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Outline of Module 8

Session 1 (Chan) Introduction to Vaccines and Basic Concepts 

Session 2 (Gilbert) Introduction to Immune Correlates of Protection

Session 3 (Chan) Evaluating Correlates of Protection using Individual, Population, and 
Titer‐Specific Approaches

Session 4 (Gilbert) Continuation of Session 2; plus Evaluating a Correlate of Risk (CoR)

Session 5 (Chan) Use of Statistical Models in Assessing Correlates of Protection 

Session 6 (Edlefsen) Introduction to Sieve Analysis

Session 7 (Gilbert) Thai Trial Case Study (Including Sieve Analysis)

Session 8 (Chan) Validation using Prentice Criteria, Design Considerations

Session 9 (Gilbert) Evaluating a Specific Surrogate of Protection Part I                            
(Gilbert and Hudgens, 2008)

Session 10 (Huang) Evaluating a Specific Surrogate of Protection Part II                           
(Huang and Gilbert, 2011; Huang, Gilbert and Wolfson, 2013)
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Preventive Vaccine Efficacy Trial

• Primary Objective
−Assess VE: Vaccine Efficacy to prevent 

infection or disease with a pathogen

• Secondary Objective
−Assess vaccine-induced immune 

responses as surrogate endpoints for 
infection or disease 

Randomize

Vaccine

Measure 
immune 
response

Follow for clinical endpoint 
(Infection or Disease)

Receive 
inoculations

Placebo

4

Three Tiers of Surrogate Endpoint Evaluation*

Definition Framework for 
Empirical Assessment

Correlate of 
Risk

Tier 1

The biomarker correlates with the clinical 
endpoint measuring vaccine efficacy

Vaccine efficacy trials/ 
epidemiological studies

Specific 
Surrogate of 
Protection

Tier 2

Vaccine effects on the biomarker predict
vaccine efficacy, for the same setting as
the efficacy trial

Single large efficacy trial 
or multiple similar trials

General 
Surrogate of 
Protection

Tier 3

A specific SoP that reliably predicts vaccine 
efficacy in different settings (e.g., across 
vaccine lots, vaccine formulations, human 
populations, viral populations)

Multiple diverse efficacy 
and/or post-licensure 
trials 

*Proposed in Qin, Gilbert, McElrath, Corey, Self (2007, JID)
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Outline of Session 9

1. Overview of Four Approaches to Defining and Evaluating 
a Surrogate Endpoint 

2. Principal Stratification Approach

3. Identifiability and Estimation 

4. Simulations 

5. Discussion

6. R Tutorial

Paper corresponding to this talk: Gilbert and Hudgens (2008, Biometrics)

6

Part 1:

Overview of Four Approaches
to Defining and Evaluating

a Surrogate Endpoint 
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Notation

• Throughout consider a 2-arm trial with:

Z = treatment assignment (0 or 1)

S = candidate surrogate endpoint measured at time  after 
randomization

Y = clinical endpoint (0 or 1)  [The approach also applies for 
quantitative Y]

8

Four Frameworks for Surrogate Endpoints 
(Joffe and Greene, 2008, Biometrics)

• Causal-effects paradigm
“for a good surrogate, the effect of treatment on the surrogate, combined 

with the effect of the surrogate on the clinical outcome, allow 
prediction of the effect of treatment on the clinical outcome”

1. Prentice/statistical surrogate Valid replacement endpoint
2. Controlled natural direct and indirect effects Mediation

• Causal-association paradigm
“for a good surrogate, the effect of treatment on the surrogate is 

associated with its effect on the clinical outcome”
3. Principal stratification Association of individual-level treatment effects

4. Meta-analysis Association of group-level treatment effects
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1. Prentice/Statistical Surrogate Framework

• In the introductory talk, we noted 3 challenges posed to this 
framework

1. Hard to evaluate operational criteria for vaccine trials for which there is 
~no variability of the immunological biomarker in the placebo group

2. For validity must include in the regression model all common causes 
(simultaneous predictors) of the biomarker and the clinical outcome

3. For validity must include in the regression model all common causes 
(simultaneous predictors) of clinical risk before and after the biomarker 
is measured

• Let’s elaborate on points 2. and 3.

− Grateful to Marshall Joffe and Tom Greene for their 2008 Biometrics paper that 
helpfully elucidates point 2

10

Prentice (1989, Stat Med):
Criteria for a Surrogate Endpoint

• Definition of a Surrogate Endpoint
“a response variable for which a test of the null hypothesis of no relationship 

to the treatment groups under comparison is also a valid test of the 
corresponding null hypothesis based on the true endpoint”

• Main Operative Criteria
1. The surrogate and clinical endpoints are correlated, in each treatment arm

2. All of the treatment effect on the clinical endpoint is mediated through the 
surrogate: Y  Z | S
− Necessary condition for full mediation 2.: 

Pr(Y = 1|S = s, Z = 1) = Pr(Y = 1|S = s, Z = 0) for all s  (*)

− A biomarker satisfying (*) is a Statistical Surrogate 
[Frangakis and Rubin, 2002, Biometrics]
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Statistical Surrogate Criteria in Terms of GLMs

• Effect of Z on Y:
− logit(E[Y|Z]) = b0 + Z b1
− b1 = overall treatment effect on clinical outcome

• Effect of (Z, S) on Y:
− logit(E[Y|Z, S]) = a0 + Z a1 + S a2
− a1 = treatment effect on clinical outcome controlling for S
− Full mediation condition holds if a1 = 0

• More generally, 1 – a1/b1   is the proportion of the treatment 
effect explained (PTE) by S

[Freedman, Graubard, Schatzkin, 1992, Stats Med]

12

Unmeasured Common Causes (Graphical)

• a1=0 means that E[Y|Z=1,S=s] = E[Y|Z=0,S=s] for all s

• The groups {Z=1, S=s} and {Z=0, S=s} are apples and oranges if 
there are unmeasured common causes of S and Y 
(Pearl, 2000, Causality)

If a common cause U is unaccounted for, then conditioning on S 
induces an association of Z and U, and thereby of Z and Y

Z S Y

U

Z Y

U
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What if There are Unmeasured
Common Causes of S and Y?

• If a common cause U is unaccounted for, then conditioning on S
induces an association of Z and U, and thereby of Z and Y

− Similar to the ‘no unmeasured confounders’ assumption routinely made 
for causal analyses in epidemiological studies 

• Thus, even if S mediates the entire effect of Z on Y and Z has no 
direct effect on Y controlling for S, it does not follow that

Z  Y | S (or, equivalently, that a1 = 0)

[this phenomenon discussed broadly including in Rosenbaum (1984, JRRS-
B), Robins (1986, Math Modeling), Pearl (2000, Causality textbook), 
Frangakis and Rubin (2002, Biometrics)]

14

What if There are Unmeasured 
Common Causes of S and Y?

• Practical point 1: When checking the full mediation condition include all 
baseline covariates X that may predict both S and Y

 Effect of Z on Y controlling for (X,S)

logit(E[Y|Z,S]) = a0 + Z a1 + S a2 + X a3

a1 = treatment effect on clinical outcome controlling for X and S
a1 = 0 indicates full mediation IF  X captures all common causes

When designing a trial plan to collect the putative simultaneous predictors!

• Practical point 2: Acknowledge there may be residual confounding, which 
may make important a sensitivity analysis
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What if Some Subjects Experience
Y=1 Before S is Measured?

• For simplicity Joffe and Greene (2008) assumed S and Y are both measured 
once, at fixed times, with S measured before Y, and S and Y are never 
missing

• In practice, typically some (or many) subjects experience Y=1 before S is 
measured

− e.g., VaxGen HIV vaccine efficacy trial (Flynn et al., 2005)

 S is measured at month 6.5 post-randomization
 62 of the 368 total HIV infections (17%) occurred prior to month 6.5

− e.g., RV144 HIV vaccine efficacy trial (Rerks-Ngarm et al., 2009) 

 S is measured at month 6 post-randomization
 15 of the 125 total HIV infections (12%) occurred prior to month 6

16

Unmeasured Simultaneous Predictors 
of Early and Later Clinical Risk

• Y = Indicator of infection before the biomarker is measured

• For validity the statistical surrogate approach assumes no 
unmeasured simultaneous predictors V of Y and Y

− That is, for validity there cannot be any unaccounted for subject 
characteristics that predict both early and later clinical risk

− Practically speaking, this means that for validity one must 
control for all clinical prognostic factors
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Summary on No
Unmeasured Simultaneous Predictors 

• For validity the statistical surrogate approach assumes both:

− No unmeasured simultaneous predictors V of Y and Y (i.e., of early and 
later clinical risk)

− No unmeasured simultaneous predictors U of S and Y

Early Infection (Y)

Vaccination Status (Z) Infection (Y)S

U

18

2. Controlled Natural Direct/Indirect Effects 
Framework (Mediation)

• Literature with key contributors Judea Pearl, James 
Robins, Sanders Greenland
– Robins and Greenland (1992, Epidemiology)

– Pearl (2001, Proceedings of the 17th Conference in Uncertainty 
in Artificial Intelligence)

• Need potential outcomes notation 
(Neyman, 1923; Rubin, 1974)
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Potential Outcomes/Counterfactuals

• Potential Outcomes/Counterfactuals Framework

– Use of counterfactuals by the Father of Probability: Blaise
Pascal, The Pensees (1660), No. 413, Lafuma Edition

“Cleopatra’s nose: if it had been shorter the whole 
face of the earth would have been different.”

• Most historians acknowledge that Marc Antony’s falling in 
love with Cleopatra played a major role in the fall of the 
Roman Republic

• For many, counterfactuals are a natural way of thinking 

20

Potential Outcomes/Counterfactuals

• Notation
− Si(Z) = potential immune response endpoint under assignment Z; for Z = 0, 1

− Yi(Z) = potential clinical endpoint under assignment Z;                 for Z = 0, 1

• Individual Causal Effects
− A contrast in Si(1) and Si(0) is a causal effect on S for subject i

− A contrast in Yi(1) and Yi(0) is a causal effect on Y for subject i

• Average causal effects: E[Si(0) ‐ Si(1)], E[Yi(0) ‐ Yi(1)]  



7/5/2013

11

21

2. Controlled Natural Direct and 
Indirect Causal Effects (Mediation)

• Notation
 Yi(Z, S) = potential clinical endpoint under assignment to Z and to S

• Individual Causal Effects
− A contrast in Yi(z, s) and Yi(z’, s’) is a causal effect on Y for subject i
− Direct effect (at s):  Yi(0, s) ‐ Yi(1, s) [hold S fixed at s]

− Indirect effect (at s):  Overall effect – direct effect
[Yi(0) ‐ Yi(1)] – [Yi(0, s) ‐ Yi(1, s)]

• Average Causal Effects
− Direct effect (at s): E[Yi(0, s) - Yi(1, s)]
− Indirect effect (at s): E[Yi(0) - Yi(1)] – E[Yi(0, s) - Yi(1, s)]

22

2. Controlled Natural Direct and 
Indirect Causal Effects (Mediation)

• Average Causal Effects
− Direct effect    (at s): E[Yi(0, s) ‐ Yi(1, s)]

− Indirect effect (at s): E[Yi(0) ‐ Yi(1)] – E[Yi(0, s) ‐ Yi(1, s)]

• A valid surrogate in this paradigm has no direct effect for all s
− i.e., E[Yi(0, s) ‐ Yi(1, s)] = 0 for all s
− That is, S fully mediates the effect of Z on Y
− i.e., “the treatment effect on the clinical endpoint is fully through the 

surrogate/fully mediated by the treatment effect on the surrogate 
endpoint” 

• A useful conceptual framework, decomposing the overall effect into 
component effects
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• Of the 4 frameworks, this one may be the best suited for assessing 
mediation (e.g., as argued by papers of Tyler VanderWeele)

• However, this approach requires conceivability of manipulating a 
placebo recipient’s biomarker level to what it would have been had s/he 
been assigned the vaccine 
– In trials of subjects without prior exposure to the pathogen: Inconceivable 
– In trials of subjects with prior exposure: May be conceivable in rare instances, 

but more likely inconceivable due to heterogeneity of host genetics and other 
host factors 

– Where it is conceivable, it is still challenging to assess mediation because 
unverifiable assumptions are needed (and thus sensitivity analysis is warranted)

• Gilbert, Hudgens, and Wolfson (2011, International Journal of Biostatistics) 
discuss the conceivability and utility of this approach 

2. Natural Direct/Indirect Effects 
Framework (Mediation)

24

Part 2:

Principal Stratification Approach
(Gilbert and Hudgens 2008, Biometrics)
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Principal Surrogate Endpoints 
(Frangakis and Rubin 2002, Biometrics)

• In the principal stratification framework, the levels of S are not 
controlled/manipulated/assigned, they are what they happen to be

• Notation
− Si(Z) = potential immune response endpoint under assignment Z; 

for Z = 0, 1

− Yi(Z) = potential clinical endpoint under assignment Z; for Z = 0, 1

• Causal Effects
− A contrast in Si(1) and Si(0) is a causal effect on S for subject i
− A contrast in Yi(1) and Yi(0) is a causal effect on Y for subject i

26

Heuristic of Principal Surrogate Approach 

Probability of Being Protected as a Function of Si(1) – Si(0)  
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Assumptions

A1  Stable Unit Treatment Value Assumption (SUTVA):

(Si(1), Si(0), Yi(1), Yi(0)) is independent of the treatment assignments Zj of other 
subjects

− A1 implies “consistency”: (Si(Zi), Yi(Zi)) = (Si, Yi)

A2  Ignorable Treatment Assignments: 

Zi is independent of (Si(1), Si(0), Yi(1), Yi(0))

− A2 holds for randomized blinded trials

A3 Equal individual clinical risk up to time  that S is measured [Y
i(1) = 1 if 

and only if Y
i(0) = 1]

28

Definition of a Principal Surrogate

• Frangakis and Rubin (2002) suggested a surrogate 
endpoint should satisfy

Causal Necessity:
S is necessary for the effect of treatment on the 
outcome Y in the sense that an effect of treatment 
on Y can occur only if an effect of treatment on S
has occurred 

− Si(1) = Si(0)   Yi(1) = Yi(0)
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Definition of a Principal Surrogate
(Revised from Gilbert and Hudgens, 2008)

• Define
risk(1)(s1, s0) = Pr(Y(1) = 1|S(1) = s1, S(0) = s0)

risk(0)(s1, s0) = Pr(Y(0) = 1|S(1) = s1, S(0) = s0)

• A contrast in risk(1)(s1, s0) and risk(0)(s1, s0) is a causal effect on Y for the 
population {S(1) = s1, S(0) = s0}

• A principal surrogate is a biomarker satisfying 2 conditions, the first of 
which is:
risk(1)(s1, s0) = risk(0)(s1, s0) for all s1 = s0    

• This property is Average Causal Necessity:

− S(1) = S(0) = s     E[Y(1) | S(1) = S(0) = s] = E[Y(0) | S(1) = S(0) = s]

− i.e., “without the vaccine-induced immune response, there is no 
protection”

30

Definition of a Principal Surrogate
(Revised from Gilbert and Hudgens (2008)

• The second property is that the clinical treatment effect [measured by a 
contrast in risk(1)(s1, s0) and risk(0)(s1, s0)] is sensitive to the values (s1, s0)

i.e., the variables (S1, S0) modify vaccine efficacy 

• Thus, a principal surrogate is defined to be a biomarker satisfying 
average causal necessity [need a vaccine-induced immune response for 
protection] and that is an effect modifier [clinical treatment efficacy varies 
markedly with levels of (S1, S0)]

• Note: This definition allows for a spectrum of principal surrogates, some 
more  useful than others, depending on the extent to which clinical 
treatment efficacy varies with (S1, S0)

– Stronger effect modification implies more useful surrogate
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Principal Surrogate Value

• A biomarker with some surrogate value should have
s1 near s0 risk(1)(s1, s0) is near risk(0)(s1, s0)

− There are some s1≠ s0 for which risk(1)(s1, s0) is far from risk(0)(s1, s0)

• Strong Average Causal Sufficiency (Strong ACS):

S is sufficient for the effect of treatment on the outcome Y in the sense that 
an effect of treatment on S implies an effect of treatment on Y

− s1 ≠ s0  E[Y(1) | s1, s0] ≠ E[Y(0) | s1, s0]

− i.e., “A vaccine effect on the marker implies there is some 
protection”

32

Principal Surrogate Value

• Two heuristically desirable properties of a good surrogate:

1. Specificity: VE = 0% implies S(1) =d S(0)

- i.e., S(1) ≠d S(0) implies VE ≠ 0%

2. Sensitivity: VE ≠ 0% implies S(1) ≠d S(0)

- i.e., S(1) =d S(0) implies VE = 0%

• Case CB:

– ACN  Sensitivity

– ACN + Strong ACS  Specificity

• General Case:

– ACN + Strong ACS  Specificity

– ANC + Strong ACS  Sensitivity under 1 of 2 extra conditions                        
[P(S(1) ≥ S(0))=1 or ‘no harm for any subgroup’ CEP(s1, s0) ≥ 0]

This highlights that ACN and
Strong ACS are useful conditions 

to check
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Causal Effect Predictiveness (CEP) Surface

• Let h(x, y) be a known contrast function with h(x, x) = 0
− e.g., h(x, y) = x – y,       log(x / y),       1 – x / y  

• CEP surface:

CEPrisk(s1, s0) = h(risk(1)(s1, s0), risk(0)(s1, s0))

− E.g., CEPrisk(s1, s0) = 1 ‐ risk(1)(s1, s0) / risk(0)(s1, s0) [= VE(s1, s0)]

34

Causal Effect Predictiveness (CEP) 
Surface in Terms of Marker Percentiles

• Huang, Pepe, and Feng (2007, Biometrics) proposed judging the value of a 
continuous marker S for predicting disease Y by the predictiveness curve:

R(v) = Pr(Y = 1|S = F‐1(v)) v [0,1],   S  F

• With S(1) ~ F(1), define
R(1)(v1, v0) = Pr(Y(1) = 1|S(1) = F

‐1
(1)(v1), S(0) = F

‐1
(1)(v0))

R(0)(v1, v0) = Pr(Y(0) = 1|S(1) = F
‐1
(1)(v1), S(0) = F

‐1
(1)(v0))

• CEP surface:

CEPR(v1, v0) = h(R(1)(v1, v0), R(0)(v1, v0)) 
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CEPR(v1, v0) Surface: Biomarker 
with No Surrogate Value

CEPR(v1, v0)

36

CEPR(v1, v0) Surface: Biomarker 
with High Surrogate Value

CEPR(v1, v0)
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CEP Surface in Special Case
Si(0) = c for all i

• This special case typically occurs in vaccine trials where 
enrolled subjects are naïve to the pathogen 

• In this case the CEP surface is a curve 

CEPrisk(s1, c)   or   CEP
R(v1, F(1)(c))

• A principal surrogate is a biomarker with 
CEPrisk(c, c) = 0 and 
CEPrisk(s1, c) > 0  varies markedly with s1

38

Marginal CEP Curve for the General Case

• Define
risk(1)(s1) = Pr(Y(1) = 1|S(1) = s1)

risk(0)(s1) = Pr(Y(0) = 1|S(1) = s1)

• Marginal CEP curve:

mCEPR(s1) = h(risk(1)(s1), risk(0)(s1)) 

• Marginal CEP curve with percentile formulation:

mCEPR(v1) = h(R(1)(v1), R(0)(v1)) 
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Illustration of Marginal CEP Curve

Marker Quantile v1

mCEPR(v1)

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0
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Summary Measures of Surrogate Value

• Consider 1-sided setting where interest is in assessing if greater treatment 1 
biomarker responses predict clinical benefit of treatment 1 [e.g., placebo-
controlled trial]

• Following Frangakis and Rubin (2002), consider ‘dissociative’ and 
‘associative’ effects

− Dissociative effect = no treatment effect on marker but a treatment 
effect on the clinical  endpoint

− Associative effect = treatment effect on the marker and on the clinical 
endpoint

− If a marker is valuable as a surrogate, then few subjects will have 
dissociative effects and many will have associative effects
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Summary Measures of Surrogate Value

• Define the expected dissociative effect (EDE) and the expected 
associative effect (EAE)

− EDE = E[CEPrisk(S(1),S(0))|S(1) = S(0)] 

− EAE(w) = E[w(S(1),S(0))CEPrisk(S(1),S(0))|S(1) > S(0)] 

• Based on these, define summary measures of surrogate value 
(proportion associative effect and associative span)

− PAE(w) = |EAE(w)| / [|EDE| + |EAE(w)|]

− AS = |EAE(w)| ‐ |EDE|

• PAE(w) > 0.5; AS > 0 suggests some surrogate value

42

Summary Measures of Surrogate Value

Black: no surrogate value

Blue: Perfect surrogate value

Green and Red: Partial
Surrogate value

Green and Blue: Satisfy
Average Causal Necessity
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Challenge to Evaluating a Principal Surrogate: 
Missing Data

• The CEP surface is not identified from data collected in a 
randomized trial with standard design
− Only one of (Si(1), Yi(1)) or (Si(0), Yi(0)) is observed from each 

subject 

• Accurate prediction/modeling of the missing potential 
outcomes is required to estimate the CEP surface (and 
marginal CEP curve)

44

Part 3:

Identifiability and Estimation of the 
CEP Surface and CEP Curve 
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Dean Follmann’s
Augmented Vaccine Efficacy Trial Designs

• Follmann (2006, Biometrics) proposed augmented 
vaccine trial designs for discerning whether an immune 
response reliably predicts VE (i.e., a specific SoP)

• Two strategies for predicting S(1) for placebo recipients
− Baseline Immunogenicity Predictor (BIP)
− Closeout Placebo Vaccination (CPV)

• Follmann developed estimation approaches for 
augmented designs with BIP, CPV, or both

• Gilbert and Hudgens (2008) considered the BIP 
approach only

46

Baseline Immunogenicity Predictor (BIP) 
Approach

• More carefully, recall that S is only meaningfully measured in 
subjects who have not experienced the disease endpoint by time 
when S is measured  so the condition we really need is

W, S(1) | Z = 1, Y = 0   =d W, S(1) | Z = 0, Y = 0      (*)

• This requirement is the reason why we assume A3 [i.e., Y
i(1) = 1 if 

and only if Y
i(0) = 1] : A1‐A3 imply (*)

• Without A3, (*) may not hold, in which case it is not valid to use a 
regression model to fill in the S(1)’s of placebo recipients based on 
their W’s 

• For notational simplicity, henceforth all conditional distributions 
implicitly condition on Y = 0 
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Baseline Immunogenicity Predictor (BIP) 
Approach*

Evaluate correlation
of W and S(1) in
vaccine group

Predict S(1) from 
vaccine group model 
andW in placebos 

Wi

Wi

Si(1)

Si(1)

*Figure from Follmann (2006, Biometrics)

48

Build on Two-Phase Sampling Methods
• Case-cohort or case-control sampling

− (W, S(1)) measured in 

• All infected vaccines                                        

• Sample of uninfected vaccines
− W measured in

o All infected placebos

o Sample of uninfected placebos

• 2-Phase designs (E.g., Prentice, 1986, Biometrika; Kulich and and Lin, 
2004, JASA; Breslow et al., 2009, AJE, Stat Biosciences)
− Phase 1: Measure inexpensive covariates in all subjects
− Phase 2: Measure expensive covariates X in a sample of subjects

• Our application

− Vaccine Group: Exactly like 2-phase design with X = (W, S(1))

− Placebo Group: Like 2-phase design with X = (W, S(1)) and S(1) missing
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IPW Case-Cohort Methods Do Not Apply:
Hence we use a Full Likelihood-Based Method

• None of the case-cohort methods described earlier in the 
workshop apply to this problem 

• The reason is that they are all inverse probability weighted 
(IPW)-based methods, using partial likelihood score 
equations that sum over subjects with phase-2 data only, 
which assume that every subject has a positive probability 
that S(1) is observed

• However all placebo subjects have zero-probability that 
S(1) is observed

• To deal with this problem, we use full likelihood methods, 
for which the score equations sum over all subjects

50

Maximum Estimated Likelihood with BIP
(Pepe and Fleming, 1991)

• Posit models for risk(1)(s1,0; ) and risk(0)(s1,0; )

• Vaccine arm: 
− (Wi, Si(1)) measured: Likld contribn risk(1)(Si(1), 0; )

− (Wi, Si(1)) not measured: risk(1)(s1, 0; ) dF(s1)

• Placebo arm:
− Wimeasured: Likld contribn risk(0)(s1, 0; ) dFS|W(s1| Wi)

− Wi not measured:                                 risk(0)(s1, 0; ) dF(s1)

• L(, FS|W, F) = i risk(1)(Si(1),0; )Yi (1 ‐ risk(1)(Si(1),0; ))1‐Yi]Zi }i  [Vx subcohort]

 risk(0)(si,0; )dFS|W(s1|Wi)
Yi (1 ‐ risk(0)(s1,0; )) dFS|W(s1|Wi)

1‐Yi]1‐Zi }i       [Plc subcohort]

 risk(1)(si,0; )dF(s1)Yi (1 ‐ risk(1)(s1,0; )) dF(s1)1‐Yi]Zi }1‐i [Vx not subcohort]

 risk(0)(si,0; )dF(s1)Yi (1 ‐ risk(0)(s1,0; )) dF(s1)1‐Yi]1‐Zi }1‐i [Plc not subcohort]
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Maximum Estimated Likelihood Estimation
(MELE)

• Likelihood L(, FS|W, F)
−  is parameter of interest [CEP surface and marginal CEP curve 

depend only on ]
− FS|W and F are nuisance parameters

Step 1: Choose models for FS|W andF  and estimate them based on   
vaccine arm data

Step 2: Plug the consistent estimates of FS|W and F into the likelihood, 
and maximize it in 
− e.g., EM algorithm

Step 3: Estimate the variance of the MELE of , accounting for the 
uncertainty in the estimates of FS|W andF

− Bootstrap

52

Modeling Approach 1
(Fully Parametric)

• Assume:

− FS|X,W and FW|X have specified parametric distributions

− S(1) is continuous subject to “limit of detection” left-censoring:

− S(1) = max(S*(1), 0), where S*(1) has a continuous cdf

− A4-P: Structural models for risk(z) (for z=0, 1)

− risk(z)(s1, 0, x, w; z) = g(z0 + z1 s1 + Tz2 x + Tz3 w), g a known link

• Example:
FW|X normal, FS|X,W censored normal with left-censoring below 0, A4-P holds 

with g = , the standard normal cdf

• No interactions assumption: One of the components of (T
12, T

13) equals 
the corresponding component of (T

02,  T
03 ) (untestable) 
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Modeling Approach 1
(Fully Parametric)

• Interpretation:
 With h(x, y) = g-1(x) - g-1(y) 

CEPrisk(s1, 0, x, w) = (10 - 00) + (11 - 01)s1 + (12 - 02)Tx + (13 - 03)Tw

• Under assumption of no interactions between Z and X nor between 
Z and W:

CEPrisk(s1, 0) = (10 - 00) + (11 - 01)s1

= covariate-adjusted CEP-curve

54

Parametric Approach:
Interpretation of Parameters

CEPrisk(s1, 0) = (01 - 00) + (11 - 10)s1

 S satisfies average causal necessity                 01 =00 

 11 = 10 indicates a positive treatment effect on S does not 
predict a beneficial clinical effect

 11 < 10 indicates it does predict a beneficial clinical effect (i.e., 
some effect modification)

• A ‘good’ surrogate has |01 ‐ 00| near 0 and |11 ‐ 10|
large
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Modeling Approach 2
(Fully Nonparametric)

• Assume:
− S and W categorical with J and K levels; Si(0)=1 for all i
− Nonparametric models for P(S(1)=j, W=k)
− A4-NP: Structural models for risk(z) (for z=0, 1)

risk(z)(j, 1, k; ) = zj + ’k for j=1, …, J; k=1, …, K

Constraint: 0 ≤ zj + ’k ≤ 1 and k ’k = 0 for identifiability

• No interactions assumption: W has the same effect on risk for 
the 2 study groups (untestable)

56

Modeling Approach 2
(Fully Nonparametric)

• Interpretation:
− With h(x, y) = log (x / y)

CEPrisk(j, 1) = log (avg‐risk(1)(j, 1) / avg‐risk(0)(j, 1)) 

where avg‐risk(z)(j, 1) = (1/K) k risk(z)(j, 1, k; ) 

VE(j, 1) = 1 – exp{CEPrisk(j, 1)}
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Interpretation
(Fully Nonparametric)

• With VE(j, 1) = 1 ‐ avg‐risk(1)(j, 1) / avg‐risk(0)(j, 1):

− S is a principal surrogate if

VE(1, 1) = 0 andVE(j, 1) > 0 for all j > 1

• A biomarker with some value as a surrogate will have

− VE(1, 1) near 0 

− VE(j, 1) > 0 for some j > 1

• The most useful surrogate will have VE(j, 1) large for some j > 1

58

Modeling Approach 2
(Fully Nonparametric)

• Wald tests for whether a biomarker has any surrogate value

− Under the null, PAE(w) = 0.5 and AS = 0

− Z = (Est. PAE(w) – 0.5)/ s.e.(Est. PAE(w))

− Z = Est. AS/ s.e.(Est. AS) 

o Estimates obtained by MELE; bootstrap standard errors

• For nonparametric case A4‐NP, test H0: CEPrisk(j, 1) = 0 vs H1: CEPrisk(j, 1) 
increases in j (like Breslow-Day trend test)

− T = j>1(j‐1) {Est. 0j – (Est. 0j + Est. 1j)(Est. z0 /(Est. z0 + Est. z1))}
divided by bootstrap s.e.

Est. z = (1/J) j zj
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Part 4:

Simulations

60

Simulation Plan
(Based on VaxGen Efficacy Trial)

• Biomarker of interest: S = 50% neutralization titer against the 
recombinant gp120 molecule measured at the month 1.5 visit (MN Neuts
considered earlier in the workshop)

• 66 of 71 placebo recipients had S left-censored below LOQ 1.65

• Range of S is [1.65, 4.09]; rescale to [0, 1] so that Si(0) = 0
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Simulation Plan

• Step 1: For all N=5403 subjects, generate (Wi, Si(1)) from a bivariate
normal with means (0.41, 0.41), sds (0.55, 0.55), correlation
 = 0.5, 0.7, or 0.9

 sd of 0.55 chosen to achieve the observed 23% rate of left‐censoring

 Values of Wi, Si(1) < 0 set to 0; values > 1 set to 1 

• Step 2: Bin Wi and Si(1) into quartiles

 Under model A4‐NP generate Yi(Z) from a Bernoulli(zj +’k) 
with the parameters set to achieve:

o P(Y(1) = 1) = 0.067 and     P(Y(0) = 1) = 0.134 (overall VE = 50%)

o The biomarker has either (i) no or (ii) high surrogate value

62

Simulation Plan

• Recall CEPrisk(j, 1) = log (avg‐risk(1)(j, 1) / avg‐risk(0)(j, 1))  

• Scenario (i) (no surrogate value)
− CEPrisk(j, 1) = ‐0.69    for j = 1, 2, 3, 4

− i.e., VE(j, 1) = 0.50    for j = 1, 2, 3, 4

• Scenario (ii) (high surrogate value)
− CEPrisk(j, 1) = ‐0.22, ‐0.51, ‐0.92, ‐1.61  for j = 1, 2, 3, 4

− i.e., VE(j, 1) = 0.2, 0.4, 0.6, 0.8     for j = 1, 2, 3, 4
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Simulation Plan

• Step 3: Create case-cohort sampling (3:1 control: case)

− Vaccine group: (W, S(1)) measured in all infected (n=241) and a 
random sample of 3 x 241 uninfected 

− Placebo group: W measured in all infected (n=127) and a random 
sample of 3 x 127 uninfected

• The data were simulated to match the real VaxGen trial as closely as 
possible

64

Questions Evaluated by the Simulations

• Bias of the MELEs of 
− zj
− CEPrisk(j, 1) [equivalent to VE(j, 1)] 

− AS

− PAE(w) for w(j) = 1,  j,  I(j=4)

• Coverage probabilities of bootstrap percentile CIs for the above 
parameters

• Power of Wald tests and of the test-for-trend
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Model A4-NP Simulation Results*

*In Gilbert and Hudgens (2008, Biometrics)

66

Model A4-NP Simulation Results*

Trend tests: Power 0.83, 0.99, > 0.99 for  = 0.5, 0.7, 0.9
*In Gilbert and Hudgens (2008, Biometrics)
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Additional Simulation Study

• Evaluate the performance of the MELE method with binned covariates 
when the data were generated from the continuous model A4-P:
− risk(z)(s1, 0, w; z) = (z0 + z1 s1 + z3 w)

• Vaccine group: Set (10, 11, 13) = (-1.21, -0.67, -0.1) [based on a probit
regression fit to the VaxGen data]

• Placebo group: Set (00, 01, 03) such that VE = 50%, 03 = 13 and either
(i) 01 = 11 (no surrogate value) 
(ii) 01 = 0   (high surrogate value) 

• With h(x, y) = -1(x) - -1(y):

(i): CEPrisk(s1, 0) = 10 - 00 = -0.11 [AS = 0; PAE(w) = 0.5]
(ii): CEPrisk(s1, 0) = 10 - 00 + (11 - 01)s1 = -0.11 – 0.67 s 

[AS = 0.67, PAE(w) = 0.82-0.88]        

68

Results: Additional Simulation Study*

*In Gilbert and Hudgens (2008, Biometrics)
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Conclusions of Simulation Study

• The MELE method of Gilbert and Hudgens performs well for realistically-
sized Phase 3 vaccine efficacy trials, if there are baseline covariates that 
explain at least 50% of the variation in Y

• This underscores the importance of developing baseline predictors of 
immunogenicity endpoints

• Importantly, the good performance depends on the assumptions A3 and 
A4, which are not fully testable (more in discussion)

• R code for the nonparametric method available at the Biometrics website 
and at http://faculty.washington.edu/peterg/SISMID2013.html

70

• Crossing over more placebo subjects improves power of CPV and BIP + CPV 
designs

• There is no point of diminishing returns− steady improvement with more 
crossed over, out to complete cross-over

• If the BIP is high quality (e.g.,  > 0.50), then the BIP design is quite 
powerful with modest/moderate gain by adding CPV

• However, crossing over placebo subjects has additional value beyond 
efficiency improvement:
– Helps in diagnostic tests of structural modeling assumptions (A4)
– May help accrual and enhance ethics
– May adaptively initiate crossover, after some overall VE > 0 is established 

(Gilbert et al. 2011, Statistical Communications in Infectious Diseases)

Remarks on Power for Evaluating a 
Principal Surrogate Endpoint 

70
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Example of a Good Baseline Predictor for Which A4-P May Be Plausible: 
Antibody Levels to Hepatitis A and B Vaccination (n=75)

r = .85

No cross-reactivity: 
Supports plausibility
of A4-P

Czeschinski et al (2000) Vaccine 18:1074-1080
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Some Avenues for Identifying Good BIPs

• Demographic factors
– Age, gender, immune status

• Host genetics
– E.g., HLA type for predicting epitope-specific T cell responses 

(MHC binding prediction servers)

• Add beneficial licensed vaccines to efficacy trials and use known 
correlates of protection as BIPs (Follmann’s [2006] original 
proposal) 
– The HVTN is exploring this strategy in a Phase 1 trial in 

preparation for efficacy trials
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Tetanus and Hepatitis B Vaccination in HVTN 
097 (Planned Phase 1 Trial in South Africa)

Group N Month 0
(Day 0)

Month 1
(Day 28)

Month 2
(Day 56)

Month 4
(Day 112)

Month 7
(Day 196)

Month 7.5
(Day 210) Month 8.5

(Day 238)
Month 13
(Day 394)

1 60 Tetavax® ALVAC ALVAC
ALVAC + 

AIDSVAX®

B/E

ALVAC + 
AIDSVAX®

B/E

ENGERIX-
B®

ENGERIX-
B®

ENGERIX-
B®

2 20 Placebo ALVAC ALVAC
ALVAC + 

AIDSVAX®

B/E

ALVAC + 
AIDSVAX®

B/E
Placebo Placebo Placebo

3 20 Tetavax® ALVAC Placebo Placebo Placebo ENGERIX-
B®

ENGERIX-
B®

ENGERIX-
B®

• Assess known correlates/surrogates of protection as BIPs for a set of 
HIV-vaccine induced responses

• Antibodies to tetanus toxoid antigen and to hepatitis B surface antigen

74

Part 5:

Discussion



7/5/2013

38

75

Summary

• The CEP surface/marginal curve has a useful prediction 
interpretation for quantifying the surrogate value of a 
biomarker
− May also be called a “principal causal effect” surface or curve, or 

simply the “vaccine efficacy” surface/curve

• The original/initial methods were developed for 
estimation and testing under baseline predictor and/or 
close-out placebo vaccination study designs
− Binary and quantitative clinical endpoints (Follmann, 2006; 

Gilbert and Hudgens, 2008)

76

Elaborations of the Original Methods
• Huang and Gilbert (2011, Biometrics) used the same estimands and assumptions as 

Gilbert and Hudgens (2008), with 3 extensions:

– Relaxed the parametric assumptions on the distribution of (W, S)

– Studied the method for using multiple immune biomarkers [e.g., assess if 2 
immune biomarkers provide superior surrogate value compared to 1]

– Developed a new summary measure of surrogate value for 1 or more immune 
biomarkers (standardized total gain)

• Huang, Gilbert, and Wolfson (2013, Biometrics) developed an improved ‘pseudo-
score’ method incorporating BIP and/or CPV that is now the method of choice 
(Session 10)

• Similar methods with a time-to-event clinical endpoint have been developed

– Qin et al. (2008, Annals of Applied Statistics)

• Cox proportional hazards model with discrete failure time

– Erin Gabriel (2012 Ph.D. dissertation)

• Weibull model with continuous failure time

• Allows for time-varying VE and time-varying surrogate value
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Critical Assumptions for the Methods
• Key assumptions of Gilbert and Hudgens (2008) and Huang 

and Gilbert (2011)
− A3: Equal individual clinical risk up to time  that S is measured 

[Y
i(1) = 1 if and only if Y

i(0) = 1] 

• Will approximately hold for some trials [e.g., if   is near baseline]
• Important to develop sensitivity analysis methods that account for 

departures from A3 [addressed in Wolfson and Gilbert (2010, Biometrics)]

− A4: Structural models for risk(z)() functions, for z = 0, 1
• The model for risk(1)() is fully testable
• The model for risk(0)() is not fully testable

 For each specific surrogate endpoint evaluation problem requires 
careful thought, accounting for biological knowledge

 Use of closeout-placebo vaccination helps in testing modeling 
assumptions for risk(0)() [discussed in Follmann, 2006, Biometrics] 

− Consistency of the MELE also depends on consistent estimation of the nuisance 
parameters- at least these assumptions are fully testable
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Example Thought Process
to Justify an A4-P Assumption

• A4-P: Structural models for risk(z) (for z=0, 1)

risk(z)(s1, 0, x, w; z) = g(z0 + z1 s1 + Tz2 x + Tz3 w), g a known link

• No interactions assumption: One of the components of (T
12 , T

13) equals 
the corresponding component of (T

02, T
03 )  (untestable)

• Example:

risk(1)(s1, 0, x, w; 1) = (10 + 11 s1 + 12 x + 3 w)

risk(0)(s1, 0, x, w; 1) = (00 + 01 s1 + 02 x + 3 w)

This model allows baseline covariates X to effect Y differently in the 
vaccine and placebo groups; but assumes that, after accounting for X, W 
effects Y in the same way in the vaccine and placebo groups
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Part 6:

R Tutorial

80

R Tutorial:
Application of Gilbert and Hudgens

• R code for implementing the nonparametric method of Gilbert and Hudgens
introduced on slide 53:
A4-NP: Structural models for risk(z) (for z=0, 1)

risk(z)(j, 1, k; ) = zj + ’k  for j=1, …, J; k=1, …, K

Constraint: 0 ≤ zj + ’k ≤ 1 and k ’k = 0 for identifiability

• Recall the setting for which this method applies:
− Constant Biomarkers (no or minimal variation in S in placebo recipients)
− The BIP design is used with the baseline immunogenicity predictor W a 

categorical variable
− The biomarker to evaluate as a specific SoP, S, is categorical

• R code at: http://faculty.washington.edu/peterg/SISMID2013.html
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R Tutorial:
Application of Gilbert and Hudgens

• Exercise: Apply the Gilbert and Hudgens method to the same 
data-set that was assessed earlier for evaluating a CoR

• W = a binned/discretized version of the infectivity assay result

• S = a binned/discretized version of the MN Neuts measurement, 
and of the CD4 Blocking measurement

• Feel free to try one or another discretizations
− E.g., cut W and S into quartiles; or cut S into 2 parts in the search 

of a ‘threshold of protection’
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R Tutorial:
Application of Gilbert and Hudgens

• Suggest to perform the set of analyses that were done on the simulated 
data-sets described earlier 
− For each level j estimate 1j, 0j and hence estimate the parameter of interest 
− VE(j, 1) = 1 ‐ log (avg‐ risk(1)(j, 1) / avg‐risk(0)(j, 1)) 

− = 1 – log( k [1j +’k  ] / [k 0j + ’k  ]) 

− Estimate AS and PAE(w) for w(j) = 1 and for w(j) = j

− Compute 95% confidence intervals for each of the above parameters

− Compute p-values for testing

• H0j: VE(j, 1) = 0 vs H1j: VE(j, 1) > 0,  for j = 1, …, J

• H0: AS = 0 vs H1: AS > 0

• H0: PAE(w) = 0.5 vs H1: PAE(w) > 0.5

• H0: VE(j, 1) = 0 for all j vs H1: VE(j, 1) monotone non-decreasing in j with some 
< [trend test]
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• Is there evidence that either MN Neuts or CD4 Blocking levels 
have some value as a specific SoP?

• If so, what quality is the surrogate endpoint?

R Tutorial:
Application of Gilbert and Hudgens


