

	Outline of Module 8	8								
Socion 1 (Chan)	Introduction to Vaccinos and Pasis Conconts									
Session 2 (Gilbort)	Introduction to Vaccines and basic concepts	tion								
Session 3 (Chan)	Evaluating Correlates of Protection using Individual, Population, and Titer-Specific Approaches									
Session 4 (Gilbert)	ession 4 (Gilbert) Continuation of Session 2; plus Evaluating a Correlate of Risk (CoR)									
Session 5 (Chan)	Use of Statistical Models in Assessing Correlates of Protection									
Session 6 (Edlefsen)	Introduction to Sieve Analysis									
Session 7 (Gilbert)	Thai Trial Case Study (Including Sieve Analysi	is)								
Session 8 (Chan)	Validation using Prentice Criteria, Design Cor	nsiderations								
Session 9 (Gilbert)	Evaluating a Specific Surrogate of Protection (Gilbert and Hudgens, 2008)	n Part I								
Session 10 (Huang)	Evaluating a Specific Surrogate of Protection (Huang and Gilbert, 2011; Huang, Gilbert and	Part II d Wolfson, 2013)								
Statistical Center for HIV/AIDS Research & Prevention	2	FRED HUTCHINSON CANCER RESEARCH CENTER VACCINE AND INFECTIOUS DISEASE DIVISION								

	Definition	Framework for Empirical Assessment				
Correlate of Risk Tier 1	The biomarker correlates with the clinical endpoint measuring vaccine efficacy	Vaccine efficacy trials/ epidemiological studies				
Specific Surrogate of Protection Tier 2	Vaccine effects on the biomarker predict vaccine efficacy, for the same setting as the efficacy trial	Single large efficacy trial or multiple similar trials				
General Surrogate of Protection Tier 3	A specific SoP that reliably predicts vaccine efficacy in different settings (e.g., across vaccine lots, vaccine formulations, human populations, viral populations)	Multiple diverse efficacy and/or post-licensure trials				

What if Some Subjects Experience Y=1 Before S is Measured?

- For simplicity Joffe and Greene (2008) assumed S and Y are both measured once, at fixed times, with S measured before Y, and S and Y are never missing
- In practice, typically some (or many) subjects experience Y=1 before S is measured
 - e.g., VaxGen HIV vaccine efficacy trial (Flynn et al., 2005)
 - S is measured at month 6.5 post-randomization
 - 62 of the 368 total HIV infections (17%) occurred prior to month 6.5
 - e.g., RV144 HIV vaccine efficacy trial (Rerks-Ngarm et al., 2009)

15

• S is measured at month 6 post-randomization

SCHARP

• 15 of the 125 total HIV infections (12%) occurred prior to month 6

RED HUTCHINSON

NE AND INFECTIOUS DISEASE DIVISIO

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row><table-container>

2. Controlled Natural Direct and Indirect Causal Effects (Mediation)

Average Causal Effects

- Direct effect (at s): $E[Y_i(0, s) Y_i(1, s)]$
- Indirect effect (at s): $E[Y_i(0) Y_i(1)] E[Y_i(0, s) Y_i(1, s)]$
- A valid surrogate in this paradigm has no direct effect for all s
 - i.e., $E[Y_i(0, s) Y_i(1, s)] = 0$ for all s
 - That is, S fully mediates the effect of Z on Y
 - i.e., "the treatment effect on the clinical endpoint is fully through the surrogate/fully mediated by the treatment effect on the surrogate endpoint"
- A useful conceptual framework, decomposing the overall effect into component effects

HIV/AIDS Research & Prevention

22

FRED HUTCHINSON CANCER RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

2. Natural Direct/Indirect Effects Framework (Mediation)

- Of the 4 frameworks, this one may be the best suited for assessing mediation (e.g., as argued by papers of Tyler VanderWeele)
- However, this approach requires **conceivability of manipulating** a placebo recipient's biomarker level to what it would have been had s/he been assigned the vaccine
 - In trials of subjects without prior exposure to the pathogen: Inconceivable
 - In trials of subjects with prior exposure: May be conceivable in rare instances, but more likely inconceivable due to heterogeneity of host genetics and other host factors
 - Where it is conceivable, it is still challenging to assess mediation because unverifiable assumptions are needed (and thus sensitivity analysis is warranted)

FRED HUTCHINSON CANCER RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

• Gilbert, Hudgens, and Wolfson (2011, International Journal of Biostatistics) discuss the conceivability and utility of this approach

23

SCHARP

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Definition of a Principal Surrogate (Revised from Gilbert and Hudgens, 2008)

• Define

 $\operatorname{risk}_{(1)}(s_1, s_0) = \Pr(Y(1) = 1 | S(1) = s_1, S(0) = s_0)$

 $risk_{(0)}(s_1, s_0) = Pr(Y(0) = 1 | S(1) = s_1, S(0) = s_0)$

- A contrast in $risk_{(1)}(s_1, s_0)$ and $risk_{(0)}(s_1, s_0)$ is a causal effect on Y for the population $\{S(1) = s_1, S(0) = s_0\}$
- A *principal surrogate* is a biomarker satisfying 2 conditions, the first of which is:

 $risk_{(1)}(s_1, s_0) = risk_{(0)}(s_1, s_0)$ for all $s_1 = s_0$

- This property is Average Causal Necessity.
 - $S(1) = S(0) = s \implies E[Y(1) \mid S(1) = S(0) = s] = E[Y(0) \mid S(1) = S(0) = s]$
 - i.e., "without the vaccine-induced immune response, there is no protection"

29

RED HUTCHINSON Ancer research center

NE AND INFECTIOUS DISEASE DIVISIO

Statistical Center for HIV/AIDS Research & Prevention

Baseline Immunogenicity Predictor (BIP) Approach

Maximum Estimated Likelihood with BIP (Pepe and Fleming, 1991)

• Pc	osit models for $\mathrm{risk}_{(1)}(s_1,0;\beta)$ and risk	$(0)(s_1,0;\beta)$	
• Va - -	accine arm: - (W _i , S _i (1)) measured: - (W _i , S _i (1)) not measured:	Likld contribn	$\begin{split} risk_{(1)}(S_i(1), 0; \beta) \\ frisk_{(1)}(s_1, 0; \beta) \; dF(s_1) \end{split}$
• Pl. -	acebo arm: - W _i measured: - W _i not measured:	Likld contribn	$\begin{split} & \int\!$
• L($(\beta, F^{S W}, F) = \prod_{i} \{ [risk_{(1)}(S_{i}(1), 0; \beta)^{Y_{i}}(1) \} \}$	- risk ₍₁₎ (S _i (1),0; β)) ^{1-Yi}	J ^{Zi} } ^{δi} [Vx subcohort]
× {[ʃri × {[ʃri × {[ʃri	$\begin{split} & sk_{(0)}(s_{\nu}0;\beta)dF^{S \mid W}(s_{1} \mid W_{i})^{Yi} (1 - frisk_{(0)}(s_{\nu});\beta)dF(s_{1})^{Yi} (1 - frisk_{(1)}(s_{1\nu}0;\beta))\\ & (sk_{(1)}(s_{\nu}0;\beta)dF(s_{1})^{Yi} (1 - frisk_{(0)}(s_{1\nu}0;\beta))\\ & (sk_{(0)}(s_{\nu}0;\beta)dF(s_{1})^{Yi} (1 - frisk_{(0)}(s_{1\nu}0;\beta))\\ \end{split}$	$\begin{split} s_1,\!0;\beta))dF^{S_1W}(s_1^{} W_i^{})\\ dF(s_1^{})^{1\cdot Yi}]^{Zi}]^{1\cdot\delta i}\\ dF(s_1^{})^{1\cdot Yi}]^{1\cdot Zi}]^{1\cdot\delta i} \end{split}$	^{1-Yi}] ^{1-Zi}] ^{õi} [Plc subcohort] [Vx not subcohort] [Plc not subcohort]
Statistical Center for HIV/AIDS Research & SCHA	Prevention	50	FRED HUTCHINSON CANCER RESEARCH CENTER VACCINE AND INFECTIOUS DISEASE DIVISION

Maximum Estimated Likelihood Estimation (MELE)

- Likelihood $L(\beta, F^{SW}, F)$
 - β is parameter of interest [CEP surface and marginal CEP curve depend only on β]
 - FSIW and F are nuisance parameters
- Step 1: Choose models for $F^{\mbox{\scriptsize SIW}}$ and F and estimate them based on vaccine arm data
- Step 2: Plug the consistent estimates of $F^{\text{SIW}}\,and\,F$ into the likelihood, and maximize it in β
 - e.g., EM algorithm
- Step 3: Estimate the variance of the MELE of β , accounting for the uncertainty in the estimates of F^{SIW} and F
 - Bootstrap

SCHARP

Modeling Approach 1 (Fully Parametric)

51

RED HUTCHINSON

NE AND INFECTIOUS DISEASE DIVISIO

FRED HUTCHINSON CANCER RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

- Assume:
 - F^{S|X,W} and F^{W|X} have specified parametric distributions
 - S(1) is continuous subject to "limit of detection" left-censoring:
 - $S(1) = max(S^*(1), 0)$, where $S^*(1)$ has a continuous cdf
 - A4-P: Structural models for risk_(z) (for z=0, 1)
 - $risk_{(z)}(s_1, 0, x, w; \beta_z) = g(\beta_{z0} + \beta_{z1}s_1 + \beta_{z2}^Tx + \beta_{z3}^Tw), g a known link$

• Example:

- $F^{W|X}$ normal, $F^{S|X,W}$ censored normal with left-censoring below 0, A4-P holds with $g = \Phi$, the standard normal cdf
- No interactions assumption: One of the components of $(\beta^{T}_{12}, \beta^{T}_{13})$ equals the corresponding component of $(\beta^{T}_{02}, \beta^{T}_{03})$ (untestable)

HIV/AIDS Research & Prevention

52

Interpretation (Fully Nonparametric)

- With $VE(j, 1) = 1 avg-risk_{(1)}(j, 1) / avg-risk_{(0)}(j, 1)$:
 - S is a principal surrogate if

VE(1, 1) = 0 and VE(j, 1) > 0 for all j > 1

- A biomarker with some value as a surrogate will have
 - VE(1, 1) near 0

SCHARP

- **VE(j, 1)** > 0 for some j > 1
- The most useful surrogate will have VE(j, 1) large for some j > 1

57

FRED HUTCHINSON CANCER RESEARCH CENTER

NE AND INFECTIOUS DISEASE DIVISIO

	Model A4-NP Simulation Results*													
A	Adel ALNP simulation n	coulto f	or the	nonna	Ta	able 1	$\widehat{CEP}^{risk}(i, 1; \beta) = \log(\widehat{\beta})$	(\hat{B}_{n})	for i —	1	Aa			
Cor	$\frac{1}{(j,1,j)} = \log(p_1/p_0) = \frac{1}{(j,1,j)} =$													
Cor.	Parameter	Piec	Surroga	SFF	CP	Power	Parameter	Bioc	SUFF	SEE V	CP	Power		
ρ 05	CEDrisk(1, 1) = -0.60	Dias	0.49	0.41	0.08	Power 0.45	CEDrisk(1, 1) = -0.99	Dias	0.67	0.65	0.09	Power 0.12		
0.0	$CEP^{risk}(2, 1) = -0.69$	0.11	0.42	0.41	0.98	0.40	$CEP^{risk}(2, 1) = -0.51$	-0.00	0.07	0.03	1.00	0.04		
	$CEP^{risk}(3, 1) = -0.69$	0.13	0.88	0.87	0.33	0.05	$CEP^{risk}(3, 1) = -0.92$	0.15	0.90	0.93	1.00	0.04		
	$CEP^{risk}(4, 1) = -0.69$	0.15	0.80	0.72	0.99	0.18	$CEP^{risk}(4, 1) = -1.61$	-0.03	0.65	0.55	0.98	0.66		
	(4,1) = -0.05	0.00	0.00	0.12	0.50	0.10	(4,1) = -1.01	-0.00	0.00	0.00	0.50	0.00		
0.7	$CEP^{risk}(1, 1) = -0.69$	-0.03	0.30	0.29	0.96	0.62	$CEP^{risk}(1, 1) = -0.22$	-0.03	0.45	0.47	0.97	0.13		
0.1	$CEP^{risk}(2,1) = -0.69$	0.09	0.80	0.77	0.99	0.17	$CEP^{risk}(2, 1) = -0.51$	0.06	0.87	0.84	0.99	0.08		
	$CEP^{risk}(3,1) = -0.69$	-0.02	0.82	0.79	1.00	0.11	$CEP^{risk}(3,1) = -0.92$	-0.02	0.83	0.83	0.99	0.17		
	$CEP^{risk}(4,1) = -0.69$	0.06	0.73	0.64	0.97	0.22	$CEP^{risk}(4, 1) = -1.61$	0.00	0.47	0.48	0.96	0.82		
	(1,1)						(-,-)							
0.9	$CEP^{risk}(1,1) = -0.69$	0.00	0.19	0.19	0.95	0.90	$CEP^{risk}(1,1) = -0.22$	-0.01	0.28	0.27	0.94	0.18		
	$CEP^{risk}(2,1) = -0.69$	0.02	0.48	0.48	0.96	0.37	$CEP^{risk}(2,1) = -0.51$	0.01	0.66	0.59	0.95	0.26		
	$CEP^{risk}(3,1) = -0.69$	-0.02	0.68	0.63	0.96	0.27	$CEP^{risk}(3,1) = -0.92$	0.00	0.62	0.58	0.95	0.40		
	$CEP^{risk}(4,1) = -0.69$	-0.01	0.53	0.50	0.96	0.32	$CEP^{risk}(4,1) = -1.61$	-0.03	0.39	0.36	0.95	0.99		
² ρ is Bias is error e interva done t In G i	the linear correlation of f is the median bias. SE is the estimates based on 500 be als for $\widehat{CEP}^{risk}(j, 1)$. Pow to compute the table elem ilbert and Hudgens (2	the sim he empi ootstra er refer ents for 2008,	ulated irical st p replic s to po r each Biome	bivaria tandaro cates. ower of model.	ate nor d error CP is the Wa	rmal vari of \widehat{CEP}^{i} the empi ald test t	ables latent to the quartil $i^{isk}(j, 1)$. SEE is the media rical coverage of bootstrap o reject $H_0: CEP^{risk}(j, 1)$	ized values in of the p percent $= 0.16$	riables e boots ntile 95 000 sin	W and trap st 5% con nulatio:	d S(1). andard fidence ns were			
Statistics	Contex for			,				CDC						
HIV/AID	S Research & Prevention							FRE	UH		HIV	ISUN		
SC	HARP					65		CAN	UEK K	ESEA	KCH (ENTER		
								VACCIN	e and in	NFECTIOL	JS DISEAS	E DIVISION		

						Table	2					
1	Aodel A4-NP sime	ilation	results	for the	e nonpe	arametric	MELEs \widehat{PAE}^{ω} and	ad \widehat{AS} ,	with h	(x, y) =	$= \log(x)$	$(y)^a$
Cor. No Surrogate Value Scenario High Surrogate Value Scenario												enario
ρ	Parameter	Bias	SE	SEE	CP	Power	Parameter	Bias	SE	SEE	CP	Power
0.5	$PAE^{\omega_{1}} = 0.50$	-0.13	0.22	0.21	0.95	0.03	$PAE^{\omega_1} = 0.82$	-0.21	0.23	0.23	0.98	0.15
	$PAE^{\omega_{2}} = 0.50$	-0.12	0.21	0.20	0.96	0.02	$PAE^{\omega_2} = 0.84$	-0.18	0.19	0.20	0.97	0.21
	$PAE^{\omega_{3}} = 0.50$	0.03	0.21	0.20	0.99	0.04	$PAE^{\omega_3} = 0.88$	-0.11	0.17	0.19	0.99	0.51
	AS = 0.00	0.07	0.53	0.55	0.99	0.04	AS = 1.39	-0.22	0.70	0.71	0.98	0.51
0.7	$PAE^{\omega_1} = 0.50$	-0.09	0.19	0.19	0.94	0.02	$PAE^{\omega_1} = 0.82$	-0.12	0.18	0.20	0.97	0.27
	$PAE^{\omega_2} = 0.50$	-0.08	0.17	0.17	0.94	0.02	$PAE^{\omega_2} = 0.84$	-0.10	0.15	0.17	0.97	0.39
	$PAE^{\omega_3} = 0.50$	0.02	0.20	0.19	0.99	0.04	$PAE^{\omega_3} = 0.88$	-0.06	0.12	0.14	0.98	0.75
	AS = 0.00	0.04	0.50	0.49	0.99	0.05	AS = 1.39	-0.14	0.51	0.55	0.96	0.70
0.9	$PAE^{\omega_{1}} = 0.50$	-0.03	0.13	0.14	0.96	0.02	$PAE^{\omega_1} = 0.82$	-0.04	0.14	0.15	0.96	0.56
	$PAE^{\omega_{2}} = 0.50$	-0.02	0.13	0.14	0.96	0.02	$PAE^{\omega_{2}} = 0.84$	-0.04	0.11	0.12	0.96	0.75
	$PAE^{\omega_3} = 0.50$	0.01	0.19	0.17	0.98	0.08	$PAE^{\omega_3} = 0.88$	-0.02	0.09	0.10	0.97	0.94
	AS = 0.00	0.02	0.50	0.46	0.98	0.08	AS = 1.39	-0.03	0.45	0.43	0.96	0.94
$^{a} \rho$ is the is the me error esti- intervals versus H_{i} simulatio	AS = 0.00 linear correlation - dian bias. SE is t mates based on 5 for PAE^{ω} and A: :AS > 0 at level as were done to co ests: Power 0.8	of the since $\alpha = 0.02$ of the since $\alpha = 0.00$ of the since $\alpha = 0.000$ of the since $\alpha = 0.0000$ of the since $\alpha = 0.00000$ of the since $\alpha = 0.00000$ of the since $\alpha = 0.000000$ of the since $\alpha = 0.00000000000$ of the since $\alpha = 0.0000000000000000000000000000000000$	inulate irical s strap n er is fo 05. Fo the tal	ed biva standar replicat or 1-sid r the <i>H</i> ble eler 0.99	riate n d erro tes. Cl led tes PAE w ments for ρ	ormal var r of \widehat{PAE} P is the e ts of H_0 reights, ω_1 for each r = 0.5, 0	iables latent to the ω^{ω} and \widehat{AS} . SEE is impirical coverage $\Delta F = 1.39$ $\Delta S = 1.39$ impirical to the impirical coverage $\Delta F = 0.5$ ver $\alpha(j, 1) = 1, \omega_2(j, 1)$ nodel. $\Delta F = 0.5$ ver $\alpha(j, 1) = 1, \omega_2(j, 1)$ $\alpha(j, 1) = 1, \omega_2(j,$	e quarti s the m of boot sus H_1 j = j, a	lized v edian ω_{3} : PAL nd ω_{3}	ariable of the percent $E^{\omega} > 0$ j, 1) =	tile 959 I[j = 1]	d $S(1)$. Bias cap standard % confidence $H_0: AS = 0$ J = 4]. 1000
Irend t			1/10 E	lomo	trice)							

							Table 3	3		~ ~			
		Model A4-P (pr	obit) m	odel si	mulatio h	(x, y)	the set of the $\Phi^{-1}(x)$	e nonparametric M $- \Phi^{-1}(u)^a$	IELEs	PAE	and A	S, wit	h
	Cor. No Surrogate Value Scenario High Surrogate Value Scenario												enario
ρ	,	Parameter	Bias	SE	SEE	CP	Power	Parameter	Bias	SE	SEE	CP	Power
0	.5	$PAE^{\omega_{1}} = 0.50$	-0.20	0.25	0.23	0.94	0.03	$PAE^{\omega_1} = 0.82$	-0.25	0.24	0.23	0.96	0.12
		$PAE^{\omega_{2}} = 0.50$	-0.19	0.23	0.22	0.94	0.03	$PAE^{\omega_{2}} = 0.85$	-0.24	0.22	0.22	0.94	0.15
		$PAE^{\omega_3} = 0.50$	0.01	0.21	0.21	1.00	0.05	$PAE^{\omega_3} = 0.88$	-0.17	0.20	0.20	0.97	0.31
		AS = 0.00	0.01	0.29	0.31	1.00	0.03	AS = 0.67	-0.26	0.39	0.36	0.93	0.30
0	.7	$PAE^{\omega_1} = 0.50$	-0.14	0.21	0.21	0.92	0.02	$PAE^{\omega_1} = 0.82$	-0.14	0.20	0.21	0.96	0.21
		$PAE^{\omega_2} = 0.50$	-0.14	0.20	0.19	0.92	0.02	$PAE^{\omega_2} = 0.85$	-0.15	0.17	0.19	0.96	0.28
		$PAE^{\omega_3} = 0.50$	-0.02	0.21	0.20	0.99	0.04	$PAE^{\omega_3} = 0.88$	-0.11	0.17	0.17	0.97	0.50
		AS = 0.00	-0.03	0.27	0.26	0.99	0.04	AS = 0.67	-0.22	0.29	0.29	0.91	0.47
0	9	$PAE^{\omega_1} = 0.50$	-0.06	0.16	0.16	0 92	0.03	$PAE^{\omega_1} = 0.82$	-0.07	0.16	0.17	0.97	0.45
0	10	$PAE^{\omega_2} = 0.50$	-0.07	0.15	0.16	0.91	0.02	$PAE^{\omega_2} = 0.85$	-0.08	0.14	0.15	0.96	0.55
		$PAE^{\omega_3} = 0.50$	-0.05	0.20	0.18	0.98	0.04	$PAE^{\omega_3} = 0.88$	-0.05	0.13	0.12	0.96	0.75
		AS = 0.00	-0.08	0.24	0.22	0.98	0.05	AS = 0.67	-0.16	0.22	0.21	0.85	0.76
$^{a} \rho$ is a empiri- bootst Power $\alpha = 0.$ comput	the li cal st rap r is fo .05. l ite th	near correlation tandard error of eplicates. CP is r 1-sided tests of For the PAE we e table elements	of the \widehat{PAE}^{ω} the end of H_0 : ights, ω for each	simula and \tilde{A} npirica PAE^{ω} $\omega_1(j, 1)$ ch mod	ted biv \widehat{IS} . SE l covers = 0.5 $= 1, \omega$ el.	eariate E is the age of versus $\nu_2(j, 1)$	normal v ne median bootstrap $H_1: PA$ = j, and	ariables W and S of the bootstrap percentile 95% of $AE^{\omega} > 0.5$ or H_0 $U_{\omega_3}(j,1) = I[j =$	(1). Bit standa confider : $AS =$ J = 4]	as is tl rd erro nce into = 0 ver . 1000	he med or estin ervals f sus H_1 simula	ian bia nates h for <i>PA</i> : <i>AS</i> ations y	as. SE is the based on 500 E^{ω} and AS > 0 at level were done to
*In G	ilber	t and Hudger	ns (20	08, Bi	ometr	ics)							
*In Gilbert and Hudgens (2008, Biometrics) tatistical Center for TV/AIDS Research & Prevention COLOR ADDD COLOR RESEARCH CENTE													

Remarks on Power for Evaluating a Principal Surrogate Endpoint

- Crossing over more placebo subjects improves power of CPV and BIP + CPV designs
- There is no point of diminishing returns— steady improvement with more crossed over, out to complete cross-over
- If the BIP is high quality (e.g., $\rho > 0.50$), then the BIP design is quite powerful with modest/moderate gain by adding CPV
- However, crossing over placebo subjects has additional value beyond efficiency improvement:
 - Helps in diagnostic tests of structural modeling assumptions (A4)
 - May help accrual and enhance ethics
 - May adaptively initiate crossover, after some overall VE > 0 is established (Gilbert et al. 2011, Statistical Communications in Infectious Diseases)

FRED HUTCHINSON CANCER RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

HIV/AIDS Research & Prevention

70

Tetanus and Hepatitis B Vaccination in HVTN 097 (Planned Phase 1 Trial in South Africa)												
Group	N	Month 0 (Day 0)	Month 1 (Day 28)	Month 2 (Day 56)	Month 4 (Day 112)	Month 7 (Day 196)	Month 7.5 (Day 210)	Month 8.5 (Day 238)	Month 13 (Day 394)			
1	60	Tetavax®	ALVAC	ALVAC	ALVAC + AIDSVAX® B/E	ALVAC + AIDSVAX® B/E	ENGERIX- B®	ENGERIX- B®	ENGERIX- B®			
2	20	Placebo	ALVAC	ALVAC	ALVAC + AIDSVAX® B/E	ALVAC + AIDSVAX® B/E	Placebo	Placebo	Placebo			
3	20	Tetavax®	ALVAC	Placebo	Placebo	Placebo	ENGERIX- B®	ENGERIX- B®	ENGERIX- B [®]			
 Assess known correlates/surrogates of protection as BIPs for a set of HIV-vaccine induced responses Antibodies to tetanus toxoid antigen and to hepatitis B surface antigen 												
Statistical Ce HIV/AIDS Re	nter for search 8	RP			73		FRE CAN VACCIN	CER RESEAR	HINSON CH CENTER			

Example Thought Process to Justify an A4-P Assumption A4-P: Structural models for risk_(z) (for z=0, 1) $risk_{(z)}(s_1, 0, x, w; \beta_z) = g(\beta_{z0} + \beta_{z1}s_1 + \beta_{z2}^T x + \beta_{z3}^T w)$, g a known link No interactions assumption: One of the components of $(\beta^{T}_{12}, \beta^{T}_{13})$ equals the corresponding component of $(\beta^{T}_{02}, \beta^{T}_{03})$ (untestable) Example: $risk_{(1)}(s_1, 0, x, w; \beta_1) = \Phi(\beta_{10} + \beta_{11}s_1 + \beta_{12}x + \beta_3 w)$ $risk_{(0)}(s_1, 0, x, w; \beta_1) = \Phi(\beta_{00} + \beta_{01} s_1 + \beta_{02} x + \beta_3 w)$ This model allows baseline covariates X to effect Y differently in the vaccine and placebo groups; but assumes that, after accounting for X, W effects Y in the same way in the vaccine and placebo groups FRED HUTCHINSON CANCER RESEARCH CENTER SCHARP 78 VACCINE AND INFECTIOUS DISEASE DIVISION

