0(θ0),

Spec(θ0), FN1(θ0), FN2(θ0)) for each of the M realizations and picking the

θ0 = θ that gives the closest solution.
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4. Output the resulting solutions θ2 and θ0 together with P2(θ2), Sens(θ2),

FP 1(θ2), FP 2(θ2) evaluated at the solution θ2 and P0(θ0), Spec(θ0),

FN1(θ0), FN2(θ0) evaluated at the solution θ0.

Solutions αlat and βlat for a Continuous Biomarker

Given fixed (V E, risk0, P
lat
lowestV E, V Elowest), β

lat in the model of Section 2.4 in the

main article can be expressed as a function of αlat by fixing x = ν. This yields

βlat =
1

ν

[
logit

(
risklat

1
(ν)

)
− αlat

]
. (3)

Plugging (3) into the last formula in Section 2.4 for overall V E yields a zero-equation

U(αlat) = 0 in one unknown variable αlat,

U(αlat) = (1− V E)− P lat
lowestV E ∗ risklat

1
(ν) +

∫
∞

ν D(x;αlat)φ(x/(
√
ρσobs))dx

risk0
(4)

where D(x;αlat) ≡ A(x;αlat)/
[
(1− risklat

1
(ν))x/ν + A(x;αlat)

]
with A(x;αlat) ≡

exp{αlat ∗ (1−x/ν)}∗
[
risklat

1
(ν)

]x/ν
. Equation (4) can be solved by a one-dimensional

line search. Then, βlat is solved by plugging αlat into equation (3).

Appendix C: Estimation of the Noise Level of a Biomarker

As described in model

S∗ = X∗ + e, X∗ ∼ N(0, σ2

tr), e ∼ N(0, σ2

e)

of the main article (Section 2.3), the continuous-readout biomarker S∗ is often measured

with protection-irrelevant error, denoted by e. Typically, the error is due to two major

independent sources of variability: assay-related error, eassay, and trial-related error,

etrial. We suppose that

e = eassay + etrial, eassay ∼ N(0, σ2

assay), etrial ∼ N(0, σ2

trial), and eassay ⊥ etrial.

Consequently, σ2

e = σ2

assay + σ2

trial and ρ = 1 − σ2

assay/σ
2

obs − σ2

trial/σ
2

obs. We describe

how the proportion of variability due to trial-related error, πt = σ2

trial/σ
2

obs, and the
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proportion of variability due to assay-related error, πa = σ2

assay/σ
2

obs, can be estimated

with data from the CoR study or from external studies.

The component of variability σ2

trial represents variability due to trial-related factors

such as differing specimen collection or storage practices. Typically, a study protocol

controls these factors to some extent, but some variation still exists. Another common

source of trial-related error is deviation in the time of specimen collection from the

target time. Most protocols place “windows” around the targeted time for specimen

collection, e.g. 7–10 days, and so variation in timing within the allowable window

is to be expected. Deviation in specimen collection from the target time affects the

biomarker readout by creating variability in the interval between treatment adminis-

tration and specimen collection.

When data related to these trial-related factors are available in the CoR study,

and if it can be assumed that these factors are not collinear with other factors in the

CoR study influencing the biomarker readout, such as subject characteristics or assay

conditions, the trial-related proportion of variability πt = σ2

trial/σ
2

obs can be estimated

in the following way. Under a linear model with dependent variable S∗ and trial-related

factors as independent terms, the ratio of the regression sum of squares to the total

sum of squares is an estimate of πt.

The term σ2

assay represents the sum of two types of non-systematic components of

variability: one is generated when a biomarker is repeatedly measured under the same

assay conditions (e.g., by the same technician using the same instrument on the same

day), and the other is generated when a biomarker is assessed under different assay

conditions. The second component of variability can be assumed to equal zero when

all specimens in the CoR study are assessed under the same assay condition. Ideally,

the assay-related proportion of variability, πa = σ2

assay/σ
2

obs, would also be estimated

using data from the CoR study. However, it is often infeasible to obtain the necessary

data, given limitations on specimen volume, especially when multiple assay conditions
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are involved. Therefore, an external validation study is commonly employed. The

validation study should examine all assay-related factors introducing variability in the

CoR study. In general, the ideal design of the study is a full factorial randomized

block design. An example is shown in Web Table 1 for two assay factors A and B.

For concreteness, suppose factor A is the assay technician and factor B is the assay

instrument. Each study subject represents one block, and the specimens from each

subject are assayed by each technician and using each instrument, and are replicated at

least twice. Typically specimens from at least 3 subjects are included in the validation

study, and are chosen so that their biomarker readouts span the range of expected

levels of response. Under this design, πa can be estimated using a linear model with

dependent variable S∗ and technician and instrument factors, in addition to a subject

identifier, as independent variables. The ratio of the sum of squares due to technician

and instrument to the total sum of squares is an estimate of πa. Application of this

πa estimate to the CoR study is then valid assuming that the proportion of variability

due to technician and instrument is the same in the validation and CoR studies. A

stronger condition, not required but further supporting the transfer of the πa estimate

to the CoR study, is that the distribution of biomarker readout in the validation study

matches that in the CoR study. The final step is to calculate the estimate of the assay

measurement error as ρ̂ = 1− π̂a − π̂t.
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Web Table 1. Ideal experimental design for estimating πa = σ2

assay/σ
2

obs given
two assay-related factors, technician and assay instrument, that introduce
variability in the assay readout, S∗. Here S∗

ijkh is the biomarker readout when
the ith technician performs the assay (i = 1, 2, ...a) and the jth instrument
is used (j = 1, 2, ..., b) for the kth study subject or block (k = 1, ..., n) and the
hth replicate (h = 1, 2, ...m).

Subject (block) 1 ... n
Technician 1 ... a 1 ... a 1 ... a
Instrument

1
... S∗

ijkh

b
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Appendix D: Additional Power Figures for the Illustrations in Section 4

Web Figure Legends

Web Supporting Figure 1. Sensitivity and specificity for P2 = 1−P0 ranging from 0.10

to 0.90, for four scenarios of ρ.

Web Supporting Figure 2. Correlates of Protection (VE curve) power calculations for

a trichotomous biomarker S for the completed RV144 HIV vaccine efficacy trial with

ncases = 41 and ncontrols = 205 (1-sided α = 0.025-level Wald test), for four scenarios

of ρ. This figure is based on the same simulation study as Figure 4.

Web Supporting Figure 3. Power curves versus total sample size for a trichotomous

biomarker S to plan a 2-arm HIV vaccine efficacy trial with equal allocation random-

ization to vaccine versus placebo, 4% annual placebo incidence, 5% annual dropout

incidence, overall V E = 0.50, and correlate of protection effect size V Elat
0

= 0.25,

V Elat
1

= 0.50, V Elat
2

= 0.75 for ρ = 0.9. Each panel shows power for P0 = P lat
0

=

P lat
2

= P2 ranging from 0.1 to 0.5, for controls:cases allocation ratios (a) 1:1, (b) 3:1,

(c) 5:1, and (d) 10:1. This figure is based on the same simulation study as Figure 6.

8



1−Specificity = 1−P(S=0|lower protected)

S
e

n
s
it
iv

it
y
 =

 P
(S

=
2

|h
ig

h
e

r 
p

ro
te

c
te

d
)

0.0 0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1.0

rho = 1.0
rho = 0.9
rho = 0.7
rho = 0.5

(a) 20% higher protected

1−Specificity = 1−P(S=0|lower protected)

S
e

n
s
it
iv

it
y
 =

 P
(S

=
2

|h
ig

h
e

r 
p

ro
te

c
te

d
)

0.0 0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1.0

(b) 30% higher protected

1−Specificity = 1−P(S=0|lower protected)

S
e

n
s
it
iv

it
y
 =

 P
(S

=
2

|h
ig

h
e

r 
p

ro
te

c
te

d
)

0.0 0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1.0

(c) 40% higher protected

1−Specificity = 1−P(S=0|lower protected)

S
e

n
s
it
iv

it
y
 =

 P
(S

=
2

|h
ig

h
e

r 
p

ro
te

c
te

d
)

0.0 0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1.0

(d) 50% higher protected

ROC Curve of a Trichotomous Marker: 10%−90% (90%−10%) Vaccinees with S=2 (S=0)
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(c) 5:1 Controls:Cases
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(d) 10:1 Controls:Cases
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Power for (Lo, Med, Hi) VE = (25%, 50%, 75%) [Overall VE = 50%; rho = 0.9]

2−phase logistic regression; 2−sided alpha = 0.05; controls:cases = 5:1

P_0 = P^lat_0; P_2 = P^lat_2
Web Supporting Figure 3



Appendix E: Summary of Implementation of the Methods in R

The without-replacement sampling version of the methods are implemented in the

R package CoRpower posted at the first author’s website

http://faculty.washington.edu/peterg/programs.html?

The R package includes code implementing the examples of Section 4 of the manuscript.
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