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Outline of Module 16: Evaluating Vaccine Efficacy

Session 1 (Gabriel) Introduction to Study Designs for Evaluating VE
Session 2 (Follmann) Introduction to Vaccinology Assays and Immune Response
Session 3 (Gilbert) Introduction to Frameworks for Assessing Surrogate

Endpoints/Immunological Correlates of VE

Session 4 (Follmann) Additional Study Designs for Evaluating VE

Session 5 (Gilbert) Methods for Assessing Immunological Correlates of Risk and Surrogate
Endpoints

Session 6 (Gilbert) Effect Modifier Methods for Assessing Immunological Correlates of VE
(Part )

Session 7 (Gabriel) Effect Modifier Methods for Assessing Immunological Correlates of VE
(Part Il)

Session 8 (Sachs) Tutorial for the R Package pseval for Effect Modifier Methods for

Assessing Immunological Correlates of VE

Session 9 (Gilbert) Introduction to Sieve Analysis of Pathogen Sequences, for Assessing How
VE Depends on Pathogen Genomics

Session 10 (Follmann)  Methods for VE and Sieve Analysis Accounting for Multiple Founders
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Outline of Session 6

1. Effect Modification/VE Curve Framework
2. Identifiability and Estimation
3. Simulations

4. Discussion

Paper corresponding to this talk: Gilbert and Hudgens (2008, Biometrics)
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Notation

e Throughout consider a 2-arm trial with:
Z = treatment assignment (0 or 1)

S = candidate surrogate endpoint measured at time z after
randomization

Y = clinical endpoint (0 or 1) measured after time t [The approach
also applies for quantitative Y]

Y* = clinical endpoint (0 or 1) between time 0 and =

‘44 FRED HUTCH

SC HARP 'b. o, CURES START HERE™



Principal Surrogate Endpoints
(Frangakis and Rubin 2002, B/iometrics)

e In the VE curve “principal surrogate” framework, the levels of S are
not controlled/manipulated/assigned, they are what they happen to
be

e Notation

— S,(Z) = potential immune response endpoint under assignment Z;
forz=0,1

— Y,(Z) = potential clinical endpoint under assignment Z; for Z=0, 1

— Y~(Z) = potential clinical endpoint under assignment Z; for Z=0, 1

e Causal Effects
— A contrast in S,(1) and S,(0) is a causal effect on S for subject i
— A contrast in Y,(1) and Y,(0) is a causal effect on Y for subject I
— A contrast in Y, (1) and Y=, (0) is a causal effect on Y= for subject i
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Heuristic of Principal Surrogate Approach

Probability of Being Protected as a Function of S;(1) — S,(0)
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Assumptions

Al Stable Unit Treatment Value Assumption (SUTVA):

(S,(1), S,(0), Y,(1), Y,(0), Y~(1), Y~,(0)) is independent of the treatment
assignments Z; of other subjects

— And the Consistency assumption: (S,(Z,), Y(Z,), Y*(Z,))) = (S, Y, Y%)

A2 Ignorable assignments:
Z. is independent of (5,(1), S,(0), Y,(1), Y,(0), Y*(1), Y=(0))

— A2 holds for randomized blinded trials

A3 No causal effects on Y before the marker is measured (Equal Early
Clinical Risk — EECR)

- PY5(1) =Y5(0))=1
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Definition of a Principal Surrogate

« Frangakis and Rubin (2002) suggested a surrogate endpoint
should satisfy

Causal Necessity:

S is necessary for the effect of treatment on the outcome Y in
the sense that an effect of treatment on Y can occur only if an

effect of treatment on S has occurred

- 5,(1) =5,(0) = Y;(1) =Y,(0)

0,
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Updated Definition of a Principal Surrogate
(Gilbert and Hudgens, 2008)

e Restrict to the “always at-risk” cohort with Y*(1)=Y",(0)=0 throughout
— Because we assume EECR, simply analyze participants with Y* = 0
e Define
risk ;)(sy, 8p) = Pr(Y(1) = 115(1) = s, S(0) = s)
risk (81, 8p) = Pr(Y(0) = 115(1) = s, S(0) = s)
e A contrast in risk (s, sp) and risk,(sy, s,) is @ causal effect on Y for the
population {S(1) =s;, S(0) = s}
e A principal surrogate is a biomarker measured at 1 satisfying 2
conditions, the first of which is:
risk(;y(sy, 8p) = riskg)(sy, so) for all s; =,

e This property is Average Causal Necessity:.
- S(M)=S0)=s = E[Y(Q) | S(@)=S(0)=s]l=E[Y() | S(1)=S(0) =s]
- i.e., “if there is no vaccine-induced immune response, there is no protection”
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Updated Definition of a Principal Surrogate
(Gilbert and Hudgens (2008)

e The second property is that the clinical treatment effect [measured by a
contrast in risk (s, so) @and risk(s;, sy)] varies widely with the values (s, s)

i.e., the variables (S,, S,) strongly modify vaccine efficacy

e Thus, a principal surrogate is defined to be a biomarker satisfying average
causal necessity and that is a strong effect modifier

e Note: This definition allows for a spectrum of principal surrogates, some
more useful than others, depending on the extent to which clinical treatment
efficacy varies with (S, S,)

— Stronger effect modification implies a more useful marker
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Causal Effect Predictiveness (CEP) Surface

e Let h(x, y) be a known contrast function with h(x, x) =0
- eg., hix,y)=x-y, logx/y), 1-x/y

e CEP surface:
CEPriSk(Sl, SO) = h(I‘iSk(l)(Sl, 50)/ I'iSk(O)(Sll SO))

— E.g., CEP™sK(s,, sg) =1 - risk)(sy, S¢) / riskg)(s1, 59)  [= VE(s,, sp)]

e Henceforth will call the CEP surface simply the “VE surface”
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VE Surface in Terms of Marker Percentiles

e Huang, Pepe, and Feng (2007, Biometrics) proposed judging the
value of a continuous marker S for predicting disease Y by the
predictiveness curve:

R(v) =Pr(Y =11S=F(v)) v €[0,1], S~F

e With S(1) ~ F;), define
Rpy(vy, vp) = Pr(¥Y(1) =1 1S(1) = F_l(l)(vl)/ 5(0) = F'l(l)(Vo))

R(O)(Vll vo) = Pr(Y(0) =115(1) = F_l(l)(vl)/ 5(0) = F'l(l)(Vo))

e VE surface:
VER(vy, vo) =h(R1y(vy, Vo), Rig)(v1, Vo))
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VER(v,, vy) Surface: Biomarker with No Surrogate Value

VER(v,, vp)
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VER(v,, vy) Surface: Biomarker with High Surrogate Value
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VE Surface in Case Constant Biomarker (CB)
S.(0)=cforalli

e (Case CB typically occurs in vaccine trials where enrolled
subjects are naive to the pathogen under study

e In this case the VE surface is a curve
VE"sK(s;, c) or VER(vy, Fy(0))

e A principal surrogate is a biomarker with
VE"isk(c, ¢) =0 and
VErisk(s,, ¢) > 0 varies markedly with s,
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Marginal VE Curve for the General Case

e Define
risk(s;) = Pr(Y(1) = 115(1) = s,)

risk o,(s;) = Pr(Y(0) = 115(1) = s,)

e Marginal VE curve:
mVEX(s;) = h(risky(s;), risk(s;))

e Marginal VE curve with percentile formulation:
mVEX(v;) = h(R(l)(Vl)/ R(O)(Vl))
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Illustration of Marginal VE Curves
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Principal Surrogate Value

e A biomarker with some surrogate value should have
s, hear s, mE) VErisk(s,, s)) near 0
— There are some s, # s, for which VErsk(s,, s() is far from risk,(s,, s,)

e Strong Average Causal Sufficiency (Strong ACS):

S is sufficient for the effect of treatment on the outcome Y in the sense that
an effect of treatment on S implies an effect of treatment on Y

— i.e., “A vaccine effect on the marker implies there is some protection”
— 1-sided version: s; >s, = VErsk(s;, s,) >0

PA 10 ERED HUTCH
SCHARP %‘.l; CURES START Hl.IE’RE"*C



Connection of ACN and ACS to Prentice (1989) Concept of
Specificity & Sensitivity

e Prentice’s definition of a valid surrogate re-cast in terms of
Specificity and Sensitivity for 1-sided alternatives of interest:

1. 1-Sided Specificity: VE = 0% implies S(1) =4 5(0)
- i.e., S(1) >3t S(0)* implies VE > 0%

2. 1-Sided Sensitivity: VE > 0% implies S(1) >t S(0)
- i.e., S(1) =4 5(0) implies VE = 0%

e The Prentice definition equates to 1. and 2. both holding

*S(1) >t S(0) defined as P(S(1)>s) > P(S(0)>s) with *>’ for some s
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Connection of ACN and ACS to Prentice Concept of Specificity &
Sensitivity™

e Under Case CB:
— EECR + ACN = 1-Sided Sensitivity
— EECR + ACN + 1-sided Strong ACS = 1-Sided Specificity

e In General Case:
— EECR + ACN Does Not = 1-Sided Sensitivity even under the 2 extra
conditions below
— EECR + ACN + 1-sided Strong ACS = 1-Sided Sensitivity under either
of 2 extra conditions

Cond 1: P(S(1) > S(0))=1; Cond 2: No harm for any subgroup, CEP(s,, s,) 2 0

¢ | Special case of binary S, EECR, Case CB: ACN & 1-sided Strong ACS if and
only if 1-Sided Specificity & 1-Sided Sensitivity
— 1:1 correspondence of 2 principal surrogate criteria and the Prentice
definition
*Results from Gilbert, Gabriel, Huang, Chan (2015, J Causal Inference)
, FRED HUTCH
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Summary Measures of Surrogate Value

e Focus on the 1-sided setting where interest is in assessing if greater
vaccine-induced immune responses predict beneficial VE > 0

e Following Frangakis and Rubin (2002), consider ‘dissociative’ and
‘associative’ effects

— Dissociative effect = no treatment effect on marker but a treatment
effect on the clinical endpoint

— Associative effect = treatment effect on the marker and on the clinical
endpoint

— If a marker is valuable as a surrogate, then few subjects will have
dissociative effects and many will have associative effects

, FRED HUTCH
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Summary Measures of Surrogate Value

o Define the expected dissociative effect (EDE) and the expected
associative effect (EAE)

~ EDE = E[CEP"isk(S(1),5(0)) IS(1) = S(0)]
— EAE(w) = E[w(S(1),5(0))CEPrsk(S(1),5(0)) 1 S(1) > S(0)]

e Based on these, define summary measures of surrogate value
(proportion associative effect and associative span)
~ PAE(w)= |EAE(w)! /[|IEDEI + |[EAE(w)!]
~ AS=|EAE(w)| - |[EDE|

« PAE(w) >0.5; AS >0 suggests some surrogate value
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Summary Measures of Surrogate Value
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Challenge to Evaluating a Principal Surrogate:
Missing Data

e The VE surface is not identified from data collected in a randomized
trial with standard design

— Only one of (S;(1), Y,(1), Y~(1)) or (S,(0), Y,(0), Y*,(0)) is observed from
each subject

e Accurate prediction/modeling of the missing potential outcomes is
required to estimate the VE surface (and the marginal VE curve)
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Outline of Session 6

1. Effect Modification/VE Curve Framework
2. ldentifiability and Estimation
3. Simulations

4. Discussion
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Dean Follmann’s
Augmented Vaccine Efficacy Trial Designs

e Follmann (2006, Biometrics) proposed augmented vaccine trial
designs for aiding inference on the VE curve

e Two strategies for predicting S(1) for placebo recipients
— Baseline Immunogenicity Predictor (BIP)
— Closeout Placebo Vaccination (CPV)

e Follmann developed estimation approaches for augmented designs
with BIP, CPV, or both

e Gilbert and Hudgens (2008) considered the BIP approach only
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Schematic of Baseline Predictor and Closeout Placebo
Vaccination Trial Designs™

. > wES HIV+
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T
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5
*Proposed by Follmann (2006, Biometrics)
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Closeout Placebo Vaccination

= At the end of the trial, inoculate a random sample of uninfected
placebo recipients with HIV vaccine

= Measure the immune response on the same schedule as it was
measured for vaccine recipients

= Assume the measurement is what we would have seen, had we
inoculated during the trial
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Baseline Immunogenicity Predictor (BIP) Approach™*
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*Figure from Follmann (2006, Biometrics)
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Baseline Immunogenicity Predictor (BIP) Approach

Needed condition for the BIP approach:
W,51)1Z=1,Y=0 == W,S51)1Z=0,Y'=0 (¥
e This holds by A2, A2 (randomization), and A3 (EECR)
— A3 needed for Y* =0 to equate to Y* (1) = Y*(0)=0

e Without A3, (*) may not hold, in which case it is not valid to use a

regression model to fill in the S(1)’s of placebo recipients based on
their W's

e (Recall that all conditional distributions implicitly condition on Y= = 0)

PA 10 ERED HUTCH
SCHARP %‘.l; CURES START Hl.IE’RE"*C



Build on 2-Phase Sampling/Nested Case-Control Methods

e 2-phase sampling/nested case-control
— (W, S(1)) measured in
 All infected vaccine recipients
« Sample of uninfected vaccine recipients
— W measured in

 All infected placebo recipients
« Sample of uninfected placebo recipients

e 2-Phase designs (E.g., Kulich and and Lin, 2004, JASA, Breslow et al.,
2009, AJE, Stat Biosciences)

— Phase 1: Measure inexpensive covariates in all subjects
— Phase 2: Measure expensive covariates X in a sample of subjects

e Qur application
— Vaccine Group: Exactly like 2-phase design with X = (W, S(1))
— Placebo Group: Like 2-phase design with X = (W, S(1)) and S(1) missing
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Inverse Probability Weighted (IPW) 2-Phase Methods Do Not Apply:
Hence we use a Full Likelihood-Based Method

e None of the case-cohort/2-phase methods described in Session 5
apply to this problem

— The reason: they are all IPW-based methods, using score
equations that sum over subjects with phase-2 data only,
which assume that every subject has a positive probability
that S(1) is observed

 However all placebo subjects have zero-probability that S(1) is
observed

e To deal with this problem, we use full likelihood methods, for
which the score equations sum over all subjects

“qr
'!./.. FRED HUTCH

’ CURES START HERE™

SCHARP
2



Maximum Estimated Likelihood with BIP
(Gilbert and Hudgens, 2008, Biometrics™)

e Posit models for risk;(s;,0; B) and risk g(s;,0; B)

e \accine arm:
- (W,, S.(1)) measured: Likld contribn risk(S;(1), 0; B)

V =1

- (W, S;(1)) not measured: Jrisk(s,, 0; ) dF(s,)

V =1

e Placebo arm:
- W, measured: Likld contribn  [risk,(s,, 0; B) dFS'W(s,| W)
— W, not measured:  risk (s, 0; B) dF(s,)

o L(B, FS'W, F) =TT, {[risk(S;(1),0; B)¥ (1 - risk,;,(S;(1),0; B))1-¥iJi }si [Vx subcohort]

X {[Jrisk(o)(si,O; B)dFS!W(s, IW)Yi(1 - frisk(o)(sl,(); B)) dFS!W(s, IW,)1-Yi]1-Zi 181 [Plc subcohort]
X {[Irisk(l)(si,o; B)dF(s;)¥i(1 - Irisk(l)(sl,O; B)) dF(s;)!-Yi]%i }1-0i [Vx not subcohort]
X {[frisk(o)(si,O; B)dF(s,)Yi(1 - frisk(o)(sl,(); B)) dF(s,)-Yi]i-4i }1-ai [Plc not subcohort]

*Build on Pepe and Fleming (1991, JASA)
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Maximum Estimated Likelihood Estimation
(MELE)

e Likelihood L(B, F5'W, F)

— B is parameter of interest [CEP surface and marginal CEP curve
depend only on [3]

— F5'Wand F are nuisance parameters

Step 1: Choose models for FS'"Wand F and estimate them based on
vaccine arm data

Step 2: Plug the consistent estimates of FS'W and F into the likelihood,
and maximize it in

— e.g., EM algorithm

Step 3: Estimate the variance of the MELE of 3, accounting for the
uncertainty in the estimates of F$'Wand F

— Bootstrap

‘2’ FRED HUTCH
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Modeling Approach 1

(Fully Parametric)

e Assume:

— FS'W has a specified parametric distribution
— 5(1) is continuous subject to “limit of detection” left-censoring:
— S(1) = max(5*(1), 0), where S*(1) has a continuous cdf
— A4-P: Structural models for risk,, (for z=0, 1)
risk,\(sy, 0, w; B,) = g(B,o+B,1 5, + BT, W), g a known link
e Example:

FWIX'normal, FS'W censored normal with left-censoring below 0, A4-P holds
with g = @, the standard normal cdf

e No interactions assumption (untestable): One of the components
of BT,, equals the corresponding component of BT, (untestable)

, FRED HUTCH
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Modeling Approach 1

(Fully Parametric)

e Interpretation:
> With h(x, y) =g7(x) - g7(y)

VErisk(s), 0, w) = (B1g- Boo) + (B11- Bor)s1 + (B12- Boo)™W

e Under assumption of no interactions between Z and W:

VE" (s, 0) = (B10- Boo) + (B11 - Bor)s:
= W-adjusted VE-curve

e E.g., g() = inverse logit link: VE"s(s;, 0) = odds ratio of outcome
(vaccine vs. placebo) for the vaccinated subgroup with S(1)=s,

0,
'.‘/‘ FRED HUTCH
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Parametric Approach:
Interpretation of Parameters

VE"(sy, 0) = (Bo1 - Boo) + (B11- P10)sy
> S satisfies average causal necessity ﬁ Bo1=PBoo

> B4, = By, indicates a positive treatment effect on S does not predict a
beneficial clinical effect

> B, < By indicates it does predict a beneficial clinical effect (i.e., some
effect modification)

e A ‘good’ surrogate has |By;. By, near 0 and 1B, - B;,! large

‘44 FRED HUTCH
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Modeling Approach 2

(Fully Nonparametric)

e Assume:
— S and W categorical with J and K levels; S.(0)=1 for all i
— Nonparametric models for P(S(1)=j, W=k)
— A4-NP: Structural models for risk,, (for z=0, 1)

risk.,(j, 1, k; B) = B+ By forj=1, ..., J; k=1, ..., K
Constraint: 0 <B,+p"<1and X, f’, = 0 for identifiability

e No interactions assumption: W has the same association with
risk for the 2 study groups (untestable)

0,
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Modeling Approach 2

(Fully Nonparametric)

e Interpretation:
— With h(x, y) =log (x / y)

CEPrsk(j, 1) = log (avg-risk(j, 1) / avg-risk(j, 1))
where avg-risk,(j, 1) = (1/K) 2 risk,(j, 1, k; B) for z=0, 1

VE(j, 1) = 1 — exp{CEPrisk(j, 1)}
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Interpretation
(Fully Nonparametric)

e With VE(j, 1) =1 - avg-risk(j, 1) / avg-risk(j, 1):

— S satisties ACN and 1-sided Strong ACS if
VE(,1) =0and VE(, 1) >0 forallj>1

e A biomarker with some value as a surrogate will have
- VE(@, 1) near 0
— VE(, 1) >0 for some j>1

e The most useful marker will also have VE(, 1) large for some j>1
[strong effect modification]

0,
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Modeling Approach 2

(Fully Nonparametric)

e Wald tests for whether a biomarker has any surrogate value
— Under the null, PAE(w)=0.5and AS=0
— Z = (Est. PAE(w) — 0.5)/ s.e.(Est. PAE(w))
— Z =Est. AS/ s.e.(Est. AS)

o Estimates obtained by MELE; bootstrap standard errors

e For nonparametric case A4-NP, test HO: VErsk(j, 1) = 0 vs H1: VErsk(j,
1) increases in j (like the Breslow-Day trend test)

— T=%,,(-1) {Est. By — (Est. B+ Est. By)(Est. p,o/(Est. p o+ Est. p,))}
divided by bootstrap s.e.

0,
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Outline of Session 6

1. Effect Modification/VE Curve Framework
2. Identifiability and Estimation
3. Simulations

4. Discussion
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Simulation Plan
(Based on Vax004 HIV Vaccine Efficacy Trial)

e Biomarker of interest: S = 50% neutralization titer against the
recombinant gp120 molecule (MN strain) measured at the month 1.5 visit

Log 50% MN Neutralization Titers at Month 1.5

4.0

35

25 N

2.0 E -

1.5

Placebo (n=71) Vaccine (n=291)

« 66 of 71 placebo recipients had S left-censored below the LLOQ = 1.65
« Range of Sis [1.65, 4.09]; rescale to [0, 1] so that S,(0) = 0 [Case CB holds]

.
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Simulation Plan

e Step 1: For all N=5403 subjects, generate (W, S,(1)) from a
bivariate normal with means (0.41, 0.41), sds (0.55, 0.55),
correlation
p=0.5,0.7, or 0.9

» sd of 0.55 chosen to achieve the observed 23% rate of left-censoring
» Values of W, S.(1) <0 set to 0; values > 1 set to 1

V 1

e Step 2: Bin W, and S,(1) into quartiles

> Under model A4-NP generate Y;(Z) from a Bernoulli(B,;+ ") with the
parameters set to achieve:

o P(Y(1)=1)=0.067 and P(Y(0)=1)=0.134 (overall VE = 50%)

o The biomarker has either (i) no or (ii) high surrogate value
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Simulation Plan

» Recall CEP™&(j, 1) =log (avg-risk(j, 1) / avg-risk(j, 1))

e Scenario (i) (no surrogate value)
e CEPrsk(j, 1)=-0.69 forj=1,2,3,4
e i.e,VE(G,1)=050 forj=1,234

« Scenario (ii) (high surrogate value)
« CEPrsk(j, 1) =-0.22,-0.51, -0.92, -1.61 forj=1,2,3,4
e i.e,VE(G,1)=0.2,0406,08 forj=1,234

o

(J
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Simulation Plan

o Step 3: Create nested case-control sampling (3:1 control: case)

— Vaccine group: (W, S(1)) measured in all infected (n=241) and a
random sample of 3 x 241 uninfected

— Placebo group: W measured in all infected (n=127) and a random
sample of 3 x 127 uninfected

e The data were simulated to match the real Vax004 trial as
closely as possible

’ CURES START HERE™
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Questions Evaluated by the Simulations

e Bias of the MELEs of
— By
— CEPrisk(j, 1) [equivalent to VE(, 1)]
- AS
— PAE(w) for w(j) =1, j, I(j=4)

e Coverage probabilities of bootstrap percentile CIs for the above
parameters

e Power of Wald tests and of the test-for-trend

o
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Model A4-NP Simulation Results*

Table 1

Model A4-NFP simulation results for the nonparameiric MELEs O/EPTiSk(j, 1;8) = log(Blj/Boj) forj=1,... 4°

Cor. No Surrogate Value Scenario High Surrogate Value Scenario
Jo; Parameter Bias SE SEE CP Power Parameter Bias SE SEE CP  Power
05 CEP™R11)= 069 -004 042 041 098 045 CEP™*(1,1)= 022 -006 0.67 065 098 0.12
CEP'(2.1)= 069 | 0.11 |0.91 0.90 | 0.99 | 0.09 CEP™*(2 1) = -051| 0.09 | 096 093] 1.00 | 0.04
CEP'%(3,1)= —0.69 | 0.13 |0.88 0.87 | 0.99 | 0.06 CEP™*(3 1)=-092| 0.15| 0.94 093] 1.00 | 0.09
CEP%(4,1)= —0.69 | 0.09 |0.80 0.72 | 0.98 | 0.18 CEP™*(4 1) = —-1.61|-0.03| 0.65 066 0.958 | 0.66
0.7 CEP™1 1)= 069 |-0.03 030 029|096 | 0.62 CEP™:(1, 1) = —0.22]-003| 045 047 097 | 0.13
CEPr#k(2,1) = —0.69 | 0.09 |0.80 0.77 | 0.99 | 0.17 CEP™*(2,1) = —051| 0.06 | 0.87 0.84| 0.99 | 0.08
CEPr¢k(3,1) = —0.69 |-0.02 | 0.82 0.79 | 1.00 | 0.11 CEPT*(31) = —0.92| -0.02| 0.83 0.83| 0.99 | 0.17
CEPriek(4,1) = —0.69 | 0.06 |0.73 0.64 | 0.97 | 0.22 CEP™F(4,1) = —1.61 | 0.00 | 0.47 0.48| 0.96 | 0.82
0.9 CEP*1,1)=—-0.69 | 0.00 |0.19 019 |0.95 | 0.90 CEP™*(1,1) = —0.22|-0.01| 0.28 0.27| 0.94 | 0.18
CEPr#k(2,1) = —0.69 | 0.02 | 0.48 0.48 | 0.96 | 0.37 CEP™*(2,1) = —051| 0.01 | 0.66 0.59| 0.95 | 0.26
CEPr#(3,1) = —0.69 |-0.02 | 0.68 0.63 | 0.96 | 0.27 CEPT*(31) = —0.92| 0.00 | 0.62 0.58| 0.95 | 0.40
CEP™*4 1y = —0.69 |-0.01 | 0.53 050 |0.96 | 0.32 CEP™ (4 1y = —1.61 | -0.03]| 039 036 0.95 | 0.99

@ p is the linear correlation of the simulated bivariate normal variables latent to the quartilized variables W and S(1).
——_risk
Bias is the median bias. SE is the empirical standard error of cEP™ (7,1). SEE is the median of the bootstrap standard
error estimates based on 500 bootstrap replicates. CP is the empirical coverage of bootstrap percentile 95% confidence
——_ prisk , |

intervals for CEP ~ (4,1). Power refers to power of the Wald test to reject Hy : C EP™*%(4, 1) = 0. 1000 simulations were
done to compute the table elements for each model.

*In Gilbert and Hudgens (2008, Biometrics)
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Model A4-NP Simulation Results*

Table 2
Model A4-NFP simulation results for the nonparametric MELFEs PAE" and EE’, with h{z,y) = log(z/y)*
Cor. No Surrogate Value Scenario High Surrogate Value Scenario
p Parameter Bias SE SEE CP Power Parameter Bias SKE SEE CP  Power

05 PAEY* =050]-0.13]022 021 J0.95] 0.03 FPAE“ =082 -021| 023 0.23 |0.98] 0.15
PAE¥ =050)-0.12| 021 0.20 J0.96| 0.02 FPAE® =084 -0.18] 0.19 0.20 |0.97] 0.21
PAE¥s =050 0.03 | 0.21 0.20 |0.99| 0.04 FPAE®s =088] -0.11] 0.17 0.19 |0.99] 0.51
AS =0.00 0.07 | 0.53 0.55 |0.99] 0.04 AS =139 -0.221 070 0.71 |0.98) 0.51

0.7  PAE** =050(-0.00] 019 0.19 |0.94] 0.02 FPAE“ =082)-0.12] 0.18 0.20 097 0.27
PAE®: =050]-0.08| 017 0.17 |0.94| 0.02 FPAE®: =084] -0.10] 0.15 0.17 |0.97] 0.39
PAE® =050 0.02 | 0.20 0.19 |0.99| 0.04 PAEYs =088] -0.06| 0.12 0.14 |0.98| 0.75
AS =0.00 0.04 | 0.50 049 |0.99| 0.05 AS =1.39 -0.141 051 055 0961 0.70

09 PAE“*=050(-0.03| 013 0.14 |0.96] 0.02 PAE“ =082 -0.04] 0.14 0.15 |0.96] 0.56
PAE®: =050]-0.02| 013 0.14 |0.96| 0.02 PAEY =084 -004] 0.11 0.12 |0.96] 0.75
PAE® =050 0.01 | 019 0.17 |0.98| 0.08 PAE®s =088] -0.02] 0.09 0.10 |0.97] 0.94
AS =0.00 0.02 | 0.50 046 098] 0.08 AS =1.39 -0.03] 045 043 |0.96] 0.94

* pis the linear correlation of the simulated bivariate normal variables latent to the quartilized variables W and S{1). Bias

is the median bias. SIS is the empirical standard error of PAE" and AS. SEE is the median of the bootstrap standard
error estimates based on 500 bootstrap replicates. CP is the empirical coverage of bootstrap percentile 95% confidence
intervals for PAE® and AS. Power is for l-sided tests of Hy : FPAEY = 0.5 versus H, : PAEY > 05 or Hy: AS =0
versus Hy 1 AS > 0 at level & = 0.05. For the PAE weights, wi(j,1) = 1, wa(7,1) = 7, and ws(4,1) = {[j = J = 4]. 1000
simulations were done to compute the table elements for each model.

Trend tests: Power 0.83, 0.99, > 0.99 for p=0.5,0.7, 0.9
*In Gilbert and Hudgens (2008, Biometrics)
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Additional Simulation Study

e Evaluate the performance of the MELE method with binned covariates
when the data were generated from the continuous model A4-P:

— risk,(S1, 0, w; B,) = D(B,o+ B,y S; + Bz W)

« Vaccine group: Set (B4, P11, B13) = (-1.21, -0.67, -0.1) [based on a probit
regression fit to the Vax004 data]

» Placebo group: Set (Bgo, Bo1s Bo3) such that VE = 50%, By; = B3 and either
(i) Bos = B1y (no surrogate value)
(ii) Bp; = 0 (high surrogate value)

« With h(x, y) = ®(x) - (y):
(i): CEPrsk(s;, 0) = B1- Boo = -0.11 [AS=0; PAE(w)=0.5]
(if): CEP"¥(s,, 0) = B1o- Boo + (B - Bon)sy = 011~ 0.67 s,
[AS =0.67, PAE(w) = 0.82-0.88]

“qr
'!./._. FRED HUTCH

’ CURES START HERE™

SCHARP
=]



Results: Additional Simulation Study*

Table 3
Model A4-F (probit) model simulation results for the nonparametric MELFEs PAE" and EE’, with
hlz,y) = o7 1(z) — 7 (y)"
Cor. No Surrogate Value Scenario High Surrogate Value Scenario
7 Parameter Bias SKE SEE CP  Power Parameter Bias SE SEE CP  Power
0.  FPAEY =050|-020] 025 023 0,94 0.03 PAEY =082 -0.25) 0.24 023 |0.96 ] 0.12
FPAE®» =050 |-0.19] 0.23 0.22 (0,94 | 0.03 PAEY =085 -0.24) 0.22 022 |0.94] 0.15
PAE®s =050 | 0.01 | 0.21 0.21 |1.00 | 0.05 PAEY =0.88]-0.17) 0.20 0.20 |0.97 | 0.31
AS =0.00 0.01 1 0.29 0.31 |1.00 | 0.03 AS = 0.67 -0.261 0.39 0.36 |0.93 ] 0.30

0.7  PAE“ =050]-014]0.21 0.21 (092 | 0.02 PAE“t =082] -0.14| 0.20 0.21 (096 | 0.21
FPAEY: =050]-0.14) 020 0.19 [0.92 | 0.02 PAE® =085] -0.15| 0.17 0.19 (0.96 | 0.28
FPAE®s =050 |-0.02) 021 020 (099 | 0.04 PAE® =088 -0.11| 0.17 017 (0.97 | 0.50
AS =0.00 -0.031 0.27  0.26 (099 | 0.04 AS =0.67 -0.22) 0.29 029 |0.91 ) 047

0.9 PAE“t=050|-0.06]0.16 0.16 J0.92 | 0.03 PAE®t =082 -0.07| 0.16 0.17 |0.97| 045
FPAE®: =050]-007) 015 0.16 [0.91 | 0.02 PAE¥: =085 -0.08| 0.14 0.15 |0.96| 0.55
FPAE®s =050 |-0.05) 020 018 [0.98 | 0.04 PAE® =088 -0.05| 0.13 0.12 |0.96| 0.75
AS =0.00 -0.081 0.24 0.22 |0.98 | 0.05 AS =0.67 -0.16) 0.22 021 |0.85 ) 0.76

@ p is the linear correlation of the simulated bivariate normal variables W and S(1). Bias is the median bias. SE is the

empirical standard error of PAE" and AS. SEE is the median of the bootstrap standard error estimates based on 500
hootstrap replicates. CP is the empirical coverage of bootstrap percentile 95% confidence intervals for PAE* and AS.
Power is for 1-sided tests of Hy : PAEY = 0.5 versus H; : PAEY > 05 or Hy : AS = 0 versus Hy; : AS > 0 at level
a = 0.05. For the PAE weights, wi(7,1) = 1, ws(j, 1) = 4, and w3(4,1) = {7 = J = 4]. 1000 simulations were done to
compute the table elements for each model.

*In Gilbert and Hudgens (2008, Biometrics)
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Conclusions of Simulation Study

e The MELE method of Gilbert and Hudgens performs well for
realistically-sized Phase 3 vaccine efficacy trials, if there are baseline
covariates that explain at least 50% of the variation in Y

e This underscores the importance of developing baseline predictors
of immunogenicity endpoints

e Importantly, the good performance depends on the assumptions A3
and A4, which are not fully testable (more in discussion)

e R code for the nonparametric method of Gilbert and Hudgens
(2008) is implemented in the R package pseva/ available at CRAN

sy 4%, FRED HUTCH
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Remarks on Power for Evaluating a Principal Surrogate
Endpoint

e What about adding CPV to BIP?

e If the BIP is high quality (e.g., p > 0.50), then the BIP design is quite
powerful with modest/moderate gain by adding CPV

e However, crossing over placebo subjects to the vaccine arm has
additional value beyond efficiency improvement:

— Helps in diagnostic tests of structural modeling assumptions (A4)
— May help accrual and enhance ethics

— May adaptively initiate crossover, after some overall VE > 0 is established
(Gilbert et al., 2011, Statistical Communications in Infectious Diseases)
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Outline of Session 6

1. Effect Modification/VE Curve Framework
2. Identifiability and Estimation
3. Simulations

4. Discussion
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Some Avenues for Identifying Good BIPs

e Demographics
— Age, gender, geography

e Host immune genetics
— E.g., HLA type for predicting epitope-specific T cell responses (MHC binding
prediction servers)

o Add beneficial licensed vaccines to efficacy trials and use known correlates
of protection as BIPs (Follmann’s [2006] original proposal)

— The HVTN is exploring this strategy in a Phase 1 trial (HVTN 097) in preparation
for VE trials

e Measure the marker S at baseline

— Used successfully in varicella zoster (Gilbert, Gabriel et al., 2014, JID) and
influenza VE trials

e Systems vaccinology analyses

— E.g., Gene expression, cell populations; used successful for influenza vaccination
(Tsang et al., 2014, Cel)

FRED HUTCH
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Example of a Successful BIP: Varicella Zoster Vaccine
[Gilbert, Gabriel, et al., 2014]

Estimated VE(s)

Fold Rise in Ab Titer : Week 6 Titers
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Tetanus and Hepatitis B Vaccination in HVTN 097
(Ongoing Phase 1 Trial in South Africa)

Grou N Month O | Month 1 | Month 2 Month 4 Month 7 ?A;;tgzoi Month 8.5 | Month 13
P (Day 0) | (Day 28) | (Day 56) | (Day 112) | (Day 196) Y (Day 238) | (Day 394)

ALVAC +  ALVAC +
1 60 Tetavax®  ALVAC  ALVAC  AIDSVAX® AIDSVAX®  hoLRic ENGERDGC - ENGERIX-

® ® ®
B/E B/E B B B
ALVAC + ALVAC +
2 20 Placebo ALVAC ALVAC AIDSVAX®  AIDSVAX® Placebo Placebo Placebo
B/E B/E
3 20 Tetavax® ALVAC Placebo Placebo Placebo ENGERIX- = ENGERIX-  ENGERIX-

B® B® B®
ENGERIX-B® is a licensed hepatitis B vaccine

« Assess known correlates of protection as BIPs for a set of HIV-vaccine
induced responses
* Antibodies to tetanus toxoid antigen and to hepatitis B surface antigen

Statistical Center for
HIV/AIDS Research & Prevention
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Elaborations of the Original Methods

e Huang and Gilbert (2011, Biometrics) used the same VE estimands and assumptions
as Gilbert and Hudgens (2008), with 3 extensions:

— Relaxed the parametric assumptions on the distribution of (W, S)

—  Studied the method for using multiple immune biomarkers [e.g., assess if 2 immune
response biomarkers provide superior surrogate value compared to 1]

— Developed a new summary measure of surrogate value for 1 or more immune response
biomarkers (standardized total gain)

e Huang, Gilbert, and Wolfson (2013, Biometrics) developed an improved ‘pseudo-
score’ method incorporating BIP and/or CPV that is sometimes the method of choice
e Similar methods with a time-to-event clinical endpoint have been developed
— Qin et al. (2008, Annals of Applied Statistics); Miao et al. (2013) book chapter

. Cox proportional hazards model with discrete and continuous failure times
—  Gabriel and Gilbert (2014, Biostatistics)

. Weibull model with continuous failure time

. Allows for time-varying VE and time-varying surrogate value

— Gabriel, Sachs, and Gilbert (2015, Stat Med)
. Weibull model with continuous failure time
. Compare and combine multiple biomarkers

FRED HUTCH
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Critical Assumptions for the Methods

Key assumptions of all published methods [except one paper relaxed
A3 noted below]

— A3: No causal effects on Y before the marker is measured [P(Y*(1) = Y*(0))=1]

Will approximately hold for some trials [e.g., if t is near baseline]

Important to develop sensitivity analysis methods that account for departures from A3
[addressed in Wolfson and Gilbert (2010, Biometrics)]

— A4: Structural models for risk,() functions, for z = 0, 1
The model for risk () is fully testable
The model for risk () is not fully testable

For each specific surrogate endpoint evaluation problem requires careful thought,
accounting for biological knowledge

Use of closeout-placebo vaccination helps in testing modeling assumptions for
risk () [discussed in several papers]

— Consistency of the MELE also depends on consistent estimation of the nuisance
parameters— at least these assumptions are fully testable

SC HARP 07/18-20/2016 @ 59 ::‘:I;‘ FRED HUTCH

CURES START HERE™



Appendix:

R Tutorial
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R Tutorial:
Application of Gilbert and Hudgens

e R code for implementing the nonparametric method of Gilbert and
Hudgens (2008)

A4-NP: Structural models for risk, (for z=0, 1)
riski,(j, 1, k; B) = B+ P’y forj=1, ..., J; k=1, ..., K
Constraint: 0 <, +p’ <1 and £, p, = 0 for identifiability

e Recall the setting for which this method applies:
— Constant Biomarkers (no or minimal variation in S in placebo recipients)

— The BIP design is used with the baseline immunogenicity predictor W a
categorical variable

— The biomarker to evaluate as a specific SoP, S, is categorical
e R code at: http://faculty.washington.edu/peterg/SISMID2017.html

I
'!./.. FRED HUTCH

’ CURES START HERE™

SCHARP
]



R Tutorial:
Application of Gilbert and Hudgens

o Exercise: Apply the Gilbert and Hudgens method to the same
data-set that was assessed earlier for evaluating a CoR

o W = a binned/discretized version of the infectivity assay result

e S = a binned/discretized version of the MN Neuts measurement,
and of the CD4 Blocking measurement

* Feel free to try one or another discretizations

— E.g., cut W and S into quartiles; or cut S into 2 parts in the search
of a ‘threshold of protection’

, FRED HUTCH
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R Tutorial:
Application of Gilbert and Hudgens

e Suggest to perform the set of analyses that were done on the
simulated data-sets described earlier
— For each level j estimate B;;, B, and hence estimate the parameter of interest
- VE(j, 1) =1 - log (avg- risky(j, 1) / avg-risk,(j, 1))
- =1 -log( =y [By+B's 1/ [Z By + B )
— Estimate AS and PAE(w) for w(j) = 1 and for w(j) = j

— Compute 95% confidence intervals for each of the above parameters
— Compute p-values for testing

« HOj: VE(j, 1) =0 vs H1j: VE(, 1)>0,  forj=1,...,]

e HO: AS=0vsHI1: AS>0

 HO: PAE(w)=0.5vs H1: PAE(w) > 0.5

« HO: VE(j, 1) =0 for all j vs H1: VE(j, 1) monotone non-decreasing in j with some
< [trend test]
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R Tutorial:
Application of Gilbert and Hudgens

e Is there evidence that either MN Neuts or CD4 Blocking levels
have some value as a principal surrogate endpoint?

e If so, what quality is the principal surrogate endpoint? How to
interpret the results in terms of effect modification?

HIV/AIDS Research & Prevention 7kl FRED HUTCH
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