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Outline

@ Introduction to CoR analysis

® CoR analysis with a Cox model

e Fixed-time CoR
e Time-dependent CoR

©® CoR analysis (marker at a single fixed time point) with a logistic
regression model
O Selected issues

e Marker sampling design
e Marker measurement error

@ Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)
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Introduction

Context: Eight Frameworks for Assessing Statistical
Correlates of Vaccine Protection
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Applications of Statistical Correlates of Vaccine Protection

e Generate hypotheses about mechanistic correlates of protection that
can be further evaluated

e Guide iterative development of vaccines between basic and clinical
research

e Refine vaccine regimens
o Guide regulatory decisions
e Guide immunization policy
e Model public-health impact and cost-effectiveness
e Shorten trials and reduce costs

e Bridge vaccine efficacy to new settings

P. Gilbert (U of W) Evaluating CoRs 09/2019 4/ 74



Introduction

Two Types of Correlates of Risk with respect to Time

Fixed-time correlate: IR marker

Focus on the IR at one key time point

measured at a fixed time point
post-vaccination that associates with

outcome or with VE against the
outcome

—

Purpose: Practicable
predictor of risk or VE /
surrogate endpoint
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Purpose: Generate insights
into mechanistic correlates of
protection

P. Gilbert (U of W) Evaluating CoRs

1T v
T T T T T
10 15 20 25 30

|

T

5 35
Months since enrollment

09/2019




Prospective Cohort Study Sub-Sampling Design

Nomenclature

e Terms used: case-cohort, case-control,

e Case-cohort sampling originally meant taking a Bernoulli random
sample of subjects at study entry for marker measurements (the
“sub-cohort” ), and also measuring the markers in all disease cases
(Prentice, 1986, Biometrika)

e Case-control sampling is Bernoulli or without replacement sampling
done separately for observed diseased cases and observed non-diseased
controls (retrospective sampling)

° is the generalization of case-control sampling that
samples within discrete levels of a covariate as well as within case and
control strata (Breslow et al., 2009, AJE, Stat Biosciences)

e Source of confusion: Some papers allow the term case-cohort to
include retrospective sampling

e These slides use the original meaning of the term case-cohort
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Assessing CoRs in Vaccine Recipients: Case-Control

Design (Fixed-Time Adaptive CoR) (Design of CYD14/15)

* Objective: Develop Month 13 correlates of risk (CoRs) and
protection (CoPs) against symptomatic VCD through Month 25

e Measure immune responses (at Month 0, 13) from all vaccinees
with VCD after Month 13 through Month 25 and from a random
sample of vaccinees free of VCD through Month 25

Visit Month 0 6 1213 18 25
E. [
|
A |
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[

Cases: VCD endpoint

JControls: No VCD endpoint
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Introduction

Assessing CoRs in Vaccine Recipients: Case-Control
Design (Fixed-Time Innate CoR) (Hypothetical)

» Objective: Develop Day 1 correlates of risk (CoRs) and protection
(CoPs) against symptomatic VCD through Month 25

e Measure immune responses (at Day 0, Day 1) from all vaccinees
with VCD after Day 1 through Month 25 and from a random sample
of vaccinees free of VCD through Month 25

Visit Month 6 T2Ag) 18 25
| ] |

@/ | I} x H \k, | |

Cases: VCD endpoint

Controls: No VCD endpoint

e Systems vaccinology: gene expression, cell sub-populations, etc.*

*E.g., Bali Pulendran (YFV, influenza), John Tsang (influenza, Cell 2014),

Rafick Sekaly (HIV vaccines), Amy Chung, Galit Alter (HIV vaccines, Cell 2015)

Zak, Andersen-Nissen, de Rosa et al. McElrath (HIV vaccines, PNAS, 2012)

#/.‘ FRED HUTCH Gottardo, McElrath et al. within the HIP-C (Malaria vaccines, other vaccines)
et Andersen-Nissen, Fiore-Gartland et al. on HVTN 097 (HIV vaccines) and HVTN 602 (TB vaccines)
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Introduction

Assessing CoRs in Vaccine Recipients: Case-Control
Design (Time-Dependent CoR) (Design of CYD14/15)

» Objective: Develop current-value correlates of instantaneous risk of
outcome and VE against symptomatic VCD

» Measure immune responses longitudinally from all vaccinees with
symptomatic VCD after Month 7 and from a random sample of
vaccinees endpoint-free through Month 36

Visit Month 0 67 12 18 24 30 36
Z NN

Cases; VCD endpoint

Controls: No VCD endpoint through month 36

« ‘Joint modeling’ longitudinal + survival analysis methods (e.g., Fu
and Gilbert, Lifetime Data Analysis, 2017)
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Cox Model for Fixed-Time CoR Analysis (Fixed-Time CoR)

e Cox proportional hazards model
A(t12) = do(t)exp { 5] 2}

e \(t|Z) = conditional failure hazard given covariate history until time t
e 9 = unknown vector-valued parameter
o X\o(t) = A(t|0) = unspecified baseline hazard function

o Z=(Z7,Z])7, Z1 are “Phase 1" baseline covariates measured in
everyone and Z» are “Phase 2" (expensive) covariates only measured
on failures and subjects in a random sub-sample

° eg,

Z; = treatment assignment, vaccination receipt, and baseline
prognostic factors at enrollment;

Z> = Immune response biomarkers measured at a fixed time point 7
post-randomization

P. Gilbert (U of W) Evaluating CoRs 09/2019 10 / 74



Notation and Set-Up (Similar to Kulich and Lin, 2004,

JASA)

e T = failure time (e.g., time from Month 13 visit to dengue disease
endpoint)

e C = censoring time

X =min(T,C),A=1I(T <C)

N(t)=I(X<t,A=1)

Y(t)=1(X>1t)

e Cases are subjects with A =1

Controls are subjects with A =0

P. Gilbert (U of W) Evaluating CoRs 09/2019 11 /74



Notation and Set-Up (Matches Kulich and Lin, 2004,

JASA) (Fixed-Time CoR)

Consider a prospective cohort of N subjects, who are stratified by a
variable V with K categories

e V may contain any information available at the time of sampling (i.e.,
failure time, censoring time may be used as well as covariates)

e ¢ = indicator of whether a subject has Z, measured (i.e., the full
vector Z measured)

o ay = Pr(e =1|V = k), where ay >0

(Xkis Dkiy Z1kis Vi, €ki) observed for all subjects

(Xk,', Dyi, Zikis Zokis Viis €xi = 1) observed for all subjects with ¢;; = 1
(marker subcohort subjects and all cases)
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Estimation of 5y (Fixed-Time CoR)

e With full data, 5p may be estimated by the MPLE, defined as the
root of the score function

Ur(p) = / Tz Ze(8.5)) A1), (1)
i=1 0

where

Ze(t,8) = S (8, /5O (¢, B):
s, 8) = 'Y Zew {ﬁTZ,-} Yi(t)
i=1

sOe.p) = n—liexp{wz,-} Yi(t)
i=1
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Estimation of 5y (Fixed-Time CoR)

e Due to missing data the previous equation (1) cannot be calculated
under the sub-sampling design

e Most estimators are based on pseudoscores parallel to (1), with
Zr(t, B) replaced with an approximation Z¢(t, 3)

K ng )
Uc(B) = ZZ/O {Zki — Zc(t, )} dNki(t)

k=1 i=1

e The double indices k, i reflect the stratification
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Estimation of 5y (Fixed-Time CoR)

e The marker sampled cohort at-risk average is defined as

Ze(t,8) = sS8(t, 8)/50(t, B),

where

K ng
se.p) = nilzzpki(t)ZkIeXP{/BTZki} Yii(t)

k=1 i=1

K ng
Sé-o)(t,ﬂ) = n_lzZpk;(t)eXp{,BTZk;} Yk;(t)

k=1 i=1

where pg;(t) is a weight
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Estimation of 5y (Fixed-Time CoR)

* pki(r) is set to zero for subjects with incomplete data, eliminating
them from the estimation

e Cases and subjects in the marker subcohort have pg;(t) > 0

o Usually p4i(t) is set as the inverse estimated sampling probability
(Using the same idea as the weighted estimating equation methods of
Robins, Rotnitzky, and Zhao, 1994, 1995)

e Different estimators are formed by different choices of weights pg;(t)

e Two classes of estimators (case-cohort and 2-phase/case-control)
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Case-cohort Estimators (Called N-estimators in Kulich and

Lin, 2004) (Fixed-Time CoR)

e The subcohort is considered a sample from all study subjects
regardless of failure status

e Original approaches:

e Prentice (1986, Biometrika): p;(t) = €;/a for all controls and
pi(t) = 1/« for all cases

e Self and Prentice (1988, Ann Stat): p;(t) = ¢;/a for all i

e Equivalent if all cases have the phase-2 variables measured
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Case-cohort N-estimators (Fixed-Time CoR)

e General stratified N-estimator

o pii(t) = €;/ax(t) for all k, i for all controls and py;(t) = 1 for cases

e y(t) is known by design, but nonetheless estimating au(t) provides
greater efficiency for estimating 5o (Robins, Rotnitzky, Zhao, 1994)
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Two-phase Sampling Estimators (Called D-estimators in

Kulich and Lin, 2004) (Fixed-Time CoR)

e D-estimators treat cases and controls completely separately
e Weight cases by 1

e The ak(t) apply to controls only, so that ay(t) should be estimated
using data only from controls

e Case-control estimators are the special case with one covariate
sampling stratum K =1
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Two-phase Sampling D-estimators (Fixed-Time CoR)

e General D-estimator
pri(t) = D + (1 — Ayi)exi/ak(t)

e Borgan et al. (2000, Estimator Il) obtained by setting

n

ap(t) = kai(l — Awi)Yii(t)/ Z(l — D) Yii(t),

i

i.e., the proportion of the sampled controls among those who remain at
risk at time ¢
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Main Distinctions Between N- and D- Estimators

e For N-estimators, the sampling design is specified in advance,
whereas for D-estimators, it can be specified after the trial
(retrospectively)

e D-estimators more flexible
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Statistical Inference

o All of the methods provide Wald-based inference
e Wald confidence intervals about elements of the 3y vector
e Wald p-values for testing hypotheses such as Hp : Bg; =0
o Generalized Wald p-values for testing composite hypotheses such as all
elements of By are zero, Hy : 5o =0
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cch R Package for a Fixed-Time CoR

e Implements Cox regression for selected N and D estimators for a
fixed-time marker(s), for unstratified or stratified sampling

Table: Method Options for the cch Package

Sampling design cch Method

Unstratified sampling

Case-cohort N “Prentice” or “SelfPrentice”
Case-control D “LinYing" (1993, JASA)

Stratified sampling

Case-cohort N “Borgan.I" (Generalized SelfPrentice) or
Two-phase D “Borgan.Il" (Generalized LinYing)

¢ In some applications the Case-cohort N vs. Case-control
D/Two-Phase D sampling designs are equivalent, such that the
mgﬁho%og\;ﬁ valid across the designs (e.g., CYD14, CYD1502/2019

ert Evaluatin®’ CoRs 23 /74



Example Fixed-Time CoR Analysis: RV144 HIV-1 VE Trial

Haynes et al. (2012, NEJM) assessed in vaccine recipients the association
of 6 immune response biomarkers measured at Week 26 with HIV-1
infection through 3.5 years

e 2-phase sampling design: Measured Week 26 responses from all
HIV-1 infected cases (n = 41) and from a stratified random sample of
controls (n = 205 by gender x# vaccinations x per-protocol)

Immune Response Variable Est. HR (95% CI) 2-Sided P-value
IgA Magnitude-Breadth to Env  1.58 (1.07-2.32) 0.02
Avidity to A244 Strain 0.90 (0.55-1.46) 0.66
ADCC to 92TH023 Strain 0.92 (0.62-1.37) 0.67
Neutralization M-B to Env 1.46 (0.87-2.47) 0.15
IgG to gp70-V1V2 Env 0.57 (0.37-0.90) 0.014
CD4 T cell Magn to 92TH023 ~ 1.17 (0.83-1.65) 0.37

Borgan et al. (2000) estimator Il for the Cox model fit by cch
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Fixed-Time CoR Analysis in the CYD14 and CYD15

Dengue VE Trials

Infectious Diseases Society of America hiv medicine association

The Journal of Infectious Diseases )
MAJOR ARTICLE ‘w\IDSA hlva .

Neutralizing Antibody Correlates Analysis of Tetravalent
Dengue Vaccine Efficacy Trials in Asia and Latin America

Zoe Moodie,' Michal Juraska,' Ying Huang,'? Yingying Zhuang,? Youyi Fong,'? Lindsay N. Carpp,' Steven G. Self,'? Laurent Chambonneau,?
Robert Small,* Nicholas Jackson,® Fernando Noriega,* and Peter B. Gilbert'?

Waccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; 2Department of University of Seattle; 3Sanofi
Pasteur, Marcy-L'Etoile, France; *Sanofi Pasteur, Swiftwater, Pennsylvania; 5Sanofi Pasteur, Lyon, France

Background. Inthe CYD14 and CYD15 Phase 3 trials of the CYD-TDV dengue vaccine, estimated vaccine efficacy (VE) against
symptomatic, virologically confirmed dengue (VCD) occurring between months 13 and 25 was 56.5% and 60.8%, respectively.

Methods. Neutralizing antibody titers to the 4 dengue serotypes in the CYD-TDV vaccine insert were measured at month 13 in
a randomly sampled immunogenicity subcohort and in all VCD cases through month 25 (2848 vaccine, 1574 placebo) and studied
for their association with VCD and with the level of VE to prevent VCD.

Results.  For each trial and serotype, vaccinees with higher month 13 titer to the serotype had significantly lower risk of VCD
with that serotype (hazard ratios, 0.19-0.43 per 10-fold increase). Moreover, for each trial, vaccinees with higher month 13 average
titer to the 4 serotypes had significantly higher VE against VCD of any serotype (P < .001).

Conclusions. Neutralizing antibody titers postdose 3 correlate with CYD-TDV VE to prevent dengue. High titers associate with
high VE for all serotypes, baseline serostatus groups, age groups, and both trials. However, lowest titers do not fully correspond to
zero VE, indicating that other factors influence VE.

Keywords: case cohort; immune correlate of protection; neutralizing antibodies; surrogate endpoint; vaccine efficacy trial.
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Average nAb Titer Distributions (Moodie et al., 2018, JID)

Month 13 Average NAD titer

CYD14 Case-Cohort Sample CYD15 Case-Cohort Sample
10%=
10%+
T
10°+
10—
LLOQ-
Placebo Placebo Vaccine Vaccine Placebo Placebo Vaccine Vaccine
Cases Controls Cases Controls Cases Controls Cases Controls

*Average nAb titer = Geometric mean PRNT50 to the 4 dengue viruses in the vaccine construct

Cases = Dengue disease endpoint (VCD) between Month 13 and 25
Kjis erep HuTCH Controls = Never experienced VCD through Month 25 s
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Fixed-Time CoR Analysis: CYD14 Dengue VE Trial

CYD14 (n = 1390 Vaccine Recipients)

Hazard Ratio Global PValue®
Comparison (95% CI) PValue (Holm PValue)®
Average Titer?, DENV-Any
Med vs low 0.37 (0.23-0.59) <.001 <.001 (=)
High vs low 0.10 (0.05-0.19) <.001 <.001 (=)
Per 10-fold increase 0.25 (0.17-0.38) <.001 - =)
DENV-1 Titer, DENV-1
Med vs low 0.60 (0.33-1.10) .10 .001 (.003)
High vs low 0.06 (0.01-0.28) <.001 .001 (.003)
Per 10-fold increase 0.39 (0.25-0.62) <.001 - (<.001)
DENV-2 Titer, DENV-2
Med vs low 0.96 (0.38-2.45) .93 .001 (.004)
High vs low 0.21 (0.07-0.64) .006 .001 (.004)
Per 10-fold increase 0.43(0.25-0.75) .003 - (.009)
DENV-3 Titer, DENV-3
Med vs low 0.61(0.16-2.39) 48 .29 (.42)
High vs low 0.16 (0.02-1.58) 12 .29 (.42)
Per 10-fold increase 0.39 (0.13-1.15) .09 - (.09
DENV-4 Titer, DENV-4
Med vs low 0.76 (0.27-2.20) .62 .21 (.42)
High vs low 0.14 (0.02-1.25) .08 .21 (.42)
Per 10-fold increase 0.30 (0.13-0.73) .008 - (0.02)

*LinYing (1993, JASA) Cox model fit by cch
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Another Application of the Case-Cohort Cox Model to the

CYD14 and CYD15 Trials

The NEW ENGLAND JOURNAL of MEDICINE

“ ORIGINAL ARTICLE ”

Effect of Dengue Serostatus on Dengue
Vaccine Safety and Efficacy

S. Sridhar, A. Luedtke, E. Langevin, M. Zhu, M. Bonaparte, T. Machabert,
S. Savarino, B. Zambrano, A. Moureau, A. Khromava, Z. Moodie, T. Westling,
C. Mascarefias, C. Frago, M. Cortés, D. Chansinghakul, F. Noriega,

A. Bouckenooghe, J. Chen, S.-P. Ng, P.B. Gilbert, S. Gurunathan,
and C.A. DiazGranados
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CoR with Cox model

Case-Cohort Cox Model for a Baseline Covariate

e Phase-two covariate of interest:
e Baseline nAb serostatus (0 = PRNT5o < 10 for all 4 serotypes; 1 =
otherwise)

e Ming Zhu and Edith Langevin applied the case-cohort Cox model

e Constructed 10 phase-two baseline serostatus data sets by
multiple-imputation, based on Month 13 NS1 assay readouts and
other covariates

e Case-cohort Cox model fit 10 times and Rubin’s variance rule applied
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Sridhar et al. Results Support Vaccine Effect Modification

by Baseline nAb Serostatus

Vaccine Control
Serostatus, End Point, and Method Group Group Relative Risk or Hazard Ratio (95% Cl)
no. ftotal no.
Seropositive
Hospitalization for VCD

MI, month 0 onward 58.8/1502.9 137.7/729.8 —— 0.21 (0.14-0.31)
TMLE, month 0 onward 43.6/1442.6 121.3/699.3 — 0.19 (0.08-0.42)
NS1, T9, month 13 onward 49/1450 110/687 —— 0.21 (0.15-0.30)
MI, month 0 onward 11.2/1502.9 33.4/729.8 — 0.16 (0.07-0.37)
TMLE, month 0 onward 8.6/1442.6 29.9/699.3 — 0.15 (0.07-0.35)
NS1, T9, month 13 onward 10/1450 27/687 — 0.18 (0.09-0.37)

Seronegative

Severe VCD :
Hospitalization for VCD

MI, month 0 onward 64.2/375.1 25.3/207.2 — 1.41 (0.74-2.68)
TMLE, month 0 onward 78.1/359.7 31.7/201 - 151 (0.73-3.11)
NS1, T9, month 13 onward 56/330 20/171 - 1.46 (0.85-2.49)
Severe VCD
MI, month 0 onward 14.8/375.1 3.6/207.2 —_— 2.44 (0.47-12.56)
TMLE, month 0 onward 15.2/359.7 6.8/201 _ 1.41 (0.44-4.46)
NS1, T9, month 13 onward 12/330 1171 . S 6.25 (0.81-48.32)
T
0.01
Vaccine Better Control Better

Figure 1. Risk of Hospitalization for Virologically Confirmed Dengue (VCD) and of Severe VCD in Participants 9 to 16 Years of Age,
According to Baseline Serostatus.
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The Cox Model with a Sub-Sampling Design

(Time-Dependent Covariates)

e Cox proportional hazards model
_ T
A(t|Z) = Xo(t)exp {,80 Z(t)}

e \(t|Z) = conditional failure hazard given covariate history until time t
e 9 = unknown vector-valued parameter
e X\o(t) = A(t|0) = unspecified baseline hazard function

o Z=(Z',2(t)")", Z1 are “Phase 1" baseline covariates measured in
everyone and Z(t) are “Phase 2" (expensive) covariates only measured
on failures and subjects in a random sub-sample

° eg.,

Z;1 = treatment assignment, vaccination receipt, and baseline
prognostic factors at enrollment;
Z>(t) = Immune response biomarkers measured at longitudinal visits
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Notation and Set-Up (Time-Dependent Covariates)

Same as for fixed-time covariates Z, except:

o (Xki, Axi, Zki(t),0 < t < 7, Vij, exi = 1) observed for all marker
subcohort subjects

o At least (Xyi, Axi = 1, Zki(Xyi)) observed for all cases
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Estimation of 5y (Time-Dependent Covariates)

Same as for fixed-time covariates except now terms depend on Zj;(t):

e The marker sampled cohort at-risk average is defined as

Ze(t,8) = S9(¢,8) /50, ),

where

K ng
sW(t,p) = n_lZZpk,-(t)Zk,-(t)exp{BTZk;(t)} Yii(t)

k=1 i=1
K ng

SO ) = n 30> pult)exp {ﬂTZk,-(t)} Y(t)
k=1 i=1
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Case-cohort N Estimators (Time-Dependent Covariates)

e The subcohort is considered a sample from all study subjects
regardless of failure status

e The whole covariate history Z(t) is used for all subcohort subjects
e For cases not in the subcohort, only Z(T;) (the covariate at the failure
time) is used

e Prentice (1986, Biometrika): p;(t) = ¢;/a for t < T; and
pi(Ti) =1/a
e Self and Prentice (1988, Ann Stat): p(t) =¢;/a for all t
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Case-cohort N-estimators (Time-Dependent Covariates)

e General stratified N-estimator
° pk,'(t) = 6;/ak(t) for t < Ty; and Pki(Tki) =1

o Qy(t) is a possibly time-varying estimator of a(t)

e A time-varying weight can be obtained by calculating the fraction of
the sampled subjects among those at risk at a given time point
(Barlow, 1994; Borgan et al., 2000, Estimator 1)

P. Gilbert (U of W) Evaluating CoRs 09/2019 35/ 74



Two-phase Sampling D Estimators (Time-Dependent

Covariates)

e Weight cases by 1 throughout their entire at-risk period
e D-estimators treat cases and controls completely separately

e «y apply to controls only, so that ay should be estimated using data
only from controls

e Case-control estimators are the special case with one covariate
sampling stratum K =1
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Distinctions Between N- and D- Estimators

(Time-Dependent Covariates)

e D-estimators require data on the complete covariate histories of cases
e N-estimators only require data at the failure time for cases

e E.g., for the Vax004 HIV VE trial (Gilbert et al., 2005, J Infect Dis),
the immune responses in cases were only measured at the visit prior to
infection, so N-estimators are valid while D-estimators are not valid
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Gaps of Both N- and D- Estimators (Time-Dependent

Covariates)

Does Not Need Allows Outcome-

Full Covariate Dependent
Estimator Histories in Cases Sampling
N (Prosp. case-cohort) Yes No
D (Retrosp. 2-phase) No Yes

e For time-dependent correlates, none of the partial-likelihood based
methods are flexible on both points

e All of the methods require full covariate histories in controls

e Critical implications for sample storage design
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R Code for the Cox Model with Time-Dependent

Covariates

e Therneau and Li (2000, Lifetime Data Analysis) describes how to
implement several N and D estimators in R and SAS

e Code for implementing the Self-Prentice case-cohort estimation
approach for a time-dependent phase-two covariate is at:
http://faculty.washington.edu/peterg/
SanofiPasteurCorrelatesRTraining.2018.html

e E.g., very similar code was used in Gilbert et al. (2005, J Infect Dis)
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Outline

@ Introduction to CoR analysis

® CoR analysis with a Cox model

e Fixed-time CoR
e Time-dependent CoR

© CoR analysis (marker at a single fixed time point) with a logistic
regression model

O Selected issues
e Marker sampling design

e Marker measurement error
® Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)
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Notation and Set-Up

e Similar as for Cox model, except the outcome Y is binary
e Y = failure outcome (e.g., dengue disease endpoint by 25 months)
e Cases have Y =1, Controls Y=0

e Assume Y is known for all subjects (not exactly true due to
participant dropout)
o Z=(Z],Z])7, Z; are “Phase 1" baseline covariates measured in

everyone and Z, are “Phase 2" (expensive) covariates only measured
on failures and subjects in a random sub-sample

e e.g., Phase 2 covariates = immune response biomarkers at fixed time 7
(for a binary outcome only consider fixed-time correlates)
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Notation and Set-Up

e Consider a prospective cohort of N subjects, who are stratified by a
baseline covariate V with K categories

e ¢ = indicator of whether a subject has Z» measured (i.e., the full

vector Z measured)
e au=Pr(e=1|Yi=y,V=k) forye{0,1} and k € {1,--- , K},
where all oy > 0

e (Zij, Vi, Yi, €;) observed for all subjects

o (Zii, Z2i, Vi, Yi, €;) observed for all subjects with ¢; = 1 [marker
subcohort subjects and all cases (at least all cases with samples
available)]
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CoR with Cox model

Two-Phase/Case-Control Sampling Design

Breslow and Cain (1988, Biometrika) two-phase outcome-dependent
sampling design, also studied in Breslow and Holubkov (1997, JRSS-B)

Table: Two-Phase Sampling

Phase 1 Baseline Covariate

1 2 . K
Y=1|nm1| no : nK
Y =0 | no1 | no2 . noK

e Within each of the 2 x K strata, draw a random sample of ny
subjects for phase 2 measurements

e Bernoulli sampling or without replacement sampling within each cell
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Logistic Regression Model

. exp (ZTﬂo)
~ 1+exp(Z7 o)

P(Y =1|Z = z)

o If full sampling, estimate By by maximum likelihood, e.g. g/lm in R

e Under case-control sampling, obtain valid inference on Sy ignoring the
sampling design (Prentice and Pyke, 1979, Biometrika)

e But cannot estimate absolute conditional risks — for that, need
weighting

e Simplest approach fits glm to phase-two subjects only (complete cases)
using the weights option

e Sets weights to estimated inverse probability weights
1/@y for all subjects in stratum (y, k)
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Logistic Regression Model for Two-Phase

Outcome-Dependent Sampling

Breslow and Holubkov (1997):

e Developed a pseudo-likelihood (PL) and a maximum likelihood (ML)
estimator of 3p, with Wald 95% confidence intervals and p-values
(same type of output as for the Cox model)

e The ML estimator is fully efficient
e The methods assume Bernoulli sampling of subjects within each of the
2 x K strata

o All three estimation and inference procedures (WL, PL, ML) are
implemented in the osDesign R package
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Logistic Regression Model for Two-Phase

Outcome-Dependent Sampling: Variance Estimation

e Variance estimators use the decomposition

COV(B) = COVPhasel(B\) + COVPh3562(//8\)7

= Phase 1 variance if full data were available + Phase 2 variance
added because of incomplete data

-~

e All variance estimators estimate Covppase2(3) by the
Horvitz-Thompson sandwich formula

e They differ by whether a model-based or empirical sandwich estimator
is used for Covppase1 ()

e Results tend to be very similar unless the data set is very small or the
logistic regression model is grossly mis-specified (Haneuse, Saegusa,
Lumley, 2011, J Stat Software)

e osDesign uses empirical-based for WL and model-based for (PL, ML) —
seems safe to use these defaults in practice
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Example Fixed-Time CoR Analysis: CYD14 Dengue VE

Trial (Analysis Pools Over Vaccine and Placebo)

Table 10: Overall Dengue Endpoint: LR Multivariate Quantitative Variable (Pooled)

Immune Response Est. 95% 95% Interaction
Variable OR LL UL P-value Q-value P-Value
Serotype 1 1.01 0.73 1.39 0.973 0.973 0.328
Serotype 2 1.08 0.77 1.53  0.647 0.863 0.033
Serotype 3 0.88 0.60 1.28 0.503 0.863 0.016
Serotype 4 0.73 0.45 1.18 0.201 0.804 0.698

p=0.217 for any association of the variables with endpoint.
p < 0.001 for a different association: vaccine vs. placebo.

*Breslow and Holubkov (1997) pseudo-likelihood (PL) estimator fit by tps
in the osDesign R package
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Logistic and Cox Regression Gave Very Similar Answers in

RV144, HVTN 505, CYD14, CYD15

e Consistent results by method were reported in Haynes et al. (2012,
NEJM), Hammer et al. (2013, NEJM), and Moodie et al. (2018, J
Infect Dis)

o Conjecture that the results are consistent because all of the studies
had a rare event, and low levels of right-censoring/loss to follow-up

e Implication: In such settings, it is reasonable to interpret power
calculations based on logistic regression as applying to power
calculations for Cox regression
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CoR with Cox model

Remarks on Use of the Breslow-Holubkov Logistic
Regression to Assess CoRs

e PL and ML tend to be more efficient than WL
e WL is more robust in a sense:

e If the logistic regression model is mis-specified then the WL estimator
correctly approximates the results that would have been obtained by

fitting the (wrong) model to complete data for all N subjects at Phase
1 (not true for the PL and ML methods)

e PLand ML assume P(Y =1|Z =2,V =v)=P(Y =y|Z =2z); WL
does not

e (the assumption always holds by including V in the regression model)

e All of the Breslow-Holubkov methods are not robust

e They require a correctly specified logistic regression model for
consistent estimation
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Remarks on Use of the Breslow-Holubkov Logistic

Regression to Assess CoRs

e While the methods are designed for Bernoulli two-phase sampling,
they are approximately correct if without replacement two-phase
sampling is used

e Consistent estimation and inference that is slightly conservative
(confidence intervals a little too wide, p-values a little too big)

e More efficient and robust methods may be considered

e Inverse probability of censoring weighted targeted minimum loss based
estimation (IPCW-TMLE) for logistic regression (Rose and Van der
Laan, 2011, Int J Biost)

e My PhD student Brenda Price is elaborating this IPCW-TMLE
approach
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Teaser: lllustration of Greater Validity, Robustness, and

CoR

ith Cox model

Efficiency of IPCW-TMLE vs. Breslow-Holubkov

Validation Data Set AEE Bias
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Teaser: lllustration of Greater Validity, Robustness, and

Efficiency of IPCW-TMLE vs. Breslow-Holubkov

Validation Relative RMSE
(Method/BH Correctly Specified)
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Outline

@ Introduction to CoR analysis

® CoR analysis with a Cox model

e Fixed-time CoR
e Time-dependent CoR

©® CoR analysis (marker at a single fixed time point) with a logistic
regression model
O Selected issues

e Marker sampling design
e Marker measurement error

@ Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)
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Some Marker Sampling Questions to Consider Further

e Prospective or retrospective sampling?
e How much of the cohort to sample?

e Sampling design: Which subjects to sample?
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Prospective or Retrospective Sampling?

Prospective case-cohort sampling: Select a random sample for
immunogenicity measurement at baseline

e Advantages of prospective sampling

e Can estimate case incidence for groups with certain immune responses

e Can study correlations of immune response with multiple study
endpoints

e Straightforward to descriptively study the distribution of the immune
responses in the whole study population at-risk when the immune
responses are measured

e Practicality: The lab will know what subjects to sample as early as
possible, and there is one simple subcohort list
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CoR with Cox model

Prospective or Retrospective Sampling?

Retrospective 2-phase sampling: At or after the final analysis, select a
random sample of control subjects for immunogenicity measurement

e Advantages of retrospective sampling
e Can frequency match controls to cases to obtain balance on important
covariates
e E.g., enough representation of girls and boys

e Can do “balanced sampling” on a prognostic factor to gain efficiency
(balanced sampling = equal number of subjects in each of the 2 x K
sampling cells)

e Can flexibly adapt the sampling design in response to the results of the
trial

e E.g., Suppose the results indicate effect modification, with VE >> 0%
in a subgroup and VE = 0% in other subgroups. Can over-sample
controls in the ‘interesting’ subgroup.
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Prospective or Retrospective Sampling?

o For applications where there is one primary endpoint and it is not of
major interest to estimate absolute case incidence, retrospective
sampling may be typically preferred
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How Many Controls to Sample?

e In prevention trials, for which the clinical event rate is low, it is very
expensive and unnecessary to sample all of the controls

e Vax004 trial vaccine recipients: 225 HIV infected cases; ~ 3000

controls
e RV144 trial vaccine recipients: 41 HIV infected cases; ~ 7000 controls

¢ Rule of thumb: Under the null hypothesis, a K : 1 Control:Case ratio
achieves relative efficiency of 1 — ﬁ compared to complete sampling

X

Relative Efficiency
0.50
0.67
0.75
0.80
0.83
0.91

2O W

o

e Simulations useful for studying the trade-offs of different K under
alternative CoR hypotheses
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Which Controls to Sample?

Principle: Well-powered CoR evaluation requires broad variability in the
biomarker and in the risk of the clinical endpoint

e Can improve efficiency by over-sampling the “most informative”
subjects

e Disease cases (usually sampled at 100%)
e Rare or unusual immune responses; or rare covariate patterns believed
to affect immune response (e.g., HLA subgroups)
e Auxiliary Phase | variables measured in everyone are most valuable
when they predict the missing data (i.e., the biomarker of interest)

e In general, optimal sampling obtained with sampling probabilities
proportional to the cost-adjusted square-root variance of the efficient
influence function (Gilbert, Yu, Rotnitzky, 2014, Stat Med)
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Practical Thoughts for Consideration on Sampling

Practical questions for studying a given phase-two immune response
biomarker as a CoR:

e Is there a Phase 1 covariate that should be reasonably predictive that
a vaccine recipient will have a negative response?

e s there a Phase 1 covariate that should be reasonably predictive of
whether a vaccine recipient has a high response?

o If yes on both, then may gain efficency by oversampling controls
predicted to have a negative response, and also oversampling controls
predicted to have a high response

The trick is how good does the prediction need to be to be worth it? The
‘cost’ of Phase 1 covariate-dependent sampling is a little more complexity
in analysis (e.g., all down-stream analyses should account for the
oversampling).
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@ Introduction to CoR analysis

® CoR analysis with a Cox model

e Fixed-time CoR
e Time-dependent CoR

©® CoR analysis (marker at a single fixed time point) with a logistic
regression model
O Selected issues

e Marker sampling design
e Marker measurement error

@ Improved CoR methods (Breslow et al., 2009; Rose and van der Laan,
2011)
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Measurement Error Reduces Power to Detect a CoR

[llustrative Example
e 'True’ CoR S~ N(0,1)
e ‘Measured CoR’ S*=S+e e~ N(0,0?)
e Disease outcome status Y generated from ®(«a + 3S)
with « set to give P(Y = 1|S = 0) = 0.20 and [ set to give
P(Y =1|S=1)=0.15

o2 ranges from 0 to 2 (no-to-large measurement error)
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Measurement Error Reduces Power to Detect a CoR

Simple Simulation Study
o Consider a study with n = 500 participants

o Consider power of a logistic regression model to detect an association
between S* (the observed variable) and Y
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Measurement Error Reduces Power to Detect a CoR

Deterioration of Power to Detect a CoR with Increasing Measurement Error

Power

T T T T T
0.0 0.5 1.0 15 2.0

Measurement Error Sigma2
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Power Calculations for Assessing CoRs

e Ideally, the power/sample size calculations should explicitly account
for measurement error in the assay
e E.g., Gilbert, Janes, Huang (2016, Stat Med), implemented in the R
package CoRpower (Michal to describe)

e E.g., specify p = 02/02,,, the proportion of inter-vaccinee variability of
the biomarker that is biologically relevant

¢ Rule of thumb: p =relative efficiency for estimating a CoR odds ratio
for the underlying perfect biomarker compared to the observed
biomarker (McKeown-Eyssen, Tibshirani, 1994, AJE)

¢ ‘Noise’ components of agbs may be estimated, especially from
laboratory assay validation studies
e Within-vaccinee variability of replicates
e Between-vaccinee variability due to variability in the time from the last
immunization to marker sampling
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Power to Detect a CoR of HIV Infection in Vaccinees in

HVTN 505 (a = 0.05)

11 —— Power rho=1
0.9 - Power rho=0.9
----- Power rho=0.7
084 . ---- Power rho=0.5
N
074 o
06 - "~ tho = biologicallly relevant
o ) . 2 proportion of variance of the
ENE N biomarker
8 N ~
0.4 - AZS
0.3 V2 Benchmark =~ -
) V2 = magnitude of .
0.2 4 observed primary gp70-V1v2 * -
) binding Ab Inverse CoR in t~ ‘..
01 - RV144 (Haynes et al., 2012) S -, __ el )
- e ‘\_,___‘\
0 =z
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029 037 045 052 0.6 068 076 084 092 1
Relative Risk per 1 SD Increase in the True Biomarker X* in VVaccine Recipients

Method: 2-phase logistic regression (Holubkov and Breslow, 1997)
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Typical Correlates Assessments are Inefficient

e Broadly in epidemiology studies, biomarker-disease associations are
commonly assessed ignoring much data collected in the study

e That is, only subjects with the biomarker measured are included in
the analysis

e Standard analyses use inverse probability weighting of the biomarker
sampled subcohort

e These ubiquitously-used methods are implemented in the R packages
cch (Breslow and Lumley) and osDesign (Haneuse, Saegusa,
Chatterjee, Breslow, Smoot)
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CoR with Cox model

Typical Correlates Assessments are Inefficient

e Breslow et al.* urge statisticians/epidemiologists to consider using the
whole cohort in the analysis of case-cohort/2-phase sampling data

o Baseline data on demographics and potential confounders are typically
collected in all subjects (the Phase | data measured in everyone)

e These Phase | data are most valuable when they predict “missing”
data

*Breslow, Lumley et al. (2009, AJE, Stat Biosciences)
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How to Leverage All of the Data?

e Question: How can we use the Phase | data to improve the
assessment of CoRs?

e One Answer: One approach adjusts the sampling weights used in the
standard analyses described above to obtain approximately efficient
estimators (e.g., Breslow et al., 2009, AJE, Stat Biosciences)
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Some Lessons Learned from Breslow et al. (2009)

@ Obtain ‘worthwhile’ efficiency gain for the CoR assessment if baseline
covariates can explain at least 40% of the variation in the
immunological biomarker (R? > 0.40)

@ If interested in interactions (evaluation of whether a baseline covariate
measured in everyone modifies the association of the biomarker and
the clinical endpoint), can obtain worthwhile efficiency gain with a
lower R?

® Even if no gain for the CoR assessment, will usually dramatically
improve efficiency for assessing the associations of the Phase |
covariates with outcome

@ Therefore it may often be the preferred method, and practicioners
should have methods accounting for all of the data in their analytic
toolkit

© Additional research needed to make these more-efficient methods
work well for multivariate markers and for time-dependent markers
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How to Leverage All of the Data?

e Question: How can we use the Phase | data to improve the
assessment of CoRs?

e Another Answer: Use an efficient and double-robust method:
Inverse probability of censoring weighted targeted minimum loss based
estimation (IPCW-TMLE) (Rose and Van der Laan, 2011, Int J Biost)

e Accessible R code does not seem to be available. Brenda Price is
developing R code as part of her dissertation research. The code will
handle a case-cohort or two-phase sampling study, for a binary
outcome or a failure time outcome subject to right-censoring.
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