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Power/sample size calculations for
assessing correlates of risk in clinical
efficacy trials
Peter B. Gilbert,*† Holly E. Janes and Yunda Huang

In a randomized controlled clinical trial that assesses treatment efficacy, a common objective is to assess the associ-
ation of a measured biomarker response endpoint with the primary study endpoint in the active treatment group,
using a case-cohort, case-control, or two-phase sampling design. Methods for power and sample size calculations
for such biomarker association analyses typically do not account for the level of treatment efficacy, precluding
interpretation of the biomarker association results in terms of biomarker effect modification of treatment effi-
cacy, with detriment that the power calculations may tacitly and inadvertently assume that the treatment harms
some study participants. We develop power and sample size methods accounting for this issue, and the methods
also account for inter-individual variability of the biomarker that is not biologically relevant (e.g., due to techni-
cal measurement error). We focus on a binary study endpoint and on a biomarker subject to measurement error
that is normally distributed or categorical with two or three levels. We illustrate the methods with preventive
HIV vaccine efficacy trials and include an R package implementing the methods. Copyright © 2016 John Wiley
& Sons, Ltd.

Keywords: case-cohort design; case-control design; immune response biomarkers; measurement error; principal
stratification; two-phase sampling design; vaccine efficacy trial

1. Introduction

Commonly, clinical efficacy trials randomize study participants to receive a treatment or control prepa-
ration (e.g., placebo) at one or more visits and follow these participants for occurrence of the primary
clinical study endpoint. The primary objective assesses treatment efficacy against the clinical endpoint,
and a common secondary objective assesses the association of intermediate response endpoints (e.g.,
biomarkers) measured after the administration of treatment with primary endpoint occurrence in the
active treatment group. Applications of this secondary objective include developing prognostic biomark-
ers and providing information for other analysis objectives such as surrogate endpoint and mediation
assessment. Typical statistical approaches for assessing such correlates of risk (CoRs) have included
logistic or Cox proportional hazards regression models that account for the sampling design that was
used for measuring the biomarkers (e.g., [1–4]).

For power calculations to detect CoRs in a cohort such as an active treatment group, many methods have
been developed for case-cohort studies (e.g., [5]), case-control studies (e.g., [6, 7]), and the generaliza-
tion of case-control studies to two-phase sampling studies (e.g., [8]). However, the available approaches
typically do not account for the level of clinical treatment efficacy overall and in biomarker response
subgroups, precluding interpretation of the results in terms of potential correlates of efficacy/protection.
We develop an approach to CoR power/sample size calculations that accounts for this issue, which
is important because if the power calculations are based solely on the biomarker-outcome association
in the active treatment group, then one could design a case-control study to, say, have 90% power to
detect a biomarker-outcome odds ratio of 0.5, but not realize that this power is achieved under a tacit
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assumption that the endpoint rate is higher in the active arm than the control arm for the subgroup with
lowest biomarker responses. By specifying overall treatment efficacy and biomarker-specific treatment
efficacies as input parameters, our approach makes transparent in the power calculations the link between
the CoR effect size in the active treatment arm and the corresponding difference in biomarker-specific
treatment efficacies.

In addition, our approach accounts for the component of inter-individual variability of the biomarker
that is not biologically relevant (e.g., due to technical measurement error of the device employed to mea-
sure a biological response), which is important because the degree of measurement error of the biomarker
heavily influences power of the CoR analysis, such that accounting for this issue is needed to obtain
accurate power calculations. In our approach, the user inputs a parameter 𝜌 defined as the estimated frac-
tion of the biomarker’s variance that is potentially biologically relevant for protection and displays how
power and sample size requirements vary with 𝜌.

Our approach can be used for a general binary clinical endpoint model with case-cohort, case-control,
or two-phase sampling of the biomarker, using without replacement or Bernoulli sampling. We illustrate
the approach with a logistic regression model and case-control without replacement sampling. For rare
event studies (e.g., with cumulative endpoint rate less than 10%), we found in simulations that the power
for the logistic regression model tends to be very similar to that for a Cox regression model [9]; thus, in
this setting, the approach may provide sufficiently accurate power results for time-to-event CoR analysis.
The simplification afforded by using a binary outcome is helpful for focusing attention on the two issues
listed previously.

Related research has developed power calculators of testing procedures for assessing the association of
a true biomarker subject to measurement error and a sub-sampling design with an outcome (e.g., [10–12]).
Here, we depart from this research objective by developing a power calculator of testing procedures for
assessing the association of a measured/observed biomarker that has components of variability thought
to be not possibly associated with the outcome. Whereas the former testing procedures incorporate bias-
correction techniques, leveraging, for example, validation sets or replicate biomarker measurements, our
power calculator may be used with a large number of available hypothesis testing procedures from the
case-cohort/case-control/two-phase sampling statistical methods literature (going back to Horvitz and
Thompson [13]), where the methods do not need bias-correction techniques. Thus, the contribution of
this work is to provide more interpretable and accurate power calculations for the common scientific
endeavor to understand power for detecting the association of a measured/observed biomarker with the
outcome. Moreover, previous work has developed power calculation formulas for associating a measured
biomarker subject to measurement error with a dichotomous outcome; for example, [14–16] considered
a normally distributed biomarker following a classical measurement error model, with application to
logistic regression correlates analysis.

While the newly proposed power calculator applies for general randomized controlled two-group
clinical trials, for definiteness, we focus on preventive vaccine efficacy trials, which randomize study
participants to receive a candidate vaccine or placebo at one or more visits, and follow these participants
for occurrence of clinically significant infection with the pathogen under study [17]. The primary objec-
tive assesses vaccine efficacy (VE) defined as the multiplicative reduction (vaccine versus placebo) in
the rate of the primary endpoint, and a secondary objective assesses the association of immune response
biomarkers measured shortly after vaccination with the primary endpoint. For settings where some trial
participants were previously infected with the pathogen (e.g., influenza), this analysis is done for each of
the vaccine and placebo groups or pooling over the groups, and for settings where trial participants have
not been previously infected with the pathogen (e.g., HIV), such that the immune response biomarker
does not vary in the placebo group [18], this analysis is done either pooling over the vaccine and placebo
groups or in the vaccine group only. In the vaccine field, such analyses have been named CoR analyses
(e.g., [19, 20]), and for definiteness, we focus on assessing a CoR in the vaccine group. The approach
is illustrated with power calculations for the RV144 HIV vaccine efficacy trial after the primary analy-
sis was conducted and with sample size calculations for the prospective design of a sequel HIV vaccine
efficacy trial being planned by the HIV Vaccine Trials Network.

Section 2 describes the study set-up, parameters of interest, and identifiability assumptions. Section 3
describes the power and sample size calculation approach. Section 4 illustrates the power/sample size
calculator with the two examples, and Section 5 concludes with discussion. Supporting Information
Appendix A discusses how to unbiasedly characterize the biomarker distribution accounting for the sam-
pling design, Supporting Information Appendix B provides selected mathematical details of the power
calculation methods, and Supporting Information Appendix C addresses the important topic of how to
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estimate the noise level of the biomarker. Supporting Information Appendix D presents supplementary
figures for the two illustrations and Supporting Information Appendix E summarizes how to use the
R package.

2. Study set-up, parameters of interest, identifiability assumptions

2.1. Randomized clinical trial for assessing vaccine efficacy

We consider a double-blind clinical trial that randomizes participants to vaccine or placebo, with Z the
indicator of assignment to vaccine and W baseline covariates. Let S be the immune response biomarker
measured at a fixed time 𝜏 post-randomization, which we assume to be continuous or trichotomous, with
the case of dichotomous S covered as a special case. Participants are followed for occurrence of the
primary clinical study endpoint, clinically significant infection with the pathogen, with follow-up through
time 𝜏max, with T the time from randomization until the study endpoint and Y ≡ I[T ⩽ 𝜏max] the binary
outcome of interest. Let Y𝜏 ≡ I[T ⩽ 𝜏] and V𝜏 be the indicator that a subject attends the visit at 𝜏. Fitting
to the motivating application, we focus on settings where it is only interesting to study the association
of S with Y for subjects who did not experience the event before the biomarker is measured. Therefore,
subjects with (1 − Y𝜏)V𝜏 = 1 are the subgroup observed to be at-risk at 𝜏 who could potentially have S
measured for the association study.

Because S is expensive to measure, a case-cohort, case-control, or two-phase sampling design is often
used; let R be the indicator that S is measured. Let Δ be the indicator that Y is observed, that is, Δ = 0
if the subject drops out before time 𝜏max and before experiencing the event, and Δ = 1 otherwise. Let
L ≡ (R(z),R(z)S(z),Y𝜏(z),V𝜏(z), Δ(z),Δ(z)Y(z)) be the potential outcomes if assigned treatment z, for
z = 0, 1, where S(z) is defined if and only if Y𝜏(z) = 0, such that S(z) =∗ if Y𝜏(z) = 1. (Note that Y𝜏(z) = 1
and V𝜏(z) = 0 each imply R(z) = 0.) The observed data for a subject are O ≡ (Z,W,R,RS,Y𝜏 ,V𝜏 ,Δ,ΔY).
The CoR power calculations are based on the N vaccine recipients observed to be at-risk at 𝜏 (those with
Z(1 − Y𝜏)V𝜏 = 1) and test for whether P(Y = 1|S = s1,Z = 1,Y𝜏 = 0) varies in s1. To understand
our approach, it is critical to note that the CoR power calculations do not need the potential outcomes
formulation, as they are based solely on the observable random variables O. The potential outcomes are
used to define biomarker-specific vaccine efficacy and hence provide a way to relate CoR effect sizes to
vaccine efficacy effect sizes.

To facilitate building this relationship, we assume the vaccine has no effect on the study endpoint
before the biomarker sampling time 𝜏: P(Y𝜏(1) = Y𝜏(0)) = 1; this assumption will be more credible
and less influential for 𝜏 near baseline. This assumption is useful by ensuring that the biomarker-specific
vaccine efficacy parameters measure causal effects of vaccination and for equating the CoR parameter
P(Y = 1|S = s1,Z = 1,Y𝜏 = 0) to P(Y = 1|S = s1,Z = 1, Y𝜏(1) = Y𝜏(0) = 0), which links the CoR and
VE parameter types (as described in the succeeding text). Henceforth, all unconditional and conditional
probabilities of Y(z) = 1 tacitly condition on Y𝜏(1) = Y𝜏(0) = 0.

2.2. Vaccine efficacy parameters: trichotomous biomarker

We suppose that each of the N vaccine recipients is in one of three latent/unknown baseline subgroups X,
the ‘lower protected’ (X = 0), the ‘medium protected’ (X = 1), or the ‘higher protected’ (X = 2). Define
the x-specific outcome risks as

risklat
z (x) ≡ P(Y(z) = 1|X = x) for x = 0, 1, 2 and z = 0, 1, (1)

such that the vaccine efficacy for latent subgroup x is VElat
x ≡ 1 − RRlat

x with RRlat
x ≡ risklat

1 (x)∕risklat
0 (x),

for x = 0, 1, 2.
Define Plat

x ≡ P(X = x) for x = 0, 1, 2, and define the marginal risks riskz ≡ P(Y(z) = 1) for z = 0, 1.
Then the overall vaccine efficacy VE equals

VE = 1 − RR = 1 −
risk1

risk0
= 1 −

Plat
0 risklat

1 (0) + Plat
1 risklat

1 (1) + Plat
2 risklat

1 (2)

Plat
0 risklat

0 (0) + Plat
1 risklat

0 (1) + Plat
2 risklat

0 (2)
. (2)
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We also define risks and vaccine efficacies for subgroups defined by S(1) or by (X, S(1)):

riskz(s1) ≡ P
(
Y(z) = 1|S(1) = s1

)
, risklat

z (x, s1) ≡ P
(
Y(z) = 1|X = x, S(1) = s1

)
(3)

for x = 0, 1, 2, s1 = 0, 1, 2 and z = 0, 1, and

VE(s1) ≡ 1 − RR(s1) = 1 − risk1(s1)∕risk0(s1)

VElat(x, s1) ≡ 1 − RRlat(x, s1) = 1 − risklat
1 (x, s1)∕risklat

0 (x, s1).

The observed biomarker response s1 = 0 represents a ‘low’ response in some fashion and s1 = 2 a higher
response, with s1 = 1 an intermediate response. For example, s1 = 0 could be a negative/non-response
and s1 = 2 a response above a pre-specified putative correlate of protection threshold. If S were measured
without error, then X = S such that VE(s1) = VElat(x, s1) and the latent variable formulation would not
be needed; we use it to allow measurement error to create differences in VE(s1) versus VElat(x, s1), with
greater differences for noisier biomarkers (developed next).

2.3. Accounting for measurement error in the biomarker

To incorporate assay noise into the power/sample size calculations, we define protection-related sensi-
tivity/specificity and false positive/negative parameters as

Sens ≡ P(S(1) = 2|X = 2), Spec ≡ P(S(1) = 0|X = 0), (4)

FP0 ≡ P(S(1) = 2|X = 0), FN2 ≡ P(S(1) = 0|X = 2), (5)

FP1 ≡ P(S(1) = 2|X = 1), FN1 ≡ P(S(1) = 0|X = 1). (6)

The probability an observed at-risk vaccine recipient has a low or high response, P0 ≡ P(S = 0|Z(1 −
Y𝜏)V𝜏 = 1) or P2 ≡ P(S = 2|Z(1 − Y𝜏)V𝜏 = 1), equals

P0 = Spec ∗ Plat
0 + FN1 ∗ Plat

1 + FN2 ∗ Plat
2 , (7)

P2 = Sens ∗ Plat
2 + FP1 ∗ Plat

1 + FP0 ∗ Plat
0 . (8)

We consider two approaches to the trichotomous biomarker power calculations. Approach 1 takes as
inputs (Sens, Spec,FP0,FN2,FP1,FN1), whereas Approach 2 uses an additive measurement error model
for a normally distributed continuous-readout biomarker S∗ and defines the values of S by S = 0 if
S∗ ⩽ 𝜃0, S = 2 if S∗ > 𝜃2, and S = 1 otherwise, with 𝜃0 and 𝜃2 two user-specified constants with 𝜃0 < 𝜃2.
In particular, for Approach 2, we consider a normally distributed latent ‘true’ biomarker X∗ and link S∗

to X∗ by an additive classical measurement error model

S∗ = X∗ + e, X∗ ∼ N
(
0, 𝜎2

tr

)
, e ∼ N

(
0, 𝜎2

e

)
, (9)

with X∗ independent of e, implying S∗ ∼ N(0, 𝜎2
obs) with 𝜎2

obs = 𝜎2
tr + 𝜎2

e . Here, 𝜌 ≡ 1 − 𝜎2
e∕𝜎

2
obs is the

fraction of the variability of S∗ that is potentially biologically relevant for protection and is specified to
reflect the quality of the biomarker. The ‘true’ trichotomous biomarker X is defined by two percentiles
of X∗ that are determined mathematically by model (9) and the two percentiles 𝜃0 and 𝜃2 (Supporting
Information Appendix B). Figure 1 illustrates the set-up for Approach 2.

The aforementioned set-up handles a dichotomous biomarker as a special case, by setting Plat
1 = P1 =

0, in which case only the Sens and Spec parameters are needed for the calculations [because FN2 =
1 − Sens and FP0 = 1 − Spec; Equations (4)–(8)]. The R code handles the dichotomous biomarker as a
special case.
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Figure 1. Division of participants into three latent subgroups with low, medium, and high levels of vaccine efficacy
VElat

0 , VElat
1 , and VElat

2 , with prevalences Plat
0 , Plat

1 , and Plat
2 , respectively. Under Approach 2 of Step 7 in Section 3.1

the latent normal measurement error model (9) is used.

2.4. Vaccine efficacy parameters and model: continuous biomarker

The formulation for a continuous biomarker is similar, where now the latent subgroups are defined by
the true unobservable biomarker X∗ in model (9) earlier. Now

VElat(x∗) ≡ 1 − risklat
1 (x∗)∕risklat

0 (x∗), VE(s1) ≡ 1 − risk1(s1)∕risk0(s1),

with risklat
z (x∗) ≡ P(Y(z) = 1|X∗(1) = x∗) and riskz(s1) ≡ P(Y(z) = 1|S∗(1) = s1) for x∗ and s1 varying

over the continuous support of X∗(1) and S∗(1), respectively.
For the power calculations, we specify a fraction Plat

lowestVE of subjects with the lowest X∗(1) values ⩽ 𝜈
to all have the same specified lowest level of vaccine efficacy VElowest:

VElowest ≡ VElat(X∗(1) ⩽ 𝜈) = 1 − risklat
1 (𝜈)∕risklat

0 (𝜈). (10)

For example, VElowest may be set to 0 and Plat
lowestVE defined as the fraction of subjects without a pos-

itive vaccine-induced immune response. The constant 𝜈 is determined by Plat
lowestVE, VElowest, and the

measurement error model (9): 𝜈 =
√
𝜌𝜎obsΦ−1(Plat

lowestVE), where Φ−1(⋅) is the inverse of the standard
normal cdf.

For x∗ ⩽ 𝜈, risklat
1 (x∗) is modeled as a constant following (10),

risklat
1 (x∗) = (1 − VElowest)risklat

0 (𝜈) for x∗ ⩽ 𝜈, (11)

and, for x∗ > 𝜈, risklat
1 (x∗) is modeled via a logistic regression model

logit
(
risklat

1 (x∗)
)
= 𝛼lat + 𝛽 latx∗ for x∗ > 𝜈. (12)

Using model (11)–(12) that specifies a lowest value of vaccine efficacy is useful because the alternative
simpler model that would specify (12) for all x would force VE(x) to be negative for the lowest values
of x. In many applications, this is undesirable as enhanced risk of disease caused by vaccination may be
considered unlikely and the most relevant power calculations would dissallow this possibility. (Albeit the
power calculator works for VElowest specified negative.)

Model (11)–(12) combined with (9) and the assumption risklat
0 (x) = risk0 as stated in Section 2.7

implies that

VE = 1 −
[

Plat
lowestVErisklat

1 (𝜈) + ∫
∞

𝜈

logit−1
(
𝛼lat + 𝛽 latx∗

)
𝜙
(
x∗∕

√
𝜌𝜎obs

)
dx∗

]
∕risk0, (13)

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3745–3759
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where 𝜙(⋅) is the standard normal pdf. This formula will be used later for implementing the power
calculations.

2.5. Correlate of risk hypotheses and estimands of interest

We address the scientific objective to assess a CoR among vaccine recipients. For trichotomous S, this
entails testing the following null versus alternative hypotheses:

H0 ∶ risk1(s1 = 2) = risk1(s1 = 1) = risk1(s1 = 0) vs. (14)

H1 ∶ risk1(s1 = 2) ⩽ risk1(s1 = 1) ⩽ risk1(s1 = 0) (15)

with ‘<’ for at least one of the two inequalities in H1. For continuous S∗, this tests

H0 ∶ risk1(s1) is constant in s1 vs. H1 ∶ risk1(s1) ⩽ risk1(s′1) for all s′1 < s1 (16)

with ‘<’ for some s′1 < s1. While for data analysis, two-sided tests would typically be used, the power
calculations are clearer to interpret by testing for the one-sided alternative H1 of lower clinical risk in
vaccine recipients with increasing s1.

2.6. Methods of analysis with Bernoulli and without replacement sampling

Two main approaches to selecting the subset of subjects for whom to measure the biomarkers are

Prospective case-cohort [1]: Select a simple or stratified random sample from all randomized vaccine
recipients, and augment the sample with all study endpoint cases that were not randomly sampled;
and
Retrospective case-control or 2-phase sampling [4]: Conditional on final case status and possibly
a discrete stratification covariate measured in all subjects, select a fixed number of vaccine recipients
from each case status × covariate stratum.

Our sample size calculations consider both approaches. The first approach has advantages includ-
ing that the randomly sampled subjects can be used for unbiased assessment of the distribution of the
biomarker in the study population, absolute risks can be assessed in biomarker subgroups, and the associa-
tion of biomarkers with multiple study endpoints can be straightforwardly assessed. The second approach
does not facilitate the latter two goals, and some re-weighting is required to use the sampled subjects
for unbiased assessment of the distribution of the biomarker in the study population (Supporting Infor-
mation Appendix A). An advantage of the second approach is that waiting until the primary analysis is
completed before selecting the controls allows accounting for the vaccine efficacy results for optimizing
the biomarker sampling design. This affords opportunities to improve efficiency of the analysis [4].

2.7. Identifiability assumptions

In addition to assuming iid random variables (Li,X
∗
i ,Xi) and (Oi,X

∗
i ,Xi) for i = 1,… ,N, we assume

the standard set of assumptions that have been used in correlates of risk and protection studies: SUTVA,
ignorable treatment assignment (Z ⟂ L|W), equal early clinical risk (P(Y𝜏(1) = Y𝜏(0)) = 1), and random
censoring (Y(z) ⟂ Δ(z) for z = 0, 1). We also assume S is missing at random (MAR): R depends only on
the observed data O. To the extent the investigator controls the biomarker sampling design, MAR is guar-
anteed to hold, although it could be in question due to happenstance missingness caused by not attending
the visit at 𝜏. Moreover, we focus on the scenario that after accounting for the latent category (and any
baseline covariates W included in the CoR analysis) the measured biomarker in vaccine recipients does
not affect risk, that is, risklat

1 (x∗, s1) ≡ P(Y(1) = 1|X∗(1) = x∗, S∗(1) = s1) = risklat
1 (x∗) for all s1 and x∗,

and similarly for risk as a function of trichotomous X and S.
We develop the power calculations for the relatively simple scenario of homogeneous risk in the

placebo group, where risklat
0 (x∗, s1) = risk0(s1) = risk0 for all s1 and x∗ and similarly for risk as a func-

tion of trichotomous X and S. In general, risk0(x∗, s1) and risk0(s1) are not identifiable (because S(1) is
a counterfactual random variable for subjects assigned Z = 0), and power calculations could be con-
ducted under many scenarios for these functions. However, the special case is very helpful for power
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calculations because risk0 can be specified based on the observed or projected incidence in the trial.
Because the CoR data analysis itself would control for known baseline prognostic factors W, the sce-
nario in which the power calculations are accurate is risklat

0 (x∗, s1) = risk0(s1) = risk0 after conditioning
on W.

2.8. Correlate of risk effect sizes RRt and RRc as a function of vaccine efficacies

From (14), (15), and (16), analysis of the vaccine group data provides inference on the relative risks
RRt ≡ risk1(2)∕risk1(0) for a trichotomous biomarker and RRc ≡ risk1(s1)∕risk1(s1 − 1) for a continuous
biomarker. We refer to RRt and RRc as the user-specified ‘CoR effect sizes’ of the power calculations.
From the assumptions of Section 2.7, RRt and RRc are identified from the observed data measured from
the subset of vaccine recipients with R = 1, because they imply risk1(s1) = P(Y = 1|Z = 1,R = 1, s1)
[21]. Therefore, under the assumptions the power calculations for testing H0 can be based on the set of
vaccine recipients with S (or S∗) measured at 𝜏.

For a trichotomous biomarker, straightforward calculation shows that RRt is linked to the latent VE
parameters via the equation

RRt =
RRlat

0 ∗ FP0 + RRlat
1 ∗ FP1 + RRlat

2 ∗ Sens

RRlat
0 ∗ Spec + RRlat

1 ∗ FN1 + RRlat
2 ∗ FN2

. (17)

This formula makes the estimable RRt interpretable in terms of a gradient in vaccine efficacies, where
RRt = RRlat

2 ∕RRlat
0 for a noise-free biomarker with 1−Sens = 1−Spec = FP0 = FP1 = FN2 = FN1 = 0

(illustrated in Figure 5). Otherwise, under H1, RRt is closer to 1.0 than RRlat
2 ∕RRlat

0 .
For a continuous biomarker S∗ following model (9), RRc is linked to the latent vaccine efficacy param-

eters via an equation that depends on s1. Because RRc depends on s1, it is not particularly useful to index
power calculations by RRc. Instead, we interpret RRc as the effect size for a noise-free biomarker (𝜌 = 1).
Under the logistic model (12), RRc is the relative risk per standard deviation increase in X∗ in the region
above 𝜈, where we use the approximation of a relative risk by an odds ratio.

3. Power and sample size calculations

3.1. Without replacement sampling

Of the N vaccine recipients observed to be at-risk at 𝜏, let ncases (ncontrols) be the number of observed cases
(controls) from whom S (or S∗) is measured, where cases have ΔY = 1 and controls have Δ(1 − Y) = 1.
If the power calculations are done at the design stage, then N, ncases, and ncontrols are projected numbers.

For a trichotomous S, the algorithm for the power calculations is as follows:

(1) Specify the overall vaccine efficacy between 𝜏 and 𝜏max, VE. For example, if the power calculations
are done before the trial, then VE may be set to the protocol-specified design alternative and if
afterwards to the estimated VE.

(2) Specify risk0, either based on the protocol-specified placebo group endpoint rate projection or
as an estimate after the trial (e.g., estimated as n1∕(n1 + n2) where n1 is the number of observed
placebo cases between 𝜏 and 𝜏max and n2 is the number who reached time 𝜏max free of the outcome).
The estimator of risk0 should be defensibly unbiased accounting for participant dropout.

(3) Select a grid of vaccine efficacies for the lower protected subgroup, VElat
0 . One useful grid ranges

from overall VE specified in Step 1 (the null hypothesis) to 0 (the maximal alternative hypothesis
not allowing harm by vaccination).

(4) Select a grid of vaccine efficacies for the medium protected subgroup, VElat
1 ⩾ VElat

0 ; one useful
default choice that we use in the illustration is VElat

1 = VE.
(5) Specify Plat

0 (which in many applications may be specified as the rate of ‘negative’ response)
and specify Plat

2 . These values determine Plat
1 = 1 − Plat

0 − Plat
2 . Based on Equation (2) assuming

risk0(2) = risk0(0) = risk0,

VE = Plat
0 VElat

0 + Plat
1 VElat

1 + Plat
2 VElat

2 .

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3745–3759
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This formula determines VElat
hiVE to be

VElat
2 =

[
VE ∗

(
Plat

0 + Plat
2

)
− Plat

0 ∗ VElat
0

]
∕Plat

2 .

If one varies VElat
0 from VE to 0 as suggested in Step 3, then by the aforementioned equation VElat

2
varies from VE to VE ∗ (Plat

0 + Plat
2 )∕Plat

2 .
(6) Specify values P0 and P2, which determines P1 = 1 − P0 − P2. Thus, in total, the user specifies

(VE, risk0, VElat
0 , VElat

1 , Plat
0 , Plat

2 , P0, P2). Typically, it is of interest to set P0 = Plat
0 and P2 = Plat

2
as a key scenario for computing power, as in the illustration.

(7) Approach 1: Following Equation (7), specify two of the three parameters (Spec,FN2,FN1),
which determines the remaining parameter. Similarly, following Equation (8), specify two of the
three parameters (Sens,FP0,FP1), which determine the remaining parameter. One choice speci-
fies Sens and Spec and sets FN2 = FP0 = 0, because a biomarker of reasonable quality should
have FN2 and FP0 close to zero.

Note that Approach 1 provides a completely general approach to studying a trichotomous or
dichotomous biomarker as a CoR, without making any use of the normal measurement error
model (9).
Approach 2: Specify 𝜎2

obs and 𝜌, which together with the values (P0,P2,P
lat
0 ,Plat

2 ) fixed in
Step 6 determine 𝜃0 and 𝜃2 and determine (Sens, Spec,FP0,FN2,FP1, FN1) (see Table I in the
illustration). Typically, 𝜎2

obs is set to 1.0 as S∗ can always be scaled to have unit variance.
With Approach 2, it is helpful to plot the CoR effect size RRt versus the latent protection effect

size RRlat
2 ∕RRlat

0 via formula (17) for different values of 𝜌 (illustrated in Figure 5).
(8) Simulate a large number of data sets under the aforementioned true parameter values. The proce-

dure fixes the total number of cases ncases and the total number of controls ncontrols = Kncases for
an input counting number K, such that S (or S∗) are the randomly generated variables.

(9) For each simulated data set, compute the Wald test statistic for H0 from a logistic regression model
(with S the covariate of interest) that uses inverse probability weighting to account for the marker
sub-sampling design. Any method for valid testing of the biomarker-outcome association using
MAR case-cohort/case-control/two-phase sampling may be used in this step.

(10) Compute the power as the fraction of the simulated data sets where the Wald test statistic yields
1-sided p ⩽ 𝛼∕2 for specified 𝛼 with direction favoring H1.

(11) Given the specified VE and risk0, repeat the power calculations varying 𝜌 from 1.0 (noise-free
biomarker) to a value less than one reflecting a worst case for noise level of the biomarker. Figure 4
in the next section illustrates these calculations.

(12) Repeat the power calculations for different controls : case ratios K, and, if done before the trial,
possibly for different values of VE and risk0.

For Step 7 Approach 2, under the assumptions of Section 2 and specified values for 𝜎2
obs, 𝜌, and

(Plat
0 ,Plat

2 ), the remaining inputs Sens, Spec, FP0, FN2, FP1, FN1, (𝜃0, 𝜃2) are determined by solving
Equations (4)–(6) and (7)–(8); the R code does this using stochastic integration (Supporting Information
Appendix B).

Step 8 proceeds as follows. First, for each of the N vaccine recipients, determine the numbers that are
in the three latent subgroups as Nx = Plat

x ∗ N rounded to the nearest integers, for x = 0, 1, 2. Second,
determine the latent class membership of each of the ncases cases by a realization of a trinomial random
variable with success probabilities (P(X = 0|Y = 1,Y𝜏 = 0,Z = 1),P(X = 1|Y = 1, Y𝜏 = 0,Z =
1),P(X = 2|Y = 1, Y𝜏 = 0,Z = 1)), where P(X = x|Y = 1,Y𝜏 = 0,Z = 1) is expressed in terms of the
Plat

x and risk1(x) via Bayes rule. This determines the number of cases ncases(x) in each category x = 0, 1, 2
satisfying ncases =

∑2
x=0 ncases(x). Third, within each subgroup x, simulate Si for the entire set of N subjects

as a trinomial random variable. For x = 0, the response probabilities are (Spec, 1−FP0 − Spec,FP0); for
x = 1 the response probabilities are (FN1, 1−FP1 −FN1,FP1); and for x = 2, the response probabilities
are (FN2, 1 − Sens − FN2, Sens). This determines the number of controls ncontrols(x) in each category
x = 0, 1, 2 by subtracting off ncases(x), satisfying the constraint ncontrols =

∑2
x=0 ncontrols(x) where ncontrols

is fixed at K ∗ ncases. Fourth, finalize the analysis data set by specifying Ri = 1 or Ri = 0 for each of the
N subjects.

For Step 9, we use the tps(⋅) function in the R package osDesign that implements the two-phase logistic
regression method of Breslow and Holubkov [22], entering S as an ordered score variable with levels
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Table I. Mapping of the measurement error model (9) with 𝜎2
obs = 1 indexed by 𝜌

to Sens, Spec, FP0, FN2, FP1, FN1.

𝜌 Plat
0 P0 Plat

2 P2 Sens Spec FP0 FN2 FP1 FN1

1 0.1 0.1 0.1 0.1 1 1 0 0 0 0
0.9 0.1 0.1 0.1 0.1 0.78 0.77 0 0 0.027 0.029
0.7 0.1 0.1 0.1 0.1 0.58 0.63 0 0 0.052 0.046
0.5 0.1 0.1 0.1 0.1 0.46 0.48 0.001 0.001 0.067 0.065

1 0.2 0.2 0.2 0.2 1 1 0 0 0 0
0.9 0.2 0.2 0.2 0.2 0.83 0.82 0 0 0.057 0.06
0.7 0.2 0.2 0.2 0.2 0.68 0.68 0.001 0.001 0.10 0.11
0.5 0.2 0.2 0.2 0.2 0.58 0.57 0.008 0.009 0.14 0.14

1 0.3 0.3 0.3 0.3 1 1 0 0 0 0
0.9 0.3 0.3 0.3 0.3 0.85 0.85 0 0 0.11 0.11
0.7 0.3 0.3 0.3 0.3 0.73 0.74 0.010 0.011 0.20 0.19
0.5 0.3 0.3 0.3 0.3 0.64 0.64 0.041 0.042 0.24 0.24

1 0.4 0.4 0.4 0.4 1 1 0 0 0 0
0.9 0.4 0.4 0.4 0.4 0.88 0.87 0.008 0.01 0.23 0.23
0.7 0.4 0.4 0.4 0.4 0.78 0.78 0.062 0.061 0.32 0.32
0.5 0.4 0.4 0.4 0.4 0.70 0.70 0.13 0.12 0.36 0.36

S = 0, 1, 2 and conducting a one degree of freedom Wald test. Alternatively, a generalized two degree of
freedom Wald test could be used. In addition, alternative analysis methods could be used that leverage
correlations between the biomarker and auxiliary covariates measured in everyone, potentially increasing
power [4]. However, it will often be advantageous to base the power calculations on the simpler method
both for the utility of having conservative power calculations and because the strength of correlation of
the auxiliaries must be fairly high to yield a material power gain (often not available in practice).

For a continuous normally distributed biomarker S∗ scaled to have mean 0 and 𝜎2
obs = 1, the same

simulated data sets (using Approach 2 in Step 7) can be used for the power calculations, with process
as follows.

(1) Steps 1 and 2 as for the trichotomous biomarker case.
(2) Fix Plat

lowestVE, VElowest, and 𝜌 ∈ (0, 1]. Under the logistic regression model (12) for risklat
1 (x),

VElat(x) = 1 − logit−1(𝛼lat + 𝛽 latx)∕risk0 for x > 𝜈 and VElat(x) = VElowest for x ⩽ 𝜈. The fixed
values (VE, risk0, Plat

lowestVE, VElowest) mathematically determine 𝛼lat and 𝛽 lat by the aforementioned
equation and Equation (12) (solutions in Supporting Information Appendix B).

(3) Given the specified (VE, risk0, Plat
lowestVE, VElowest), plot the VE curve VElat(x) verus x given a true

CoR effect size RRc = exp(𝛽 lat). VElat(x) is calculated using models (11)–(12), where given fixed
𝛽 lat, 𝛼lat = logit(risklat

1 (𝜈))−𝛽 lat𝜈. Repeat the analysis for multiple values of RRc (see the illustration
in Figure 3).

(4) Data sets are simulated by first specifying risklat
1 (x∗) following models (11)–(12) on a fine grid of x∗

values. Second, the true latent biomarkers X∗
i for the ncases cases are sampled from P(X∗ = x∗|Y =

1,Y𝜏 = 0,Z = 1) calculated using Bayes rule. Similarly, the X∗
i values for the ncontrols = K ∗ ncases

controls are sampled from P(X∗ = x∗|Y = 0, Y𝜏 = 0,Z = 1).
(5) Steps 9–12 as mentioned earlier, except that Step 9 now uses S∗ as the covariate of interest in the

logistic regression model, again implemented with tps(⋅).

3.2. Bernoulli sampling

Under Bernoulli sampling, of the N vaccine recipients observed (or projected) to be at-risk at 𝜏, ncases
(ncontrols) is the expected number of observed cases (controls) from whom S and S∗ are measured, that is,
ncases and ncontrols are random. For a trichotomous biomarker, the power analysis proceeds as described
in Section 3.1, except Step 8 uses Bernoulli sampling (classic case-cohort sampling [1]). In particular,
for each of the N vaccine recipients, determine the case status Y conditional on X∗ = x∗ as a realization
of a Bernoulli random variable with success probability risklat

1 (x∗). For a continuous biomarker, Step 8

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3745–3759
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is altered by determining the case status Y conditional on X∗ = x∗ as a realization of a Bernoulli random
variable with success probability risklat

1 (x∗).

4. Illustration of the power calculations

We first illustrate the correlates power calculations for the RV144 preventive HIV vaccine efficacy trial of
a candidate vaccine versus placebo that was conducted in the general population in Thailand [23]. For this
example, the power calculations are conducted after the trial was completed (e.g., [24, 25]). The RV144
trial randomized 8198 (8197) HIV uninfected individuals to receive vaccine (placebo) and followed them
for the primary endpoint of HIV infection over 42 months. Subjects received immunizations at week 0,
4, 8, 24, and immune response biomarkers measured at 𝜏 = month 6 (week 26 visit) were assessed in
vaccine recipients as CoRs of HIV infection by 𝜏max = 42 months. Relevant for the CoR power cal-
culations, estimated overall VE to prevent infections after 𝜏 through 𝜏max was 0.26. Of the N = 7703
vaccine recipients observed to be at risk at Month 6, biomarkers were measured in the 41 subjects who
were observed to subsequently experience the HIV infection endpoint, and in a frequency matched 5:1
controls : cases allocation random sample of 205 observed controls (i.e., without replacement two-phase
sampling). Based on these data, several papers have reported significant continuous, trichotomous, and
dichotomous CoRs in the vaccine group, with initial paper Haynes et al. [25]. These analyses were
done using two-phase logistic regression [22] and two-phase Cox regression [26], which gave almost
identical answers.

For the power analysis with a continuous biomarker following model (12), we assume Plat
lowestVE = 0.40,

such that the 40% of vaccine recipients with lowest X∗ responses had vaccine efficacy VElowest. We varied
VElowest from 0 to the overall VE estimate of 0.26. We estimated risk1 as n1∕(n1 + n2) where n1 is the
number of vaccine recipients observed to be at-risk at 𝜏 = 6 months who were diagnosed with HIV
infection by the end of follow-up 𝜏max = 42 months (n1 = 41) and n2 is the number of vaccine recipients
observed to be at-risk at 𝜏 who completed follow-up HIV negative (n2 = 7662). Then we estimated risk0

as r̂isk1∕(1 − 0.26) = 0.0072.
Figure 2 shows the power curves for 𝜌 = 1, 0.9, 0.7, 0.5. As expected, power decreases with the degree

of noise. The interpretation of the plot may be aided by annotating it with results from previous effi-
cacy trials that identified CoRs. In particular, suppose a previous trial reported an estimated R̂R per sd
increment in observed S∗. Under the measurement error model (9), for 𝜌 = 1, this equates to R̂R per sd

Figure 2. Power to detect a normally distributed biomarker S∗ as an inverse correlate of risk (CoR) of HIV infec-
tion in vaccine recipients for the completed RV144 HIV vaccine efficacy trial with ncases = 41 and ncontrols = 205
(1-sided 𝛼 = 0.05∕2-level Wald test), for the fraction 𝜌 of the protection relevant variability of S∗ ranging from
1.0 (noise-free biomarker) to 0.50 (noisy biomarker). The analysis sets Plat

lowestVE = 0.40 and varies VElowest from
0 to VE = 0.26.
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Figure 3. For the RV144 scenario with overall VE = 0.26, the vaccine efficacy curve VE(x) for the true biomarker
X∗ = x for six different scenarios of the true correlate of risk (CoR) relative risk effect size RRc in the vaccine

group and values of VElowest (all curves assume 𝜌 = 1).

increment in X∗, and for fixed 𝜌 < 1, this equates to R̂R
1∕

√
𝜌

per sd increment in X∗. Typically, there will
be uncertainty as to the level of 𝜌 in the previous trial, such that affixing the estimated relative risk per sd
increment in X∗ to each curve provides a scenario analysis of the power available to detect the previously
identified CoR under a spectrum of noise levels. In Figure 2, we use the gp70-V1V2 binding antibody
correlate observed in RV144 [25], which had R̂R = 0.57 per sd increment in S∗. If this biomarker is
assumed to have no measurement error (𝜌 = 1), power is 0.19, whereas under substantial measurement
error (𝜌 = 0.7), power drops to 0.13. In additional simulations, the power curves are higher if overall VE
is higher (not shown).

To help interpret the power results in Figure 2, Figure 3 shows the VE(x) curves for six different
scenarios of the true CoR relative risk effect size RRc (𝜌 = 1) and values of VElowest for the RV144
scenario with estimated overall VE of 0.26. The null hypothesis RRc = 1 corresponds to a flat curve
VE(x) = VE, and increasing departures from the null hypothesis H0 correspond to increasingly variable
and steep VE curves. This figure shows that for the scenario risk0(s1, x) = risk0 and no measurement
error, an association of the biomarker with infection risk in the vaccine group (a CoR) is equivalent to an
association of the biomarker with VE. For interpreting Figure 2, if we focus on the 𝜌 = 0.9 curve with
effect size RRc = 0.53 and VElowest = 0.04 (green solid curve), VE varies substantially in X∗ but power
is low, only about 0.14.

Figure 4 shows the power curves (top panels) based on the same simulated data sets following the
recipe given in Section 3.1 (using Approach 2 in Step 7), for a trichotomous biomarker with P0 = P2 =
Plat

0 = Plat
2 set to 0.1, 0.2, 0.3, or 0.4 with RRlat

1 = RRoverall and RRlat
2 tied to RRlat

0 through the relationship
expressed in Step 5 of Section 3.1. The results show that power majorly increases with P0 = P2, which
is intuitively expected given that greater sample sizes at the poles of lowest and highest VE should yield
the greatest power.

To help interpret the power results of Figure 4, Figure 5 shows the relationship between the CoR effect
size RRt and the relative risk ratio RRlat

2 ∕RRlat
0 for the four values of 𝜌, with Table I showing how 𝜌 maps

to Sens, Spec, FP0, FN2, FP1, FN1 for each set of input parameters used in Figure 4. Figure 5 shows
that for a noise-free biomarker with 𝜌 = 1, RRt = RRlat

2 ∕RRlat
0 such that a CoR in the vaccine group

is equivalent to the relative vaccine efficacy parameter, whereas for imperfectly measured biomarkers
with 𝜌 < 1, RRt > RRlat

2 ∕RRlat
0 such that the CoR effect size is closer to the null than the relative vac-

cine efficacy parameter. We illustrate a co-interpretation of Figures 4 and 5 for the 𝜌 = 0.9 marker in
Figure 5 and P(S = 0) = 0.4 (bottom-right panels). There is about 25% power to detect a CoR with effect
size RRt = 0.60 (Figure 4), which corresponds to 25% power to detect RRlat

2 ∕RRlat
0 ≈ 0.50 (Figure 5).

Supporting Information Figure 1 shows an ROC curve (sensitivity versus one minus specificity) as

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3745–3759
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Figure 4. Vaccine group correlate of risk (CoR) power calculations for a trichotomous biomarker S for the com-
pleted RV144 HIV vaccine efficacy trial with ncases = 41 and ncontrols = 205 (1-sided 𝛼 = 0.05∕2-level Wald test),

for four scenarios of 𝜌. The x-axis is risklat
1 (2)∕risklat

1 (0), which equals RRt for a perfect marker with 𝜌 = 1.

Figure 5. For the RV144 scenario with overall VE = 0.26, correlate of risk (CoR) effect size RRt = risk1(2)∕
risk1(0) versus the ratio RRlat

2 ∕RRlat
0 measuring relative vaccine efficacy for the higher protected and lower

protected latent subgroups, for four scenarios of 𝜌.
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Plat
2 = P2 = 1 − P0 = 1 − Plat

0 ranges from 0.10 to 0.90. Our overall conclusion for this example is as
follows: Because estimated overall VE was low (at 0.26), the assumption of VE ⩾ 0 for all biomarker
subgroups constrains the possible CoR effect sizes to a limited range, hence yielding low power of the
CoR analysis; in contrast, if VE were allowed to be negative for some subgroups, then power would
be greater.

Our second example considers calculations being used to plan the sample size of a Phase 3 HIV vac-
cine efficacy trial under design by the HIV Vaccine Trials Network. This trial randomizes HIV negative
individuals to vaccine or placebo in a 1:1 allocation and follows subjects for HIV infection during a
𝜏max = 36-month follow-up period. We assume 4% annual HIV incidence in the placebo group and 5%
annual dropout incidence, as well as overall VE = 0.50. The immune response biomarkers to assess as
CoRs are measured at month 𝜏 = 6.5. All vaccine group subjects diagnosed with HIV between month
6.5 and 36 have biomarkers measured, as do a random sample of HIV uninfected controls with con-
trols : cases ratio 1:1, 3:1, 5:1, or 10:1. Figure 6 shows the trichotomous biomarker power curves versus
the number of infections in the vaccine group (and the total sample size observed to be at risk at 𝜏) to
detect a CoR effect size of risklat

1 (0) = 0.065, risklat
1 (1) = 0.043, risklat

1 (2) = 0.022, for 𝜌 fixed at value
0.9 that may be a realistic scenario for a biomarker assessed as a CoR. (Under the constant placebo risk
assumption these calculations assume VElat

0 = 0.25, VElat
1 = 0.50, VElat

2 = 0.75.) The calculations are
for the scenarios P0 = Plat

0 = Plat
2 = P2 ranging from 0.10 to 0.50. The results show that power sharply

increases with the prevalences Plat
0 = Plat

2 and increases with the controls : cases ratio, with only incre-
mental gain moving from 5:1 to 10:1. Based on this analysis, to achieve 90% power to detect a CoR with
P0 = P2 = 0.30, one choice would be the 5:1 allocation design, requiring 2800 total vaccine recipients
observed to be at-risk at 6.5 months.

Figure 6. Vaccine group correlate of risk power curves versus total sample size (number of participants observed
to be at risk at time 𝜏) for a trichotomous biomarker S measured at time 𝜏 to plan a two-arm HIV vaccine efficacy
trial with equal allocation randomization to vaccine versus placebo, 4% annual placebo incidence, 5% annual
dropout incidence, overall VE = 0.50, 𝜌 = 0.9, and CoR effect size risklat

1 (0) = 0.069, risklat
1 (1) = 0.043, and

risklat
1 (2) = 0.013. Each panel shows power for P0 = Plat

0 = Plat
2 = P2 ranging from 0.1 to 0.5, for controls : cases

allocation ratios (a) 1:1, (b) 3:1, (c) 5:1, and (d) 10:1. Assuming risk0(x, s1) = risk0, the corresponding vaccine
efficacy effect size is VElat

0 = 0.25, VElat
1 = 0.50, VElat

2 = 0.75. The total sample size is the number of participants
observed to be at risk at time 𝜏 (vaccine + placebo).
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5. Discussion

We developed an approach to power and sample size calculations for a typical ‘CoR’ data analysis in a
randomized controlled clinical efficacy trial for testing an association of an observed biomarker measured
in a sub-sample (via a case-cohort, case-control, or two-phase sampling design) of the active treatment
group with a clinical endpoint. The contribution of this work is to integrate into the calculations two
issues – the level of treatment efficacy across biomarker subgroups and the fraction 𝜌 of the variability
of the biomarker that is potentially biologically relevant for protection (𝜌 ≡ 1 − 𝜎2

e∕𝜎
2
obs). The first issue

is important because, if ignored, a statistician may design the sample size of a CoR study not realizing
the tacit assumptions being made about treatment efficacy. A particularly egregious mistake would be
powering a study to detect a CoR with no recognition that achieving the desired power requires that
treatment efficacy be negative for some biomarker subgroups, rendering the CoR study underpowered if
treatment efficacy is never negative. Our approach provides a way to explicitly explore the relationship
of the CoR effect size with treatment efficacy, including a way to specify the lowest treatment efficacy
at a fixed value such as zero. The second issue is important because the degree of measurement error 𝜌
heavily influences power [14–16], such that accounting for 𝜌 is needed for accurate power calculations,
and may be useful for screening out biomarkers for which the CoR study would be underpowered given
an unacceptably low value of 𝜌.

For the continuous biomarker calculations and for the Approach 2 trichotomous biomarker calcula-
tions, we have assumed a classical additive normal measurement error model for the observed continuous
biomarker S∗, the veracity of which should be tested. In general, in the planning of biomarker CoR stud-
ies, it is important to conduct biomarker assay laboratory validation studies to estimate 𝜌; we discuss
approaches to this in Web Appendix C.

Our power calculator applies for a univariate biomarker, yet studying the association of multiple
biomarkers with outcome is an important application. The calculator for a trichotomous biomarker may
be useful for trials that collect possibly high-dimensional multivariate biomarkers and for which unsu-
pervised clustering based on the biomarkers yields a cluster of ‘putatively not protected’ subjects and a
cluster of ‘putatively protected’ subjects. In this scenario, the power calculator may be applied with all
other subjects constituting the third cluster. In addition, the calculator for a normally distributed biomarker
may be used for studying power to detect a linear combination of multiple biomarkers as a CoR.

Our CoR power and sample size calculations are for the scenario that the biomarker is not associated
with the clinical endpoint in the control group after accounting for baseline covariates W that would be
controlled for in the CoR data analysis. This assumption is not needed for the CoR calculations because
they use data from the active treatment group only. However, this assumption is used as a way to interpret
the CoR power calculations in terms of biomarker-specific treatment efficacy, providing a mapping from
the CoR calculations (in terms of risk gradients in the active treatment group) to gradients in treatment
efficacy. Additional calculations may be conducted under alternative scenarios, where the approach here
could be extended to allow functions risk0(x, s1) other than risk0(x, s1) = risk0. While the main application
of the methods is more interpretable and accurate CoR power and sample size calculations, a second
application is power and sample size calculations for assessing modification of treatment efficacy by the
biomarker, that is, assessing the vaccine efficacy curve VE(s1) directly, which is conducted in the principal
stratification framework [18,27]. Supporting Information Figures S1 and S3 show such power curves for
our two illustrative examples.
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