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Outline of Module 8: Evaluating Vaccine Efficacy
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Surrogate Endpoints
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(Part I)

Session 7 (Gabriel) Effect Modifier Methods for Assessing Immunological Correlates of VE 
(Part II)

Session 8 (Sachs) Tutorial for the R Package pseval for Effect Modifier Methods for 
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Session 9 (Gilbert) Introduction to Sieve Analysis of Pathogen Sequences, for Assessing 
How VE Depends on Pathogen Genomics

Session 10 (Follmann) Methods for VE and Sieve Analysis Accounting for Multiple Founders
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Outline of Session 9

1 Sieve Analysis Via Cumulative and Instantaneous VE Parameters

2 Cumulative VE Approach: NPMLE and TMLE

3 Mark-Specific Proportional Hazards Model

4 Example 1: RV144 HIV-1 Vaccine Efficacy Trial

5 Example 2: RTS,S Malaria Vaccine Efficacy Trial
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Cumulative Genotype-Specific VE

• T = time from study entry (or post immunization series) until study
endpoint through to time τ1 (e.g., HIV-1 infection)

• t = fixed time point of interest t < τ1

• Discrete genotype-specific cumulative VE

VE cml/disc(t, j) =

[
1− P(T ≤ t, J = j |Vaccine)

P(T ≤ t, J = j |Placebo)

]
× 100%, t ∈ [0, τ1]

• Continuous genetic distance-specific cumulative VE

VE cml/cont(t, v) =

[
1− P(T ≤ t,V = v |Vaccine)

P(T ≤ t,V = v |Placebo)

]
× 100%, t ∈ [0, τ1]

• J = discrete genotype subgroup such as binary, unordered categorical,
ordered categorical

• V = (approximately) continuous genetic distance to a vaccine sequence
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Cumulative VE Sieve Effect Tests

Fix t at the primary time point of interest

• VE cml/disc(t, j):

H0 : VE cml/disc(t, j) constant in j

Hmon
1 : VE cml/disc(t, j) decreases in j

Hany
1 : VE cml/disc(t, j) has some differences in j

• VE cml/cont(t, v):

H0 : VE cml/cont(t, v) constant in v

Hmon
1 : VE cml/cont(t, v) decreases in v

Hany
1 : VE cml/cont(t, v) has some differences in v

A “sieve effect” is defined by Hmon
1 or Hany

1 being true (i.e., differential VE by
pathogen genotype)
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Illustration: Cumulative VE cml/disc(t = 14, j) for 3-Level J∗
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Discrete Genotype−Specific Cumulative VE at t = 14 Months

No. Cases (V:P): 11:25 No. Cases (V:P): 13:23 No. Cases (V:P): 19:18
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∗Aalen-Johansen (1978, Scand J Stat) nonparametric MLE (Aalen, 1978, Ann Stat;

Johansen, 1978, SJS); test for differential VE by Neafsey, Juraska et al. (2015, NEJM)
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Illustration: Cumulative VE cml/cont(t = 14, v) for
Continuous Distance V ∗

0.1 0.2 0.3 0.4 0.5

Genetic Distance to Vaccine Insert Sequence
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Continuous Genetic Distance−Specific Cumulative VE at t = 14 Months
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Johansen, 1978, SJS); test for differential VE by Neafsey, Juraska et al. (2015, NEJM)
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Estimation of Cumulative VE Parameters: Approach
Without Covariates

• Nonparametric maximum likelihood estimation and testing

Assumptions Required for Consistent Inference
• No interference: Whether a subject experiences the malaria endpoint does

not depend on the treatment assignments of other subjects

• A randomized trial

• Random dropout: Whether a subject drops out by time t does not depend
on observed or unobserved subject characteristics

• MCAR genotypes: Endpoint cases with missing pathogen genomes have
missingness mechanism Missing Completely at Random (MCAR)
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Estimation of Cumulative VE Parameters: With Covariates

• Targeted minimum loss-based estimation (tMLE) and testing

Assumptions Required for Consistent Inference

• No interference

• A randomized trial

• Correct modeling of dropout

• Missing at Random genotypes

Advantages of approach with covariates

• Correct for bias due to covariate-dependent dropout

• Increase precision via covariates predicting the endpoint and/or dropout

• Correct for bias from covariate-dependent missing genotypes (e.g., pathogen
load-dependent)

• Increase precision by predicting missing genotypes (the best predictors would be
based on pathogen sequences of later-sampled pathogens)
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Instantaneous Genotype-Specific VE Parameters

• h(t, j) = Hazard of the malaria endpoint with discrete genotype j

• λ(t, v) = Hazard of the malaria endpoint with continuous genetic distance v

• Discrete genotype-specific instantaneous vaccine efficacy

VEhaz/disc(t, j) =

[
1− h(t, j |Vaccine)

h(t, j |Placebo)

]
× 100%

• Continuous genetic distance-specific instantaneous vaccine efficacy

VEhaz/cont(t, v) =

[
1− λ(t, v |Vaccine)

λ(t, v |Placebo)

]
× 100%

• Proportional hazards assumption: VE haz/disc(t, j) = VE haz/disc(j) and
VE haz/cont(t, v) = VE haz/cont(v) for all t ∈ [0, τ1]
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Illustration: Instantaneous VE haz/disc(j) for 3-Level J∗

Unadjusted Unadjusted UnadjustedAdjusted Adjusted Adjusted
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Discrete Genotype−Specific Instantaneous VE to 14 Months
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∗Gilbert (2000, Stat Med): genotype-specific Cox model
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Illustration: Instantaneous VE haz/cont(v) for Continuous
Distance V ∗

0.1 0.2 0.3 0.4 0.5

Genetic Distance to Vaccine Insert Sequence
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biased sampling model

PBG (VIDD FHCRC) Sieve Analysis Methods July 8, 2017 13 / 37



Discussion of Instantaneous vs. Cumulative VE Approaches

• Disadvantages:
• The instantaneous approach requires the extra assumption of proportional

hazards (typically fails because of waning VE)
• The VE parameters are hard to interpret under violation of proportional

hazards
• With currently available methods, cannot adjust for covariates without

changing the target parameter to one that is not of main interest
• Must rely on a random dropout assumption (cannot allow dropout to depend

on covariates)
• Cannot increase statistical power and precision by leveraging covariates, nor

flexibly correct for accidental confounding

• Advantages:
• If proportional hazards holds, the VE parameter is interpretable in terms of

leaky genotype-specific vaccine efficacy
• If proportional hazards approximately holds, may be reasonably interpretable

and have increased efficiency by aggregating the vaccine efficacy over all time
points

PBG (VIDD FHCRC) Sieve Analysis Methods July 8, 2017 14 / 37



Outline of Session 9

1 Sieve Analysis Via Cumulative and Instantaneous VE Parameters

2 Cumulative VE Approach: NPMLE and TMLE

3 Mark-Specific Proportional Hazards Model

4 Example 1: RV144 HIV-1 Vaccine Efficacy Trial

5 Example 2: RTS,S Malaria Vaccine Efficacy Trial
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Cumulative Genotype-Specific VE : Aalen-Johansen
NPMLE

Discrete genotype-specific cumulative VE

VE cml/disc(t, j) =

[
1− P(T ≤ t, J = j |Vaccine)

P(T ≤ t, J = j |Placebo)

]
× 100%, t ∈ [0, τ1]

• Observe T̃ ≡ min(T ,C ) and ∆J ≡ I (T̃ = T )J

• With independent censoring, identify P(T ≤ t, J = j |Z = z) via hazards:

Q̄z
j (t) ≡ P(T̃ = t,∆J = j |Z = z , T̃ > t − 1)

Q̄z
· (t) ≡

K∑

i=1

Q̄z
i (t)

P(T ≤ t, J = j |Z = z) =
t∑

t′=1


Q̄z

j (t ′)
t′−1∏

s=1

{1− Q̄z
· (s)}



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Cumulative Genotype-Specific VE : Aalen-Johansen
NPMLE

• Aalen-Johansen estimator plugs in empirical estimates

Q̄z
j,n(t) =

No. type j events at t in group z

No. at risk at t-1 in group z

P̂(T ≤ t, J = j |Z = z) =
t∑

t′=1


Q̄z

j,n(t ′)
t′−1∏

s=1

{1− Q̄z
·,n(s)}




Limitations
• For consistency need random censoring (cannot depend on covariates)

• Efficient if no prognostic factors
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Incorporating Covariates: TMLE

P(T ≤ t, J = j |Z = z) = EW [P(T ≤ t, J = j |Z = z ,W )]

=
∑

w

P(T ≤ t, J = j |Z = z ,W = w)P(W = w |Z = z)

• TMLE optimizes bias-variance trade-off for estimating P(T ≤ t, J = j |Z = z)

• Incorporates flexible models of P(T ≤ t, J = j |Z = z ,W ) and of
P(C ≤ t|Z = z ,W )

• TMLEs are doubly robust and asymptotically normal
• Also asymptotically efficient if both P(T ≤ t, J = j |Z = z ,W ) and

P(C ≤ t|Z = z ,W ) are estimated consistently

• Benkeser, Carone and Gilbert (2017) developed this TMLE, with R code
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Power of Wald Tests TMLE vs. Aalen-JohansenPower of Wald Tests
TMLE vs. Aalen-Johansen

Moderately prognostic covariates
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Power of Wald Tests TMLE vs. Aalen-JohansenPower of Wald Tests
TMLE vs. Aalen-Johansen

Strongly prognostic covariates
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Sieve Analysis of RV144 Thai Trial

Background on Thai Trial

• Conducted 2004–2009 in the general population of Thailand

• 16,403 randomized 1:1 vaccine:placebo, primary endpoint HIV-1 infection by
3.5 years

• V̂E = 31%, 95% CI 1% to 51%, p = 0.04 (Rerks-Ngarm et al., 2009, NEJM)

Thai Trial RV144

• 16,402 participants enrolled, results reported in 20091

• V̂E = 31% (1%− 52%), insufficient for licensure

1 Rerks-Ngarm et al (2009). NEJM 361(23)
3 / 28
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Sieve Analysis of RV144 Thai Trial

• Cox model (Lunn and McNeil, 1995, Biometrics) and Aalen-Johansen (1978)
sieve analysis yielded the inference

VE cml/disc(3.5, v = 0) > VE cml/disc(3.5, v = 1)

with V defined by match (v = 0) vs. mismatch (v = 1) of the infecting
HIV-1 with the vaccine sequences at position 169 of HIV-1 Env V2

• TMLE adjusting for rish behaviors, gender, age, gave a similar result with
increased precision (Benkeser, Carone, Gilbert, 2017); next slide
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TMLE Cumulative VE Sieve Results: RV144 Thai TrialThai Trial RV144 – TMLE Results
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Outline of Session 9

1 Sieve Analysis Via Cumulative and Instantaneous VE Parameters

2 Cumulative VE Approach: NPMLE and TMLE

3 Mark-Specific Proportional Hazards Model

4 Example 1: RV144 HIV-1 Vaccine Efficacy Trial

5 Example 2: RTS,S Malaria Vaccine Efficacy Trial

PBG (VIDD FHCRC) Sieve Analysis Methods July 8, 2017 25 / 37



Mark-Specific Proportional Hazards Approach with Missing
Pathogen Sequences

• Sun and Gilbert (2012, Scand J Stat)

• Gilbert and Sun (2015, JRSS-B)

• These methods pose a continuous mark-specific proportional hazards model
and use inverse probability weighting (IPW) or augmented IPW
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Competing Risks Model in Vaccine Efficacy Trials

• Conditional mark-specific hazard rate function:

λ(t, v |z)= lim
h1,h2→0

P{T ∈ [t, t + h1),V ∈ [v , v + h2)|T ≥ t,Z = z}
h1h2

• Covariate-adjusted mark-specific vaccine VE:

VE(t, v |z) = 1− λv (t, v |z)

λp(t, v |z)
,

where λv (t, v |z) and λp(t, v |z) are the conditional mark-specific hazard functions
for the vaccine and placebo groups, respectively
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Mark-Specific Proportional Hazards Models

• Stratified mark-specific proportional hazards model:

λk(t, v |zki (t)) = λ0k(t, v)exp
{
β(v)T zki (t)

}
, k = 1, . . . ,K

where λ0k(t, v) is an unspecified baseline function and β(v) is p-dimensional
regression coefficient functions

• z = (z1, z2); z1 = vaccine group indicator; z2 other covariates; β1(v) =
coefficient corresponding to z1

Mark-specific vaccine efficacy:

VE (v) = 1− exp(β1(v))
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Completely Observed Competing Risks Data

Completely observed competing risks data:

(Zki ,Xki , δki , δkiVki ), i = 1, · · · , nk , k = 1, . . . ,K ,

where Xki = min{Tki ,Cki}, δki = I (Tki ≤ Cki )

When the failure time Tki is observed, δki = 1 and the mark Vki is also observed,
whereas if Tki is censored, the mark Vki is unknown

Assume Cki is independent of Tki and Vki conditional on Zki
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Missing Marks in HIV Vaccine Efficacy Trials

Observed data

Oki = {Xki ,Zki , δki ,Rki ,RkiδkiVki , δkiAki}, i = 1 . . . , nk , k = 1, . . . ,K ,

Rki = complete-case indicator; Rki = 1 if Vki is known or if Tki is censored and
Rki = 0 otherwise

• Auxiliary variables Aki can be used to predict whether the mark is missing
and to predict the missing marks

• E.g., Aki = sequence information from a later sampled virus

• Model the relationship between Aki and Vki to predict Vki
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Inverse Probability Weighted Complete-Case Estimator

• rk(Wki , ψk) = parametric model for the probability of complete-case, where
ψk is a q-dimensional parameter

• The IPW estimator β̂ipw (v) solves the estimating equation for β:

Uipw (v , β, ψ̂) =
K∑

k=1

nk∑

i=1

∫ 1

0

∫ τ

0

Kh(u − v)
(
Zki (t)− Z̃k(t, β, ψ̂k)

)

Rki

πk(Qki , ψ̂k)
Nki (dt, du),

where

Z̃k(t, β, ψk) = S̃
(1)
k (t, β, ψk)/S̃

(0)
k (t, β, ψk),

S̃
(j)
k (t, β, ψk) = n−1

k

nk∑

i=1

Rki (πk(Qki , ψk))−1Yki (t) exp{βTZki (t)}Zki (t)⊗j
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Augmented IPW Complete-Case Estimator

• Wki = (Tki ,Zki ,Aki ) and w = (t, z , a)
More efficient estimation can be achieved by incorporating the knowledge of
the conditional mark distribution:

ρk(w , v) = P(Vki ≤ v |δki = 1,Wki = w)

=

∫ v

0
λk(t, u|z)gk(a|t, u, z) du

∫ 1

0
λk(t, u|z)gk(a|t, u, z) du

,

where gk(a|t, v , z) = P(Aki = a|Tki = t,Vki = v ,Zki = z , δki = 1)

• Let ĝk(a|t, u, z) be a parametric / semiparametric estimator of gk(a|t, u, z);
then ρk(w , v) can be estimated by

ρ̂ipwk (w , v) =

∫ v

0
λ̂ipwk (t, u|z)ĝk(a|t, u, z) du

∫ 1

0
λ̂ipwk (t, u|z)ĝk(a|t, u, z) du
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Analysis of the RV144 Thai Trial

• Assessed how VE against subtype CRF01 AE HIV-1 infection depends on a
weighted Hamming distance (Nickle et al., 2007, PLoS One) of breakthrough
HIV-1 sequences to the A244 reference sequence contained in the vaccine

• Include published gp120 AA sites in contact with broadly neutralizing
monoclonal antibodies

• T = time to HIV-1 infection diagnosis with subtype CRF01 HIV-1
• Infection with subtype B or unknown subtype treated as right-censoring

• 106 HIV-1 subtype CRF01 AE infected participants (42 vaccine, 64 placebo);
94 (37 vaccine, 57 placebo) with an observed mark

• Between 2 and 13 HIV-1 sequences (total 1030 sequences) per infected
participant

• V = participant-specific median distance
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HIV-1 Sequence Distances to the Vaccine Sequence A244
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Figure: Boxplots of the marks for the 94 HIV infected subjects in the Thai trial with an observed mark. The
mark V is the subject-specific median of weighted Hamming distances between each of the subject’s HIV Envelope
gp120 amino acid sequences and the CM244 reference sequence contained in the HIV vaccine regimen.

Y. Sun and P. Gilbert Testing Mark-Specific Vaccine Efficacy with Missing Marks

Figure: Boxplots of the marks/distances V for the 94 HIV-1 CRF01 AE infected subjects
in the Thai trial with an observed mark
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Vaccine Efficacy by gp120 HIV-1 Sequence Distance

Estimation without using auxiliary variable
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Figure: AIPW estimation of VE(v) and 95% pointwise confidence bands without using auxiliary variables for
the Thai trial with bandwidths h1 = 0.5, h2 = h = 0.3.

Y. Sun and P. Gilbert Testing Mark-Specific Vaccine Efficacy with Missing Marks

Figure: IPW point and 95% interval estimates of VE(v) for the Thai trial with
bandwidths h1 = 0.5, h2 = h = 0.3
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Selected Literature on Sieve Analysis Methods

1 Proportional hazards VE for a discrete genotype (Gilbert, 2000, 2001, Stat Med,
Cox model)

2 Extension of 1. accounting for missing data on genotypes (Hyun, Lee, and Sun,
2012, J Stat Plan Inference, AIPW)

3 Cumulative incidence VE for a discrete genotype (Gilbert, 2000, 2001, Stat Med,
Aalen-Johansen NPMLE)

4 Extension of 3. for covariate-adjustment and modeling dropout (Benkeser, Carone,
Gilbert, 2017, in press, tMLE)

5 Cumulative incidence VE for a continuous mark genotype (Gilbert, Sun, and
McKeague, 2008, Biostatistics)

6 Proportional hazards VE for a continuous mark genotype (Sun, Gilbert, and
McKeague, 2009, Ann Stat; local partial likelihood and kernel smoothing)

7 Extension of 6. for multivariate continuous mark genotypes (Sun and Gilbert, 2013,
Biostatistics, local partial likelihood and kernel smoothing; Juraska and Gilbert,
2013, Biometrics, Cox model + semiparametric biased sampling model)

8 Extension of 6. allowing missing data on genotypes (Sun and Gilbert, 2012, Scand
J Stat, Gilbert and Sun, 2012, JRSS-B, add AIPW; Juraska and Gilbert, 2015,
LIDA, add IPW)
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Ongoing Sieve Analysis Statistical Methods Research

• Replace augmented IPW with TMLE (Benkeser, Carone, and Gilbert, 2017)
• Unbiased under weaker assumptions; more efficient

• The missing data methods assume a validation set– a subgroup of cases
where the founding pathogen genotype(s) is known with certainty

• For pathogens that evolve very quickly post-infection (e.g., HIV-1), there may
be no validation set!

• Replace with measurement error methods, incorporating models predicting
(imperfectly) founder HIV genotypes

• Targeted learning approaches with data adaptive genotype-specific VE
target parameters that combine inference with model selection on the
marks/genotypes
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