

Session 1 (Chan)	Introduction to Vaccines and Basic Concepts
Session 2 (Gilbert)	Introduction to Immune Correlates of Protection
Session 3 (Chan)	Evaluating Correlates of Protection using Individual, Population, and Titer-Specific Approaches
Session 4 (Gilbert)	Continuation of Session 2; plus Evaluating a Correlate of Risk (CoR)
Session 5 (Chan)	Use of Statistical Models in Assessing Correlates of Protection
Session 6 (Edlefsen)	Introduction to Sieve Analysis
Session 7 (Gilbert)	Thai Trial Case Study (Including Sieve Analysis)
Session 8 (Chan)	Validation using Prentice Criteria, Design Considerations
Session 9 (Gilbert)	Evaluating a Specific Surrogate of Protection Part I (Gilbert and Hudgens, 2008)
Session 10 (Huang)	Evaluating a Specific Surrogate of Protection Part II (Huang and Gilbert, 2011; Huang, Gilbert and Wolfson, 2013)

Importance of an "Immune Correlate of Protection"

- Developing an immune correlate is a central goal of vaccine research
 - One of the 14 Grand Challenges of Global Health of the NIH & Gates Foundation (for HIV, TB, Malaria)
- Immune correlates useful for:
 - Shortening trials and reducing costs
 - Guiding iterative development of vaccines between basic and clinical research
 - Guiding regulatory decisions
 - Guiding immunization policy
 - Bridging efficacy of a vaccine observed in a trial to a new setting
 - Pearl (2011, *International Journal of Biostatistics*) suggests that bridging is the critical use

FRED HUTCHINSON CANCER RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

What the Immune Correlates Study Assessed

- The analysis sought to discover Correlates of Risk: Immune response variables measured 2 weeks after the immunizations that predict whether vaccinees become HIV infected
- Thus, the study is designed to generate hypotheses that certain immune response variables are CoP and/or mCoPs, that would need validation in future research

FRED HUTCHINSON Cancer research **center**

VACCINE AND INFECTIOUS DISEASE DIVISION

Pilot Studies: Criteria for Advancing Assays to the Case-Control Study	
Criterion	
1. Measures a unique immunological function (not highly correlated with other assays)	\checkmark
Low false positive rate (judged in placebo recipients and pre- immunization responses of vaccinees)	\checkmark
3. Vaccine-induced responses with broad variability	\checkmark
4. Relatively low noise (e.g., high reproducibility on replicate samples)	\checkmark
5. Relatively low specimen volume requirement	\checkmark
6. Previously supported as a correlate of infection in the North American VaxGen trial of AIDSVAX	\checkmark
February 7, 2013 • 18	CHINSON RCH CENTER US DISEASE DIVISION

Down-Selected Primary Immune Variables (n=6)

Primary Variable	Principal Investigator
 Plasma IgA binding (14 Envelope panel) 	Georgia Tomaras
 IgG avidity score to A244 gp120 	Munir Alam
 Antibody-dependent cellular cytotoxicity (ADCC)- AE-92TH023. HIV infected CD4 T cells 	David Evans Michael Alpert
Neutralization of Tier 1 viruses (6 Envelope panel)	David Montefiori Rungpeung Sutthent Chitraporn Karnasutra
 IgG binding to scaffolded gp70-V1V2* 	Susan Zolla-Pazner
 CD4 T cell intracytoplasmic cytokines (IFNγ, IL-2, TNFα, CD154) stimulated by AE-92TH023 peptides 	Julie McElrath
gp70-V1V2 from Abe Pinter (1998, <i>Vaccine</i>); gp70 from murine leukem	ia virus
February 7, 2013 • 20	FRED HUTCHINS Cancer Research Cen

152 Secondary Immune Variables Assessed from 17 Assay Types

Assay Type	Investigators
gp120 V2 Env Binding	N. Karasavva (AFRIMS), M. Rao (USMHRP), G. Tomaras(Duke), S. Zolla-Pazner (NYU), P. Berman (UCSC),
 gp120 V3 Env Binding 	S. Zolla-Pazner (NYU)
HIV-1 Neutralization	R. Sutthent (Siriraj Hsptl), C Karnasuta (AFRIMS), D. Montefiori (Duke)
CD4 Induced Epitope Ab Env Binding	G. Lewis (UMD)
IgA Env Binding-Luminex	G. Tomaras (Duke Univ.)
IgG Env Binding-Luminex	G. Tomaras (Duke Univ.)
IgG Avidity	S. M. Alam (Duke Univ.)
Overlapping Peptide Microarray	D. Montefiori (Duke Univ.), R. Koup (VRC/NIH)
Blocking of CD4 Binding to Env	B. Haynes (Duke Univ.), P. Berman (UCSC)
Blocking of MAb A32	A. DeVico (UMD), B. Haynes (Duke Univ.)
• ADCC	G. Ferrari (Duke Univ.)
IgG3 Env Binding	G. Tomaras (Duke Univ.)
Env-specific CD4 T Cell ICS	J. McElrath (FHCRC)
Env-stimulated PBMC Luminex	J. McElrath (FHCRC)
Env Stimulated CFSE	J. McElrath (FHCRC)
Env Stimulated B Cell ELISpot	J. McElrath (FHCRC)
NK cell phenotyping	J. McElrath (FHCRC)
February 7, 2012 + 21	LIFKED HUTCHINSON CANCER RESEARCH CENTER
rebruary 7, 2015 • 21	VACCINE AND INFECTIOUS DISEASE DIVISION

Statistical Assessment of Week 26 Immune Biomarkers as Correlates of Risk

- Two regression models that accounted for the 2-phase sampling design
 - Logistic regression full maximum likelihood*
 - Cox proportional hazards partial likelihood § (yielded ~ the same results)

Confounding control

- Adjust for gender, baseline behavioral risk (low, medium, high)
- Evaluate the 6 primary variables together in multivariate models, and as single variables

FRED HUTCHINSON CANCER RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

* Breslow and Holubkov (1997, *Biometrika*) [§] Borgan et al. estimator II (2000, *Lifetime Data Analysis*)

Pairwise Chose C	Pairwise Scatterplots of the 6 Primary Variables (Effectively Chose Only Weakly-Correlated Variables)						
Plasma IgA binding antibody score	RU'sec'10 ⁵ 0.5 0.5 1.5	PABC -0.5 0.05 0.15	AUC-MB 1.0 1.4 1.8 2.1	OD 2 0.2 0.5 1.0 2.0	Net% cytokine expressing CD4+ cells 0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2 0 0 0.4 0.8 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
r = 0.45	Surface Plasmon Resonance plasma IgG avidity				2.0 1.1.5 2 1.1.0 % 0.05 6 -0.5 6 -0.5		
r = 0.15	r = 0.25	ADCC infected target cells			0.15 0.05 B 0.00 C -0.05		
r = 0.37	r = 0.49	r = 0.44	Neutralization acore		220 18.00 14.00 14.00 14.00 14.00 14.00 14.12		
r = 0.26	r = 0.38	r = 0.27	r = 0.53	Scaffolded gp70-V1V2 ELISA binding	2.0 1.0 0.5 0.2		
r = 0.23	r = 0.28	r = 0.27	r = 0.34	r = 0.40	CD4+ T colls score		
• •				VACCINE	AND INFECTIOUS DISEASE DIVISION		

Multivariate Logistic Regression:

Quantitat	ive Va	riab	les
-----------	--------	------	-----

Variable	Relative risk per SD	P-value	Q-value 0.08 0.56
IgA Binding to Envelope Panel	1.54	0.027 0.37	
IgG Avidity A244 gp120	0.81		
ADCC AE.HIV-1 Infected CD4 Cells	0.92	0.68	0.68
Tier 1 Neutralizing Antibodies	1.37	0.22	0.45
IgG Binding to gp70-V1V2	0.57	0.015	0.08
CD4+ T Cell Intracellular Cytokines	1.09	0.61	0.68
All 6 variables together in multivaThe 2 correlates in multivariate an	riate analysis: p≕ alysis: p=	0.08 0.01	
February 7 2012 • 27	F	RED HUT	CHINSC Arch Cen

These Results Generate Two Hypotheses About Potential CoPs

- Vaccinees with high plasma IgG gp70-V1V2 antibodies received protection from vaccination, whereas those with low responses received no protection
- Vaccinees with low plasma IgA binding responses to envelopes received protection from vaccination, whereas those with high responses received no protection

(Note: These CoP hypotheses are in the language of statistical prediction, not mechanism)

Strategies to Assess CoRs as CoPs and as Mechanistic CoPs

- Reproduce the results by re-running the assay on the case samples and on new control samples
- Collect the requisite data for correcting the CoR analysis for potential exposure confounding
- Collect the requisite data for directly assessing the utility of the CoR as a CoP
- Conduct sieve analysis of HIV sequences to assess whether the vaccine applied pressure on the HIV Env target(s) specific to the immune correlate
- Design follow-up efficacy trials to test the generated hypotheses
- Collaborate with basic scientists, such that the statistical results lead to the design of experiments to test the generated hypotheses

HUTCHINSON R RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

FRED HUTCHINSON

VACCINE AND INFECTIOUS DISEASE DIVISION

H CENTER

February 7, 2013 • 43

Strategies to Assess CoRs as CoPs and as Mechanistic CoPs

Approaches beyond clinical efficacy trials are needed

- Basic science:
 - Understand specificity/functionality of the immune response biomarkers
 - Understand all the effects of vaccination and the exposure-infection process

Laboratory validation studies:

- Understand measurement/variability characteristics of biomarkers
- Causal manipulation studies in animal trials
 - E.g., repeated low-dose challenge studies comparing vaccine regimens with and without induction of the immune response biomarker
 - Passive biomarker (e.g., gp70-V1V2 antibody) transfer repeated low-dose challenge studies in macaques
 - Use R5 SHIVs derived from RV144 breakthrough infections

Strategies to Assess CoRs as CoPs and as Mechanistic CoPs

- Reproduce the results by re-running the assay on the case samples and on new control samples
- Collect the requisite data for correcting the CoR analysis for potential exposure confounding
- Collect the requisite data for directly assessing the utility of the CoR as a CoP
- Conduct sieve analysis of HIV sequences to assess whether the vaccine applied pressure on the HIV Env target(s) specific to the immune correlate
- Design follow-up efficacy trials to test the generated hypotheses
- Collaborate with basic scientists, such that the statistical results lead to the design of experiments to test the generated hypotheses

HUTCHINSON R RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

Literature on Statistical Methods for Estimating the VE Curve via BIP and/or CPV

Article	Remarks	
1. Follmann (2006, Biometrics)	Binary outcome; BIP&CPV Estimated likelihood	
2. Gilbert and Hudgens (2008, Biometrics)	Binary outcome; BIP; Estimated likelihood; 2-phase sampling	
3. Qin, Gilbert, Follmann, Li (2008, Ann Appl Stats)	Time-to-event outcome (Cox model); BIP&CPV Estimated likelihood; 2-phase sampling	
4. Wolfson and Gilbert (2010, Biometrics)	Binary outcome; BIP&CPV Estimated likelihood; 2-phase sampling; relaxed assumptions	
5. Huang and Gilbert (2011, Biometrics)	Binary outcome; BIP&CPV Estimated likelihood; 2-phase sampling; relaxed assumptions; compare markers	
6. Huang, Gilbert, Wolfson (2013)	Binary outcome; BIP&CPV Pseudolikelihood; 2-phase sampling; relaxed assumptions; marker sampling design	
7. Miao, Li, Gilbert, Chan (2013)	Time-to-event outcome (Cox model); BIP; Estimated likelihood with multiple imputation; 2-phase sampling	
8. Gabriel and Gilbert (2013, submitted)	Time-to-event outcome (Weibull model); BIP+CPV; Estimated likelihood and pseudolikelihood; 2-phase sampling; threshold models	

VACCINE AND INFECTIOUS DISEASE DIVISION

February 7, 2013 • 51

Reverse Cumulative Distribution Curves 100 1.1.1 Percent >= Scaffolded gp70-V1V2 ELISA Binding 90 80 Not Infected 70 ···· Infected 60 50 40 30 20 10 0 0.2 0.5 1.0 2.0 Scaffolded gp70-V1V2 ELISA Binding FRED HUTCHINSON CANCER RESEARCH CENTER February 7, 2013 • 52 VACCINE AND INFECTIOUS DISEASE DIVISION

Sieve Analysis for Helping Interpret the V1V2 Antibody CoR

- The correlates analysis showed V1V2 antibodies predicted infection in the vaccine group only
- In contrast, sieve analysis examines evidence for a difference in the sequences of viruses infecting vaccine vs. placebo recipients
 - Observed differences attributable to the vaccine (it's a randomized trial)
 - Detection of a 'sieve effect' may suggest that the vaccine blocks infection with some types of exposing HIVs
 - In particular, if a sieve effect is detected in regions of V1V2 to which the RV144 vaccine directed antibodies, it may suggest these antibodies had a role in protection (as a CoP and as a mechanistic CoP)

FRED HUTCHINSON

VACCINE AND INFECTIOUS DISEASE DIVISION

CENTER

Local Sieve Analysis (Site Scanning)

V3 loop amino acid sequence	с і .
of reference GNE8 strain	TRPNNNTRRSIHIG-PGR-AFYATGEIIGDIRQ
Vaccine group V3 loop sequences 1. 2.	TRPNNNTRRRIHLG-PGR-AFYATG-IIGDIRQ TRPNNNTRKGIHIG-PGR-AFYATGEIIGNIRQ
217.	TRPSNNTRKGIHIG-PGR-AFYATEEITGDIRQ
Placebo group V3 loop sequences 1. 2.	<pre>TRPNNNTRTGVHLG-PGR-VWYATGDIIGDIRQTRPNNNTRRSIHIQ-PGR-AFYAT-DIIGDIRK</pre>
	TRPNNNTISKIRIR-PGRGSFYATNNIIGDIRQ
Gilbert, Wu, Jobes (2008, Biomet	trics)
	FRED HUTCHINSON CANCER RESEARCH CENTER
February 7, 2013 • 61	VACCINE AND INFECTIOUS DISEASE DIVISION

- To maximize power, pre-filter sites based on treatment-blinded data
 - Exclude difficult-to-align sites and too-conserved sites
 - Restrict analysis to the 85 V1V2 AAs constituting the gp70-V1V2 reagent
 - Restrict analysis to sites potentially part of reactive antibody epitopes
 - 3 types of biological input on 'antibody important' sites
 - Env reactivity hotspots of RV144 vaccine-induced binding antibodies (David Montefiori *et al.*)
 - Published monoclonal antibody-gp120 contact sites (Peter Kwong et al.)
 - Potential antibody epitopes based on structural biology (Bill Schief et al.)
- Rolland, Edlefsen et al. (2012, *Nature*) focused on the sites meeting all of the above criteria (n=9 Env V2 sites)

February 7, 2013 • 63

Env Binding Reactivity Hotspots Measured with Linear Peptide Microarrays*

- Montefiori et al. measured binding to 1453 linear peptides tiling Env (almost all 15-mers)
- Peptides from 7 HIV-1 subtypes
- Identified 4 reactivity hotspots spanning multiple peptides
- For each hotspot, an immune variable was defined as the average of the normalized intensities for all peptides on the array centered on the hotspot-region summit, and evaluated as a CoR

*Analysis led by Raphael Gottardo

February 7, 2013 • 64

HUTCHINSON R RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

Vaccine Efficacy by HIV Genotype
(Defined by Site 169, 181)

HIV-1 Genotype	Number AE Infections	Estimated VE*	95% CI	P-value
169 match	87	48%	18% to 66%	0.0036
169 mismatch	23	-55%	-258% to 33%	0.30
181 match	88	17%	-26% to 45%	0.38
181 mismatch	22	78%	35% to 93%	0.0028

*Estimated with a Cox model (Prentice et al., 1978, Biometrics)

- VE greater against 169-matched than mismatched HIV-1: p = 0.034**
- VE greater against 181-mismatched than matched HIV-1: p = 0.024**

**Differential VE assessed with a re-coded Cox model (Lunn and McNeil, 1995, Biometrics)

- induced by the vaccine?
 - E.g., epitope mapping via alanine scanning
- What are the candidate antibody effector functions that could mediate protection?
- What conformations of V2 can the vaccine-induced antibodies recognize?

February 7, 2013 • 75

R RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

Interpretation of Global Sieve Analysis Results

- What is the relative influence of different antibody contact sites on the apparent sieve effect?
 - Driven by certain monoclonal antibodies with certain specificities?
- No evidence of differential vaccine efficacy when restricted to the 19 Mab-gp120 contact sites in the V1V2 region (not shown)

FRED HUTCHINSON CANCER RESEARCH CENTER

VACCINE AND INFECTIOUS DISEASE DIVISION

February 7, 2013 • 91

Conclusions

1. A Prime-Boost HIV Vaccine Regimen Can Prevent HIV Infection

- In 2009, some interpreted the Thai trial result as a false positive
- Evidence supporting real VE > 0%
 - The identification of a target-specific immune correlate of risk, combined with a sieve effect in the targeted region and the functional work of Bart Haynes et al.
 - Estimated VE was highest during the period of maximal vaccine-induced immune responses and waned with immune responses
 - Estimated VE was at least as high in the fully immunized/perprotocol cohort compared to the intention-to-treat cohort (when analyzed with a causal method)

D HUTCHINSON Cer research **center**

VACCINE AND INFECTIOUS DISEASE DIVISION

FRED HUTCHINSON

VACCINE AND INFECTIOUS DISEASE DIVISION

ARCH CENTER

February 7, 2013 • 93

2. The Inter-Collaborative Team Approach Was Effective

- Factors aiding the ability to identify immune CoRs and CoPs
 - Pilot studies for down-selecting immune assays and for optimizing immune response biomarkers
 - Centralized and standardized statistical analysis of lab data
- This approach constitutes a model for consideration in other vaccine efficacy trial settings, auspicious when:
 - Samples are stored from key time-points in all trial participants, making it possible to measure immune responses in most cases
 - There are a large number of potential immune response assays to assess as correlates

3. The Results are Informing the Next HIV Vaccine Efficacy Trials

- The HIV Vaccine Trials Network is planning follow-up efficacy trials of prime-boost vaccine regimens
- Some regimen factors under consideration
 - Choice of vector prime (e.g., ALVAC, NYVAC, Adenovirus)
 - · Whether to add DNA to the prime regimen
 - Choice of protein boost, including optimal HIV sequences
 - Choice of adjuvant
 - Add an extra protein boost to improve durability of immune responses

red **hutchinson**

VACCINE AND INFECTIOUS DISEASE DIVISION

H CENTER

 The future trials will provide tests of whether vaccine regimens with improved V2-directed antibody responses have better VE

