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Outline

1 CoR Methods: Case-cohort sampling design Cox proportional hazards
model

• Continuous time

2 Key issues
• Sampling design
• Measurement error

3 Improved analysis method (Breslow et al., 2009)
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The Cox Model with a Case-Cohort Sampling Design

• Cox proportional hazards model

λ(t|Z ) = λ0(t)exp
{
βT0 Z (t)

}
• λ(t|Z ) = conditional failure hazard given covariate history until time t
• β0 = unknown vector-valued parameter
• λ0(t) = λ(t|0) = unspecified baseline hazard function

• Z are “expensive” covariates only measured on failures and subjects in
the subcohort
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Notation and Set-Up (Matches Kulich and Lin, 2004,
JASA)

• T = failure time (e.g., time to HIV infection diagnosis)

• C = censoring time

• X = min(T ,C ),∆ = I (T ≤ C )

• N(t) = I (X ≤ t,∆ = 1)

• Y (t) = I (X ≥ t)

• Cases are subjects with ∆ = 1

• Controls are subjects with ∆ = 0
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Notation and Set-Up (Matches Kulich and Lin, 2004,
JASA)

• Consider a cohort of n subjects, who are stratified by a variable V
with K categories

• ε = indicator of whether a subject is selected into the subcohort

• αk = Pr(ε = 1|V = k), where αk > 0

• (Xki ,∆ki ,Zki (t), 0 ≤ t ≤ τ,Vki , εki ≡ 1) observed for all subcohort
subjects

• At least (Xki ,∆ki ≡ 1,Zki (Xki )) observed for all cases

P. Gilbert (U of W) Session 4: Evaluating CoRs 07/2013 5 / 33

Estimation of β0

• With full data, β0 would be estimated by the MPLE, defined as the
root of the score function

UF (β) =
n∑

i=1

∫ τ

0

{
Zi (t)− Z̄F (t, β)

}
dNi (t), (1)

where
Z̄F (t, β) = S

(1)
F (t, β)/S

(0)
F (t, β);

S
(1)
F (t, β) = n−1

n∑
i=1

Zi (t)exp
{
βTZi (t)

}
Yi (t)

S
(0)
F (t, β) = n−1

n∑
i=1

exp
{
βTZi (t)

}
Yi (t)
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Estimation of β0

• Due to missing data (1) cannot be calculated under the case-cohort
design

• Many modified estimators have been proposed, all of which replace
Z̄F (t, β) with an approximation Z̄C (t, β), so are roots of

UC (β) =
K∑

k=1

nk∑
i=1

∫ τ

0

{
Zki (t)− Z̄C (t, β)

}
dNki (t)

• The double indices k , i reflect the stratification
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Estimation of β0

• The case-cohort at-risk average is defined as

Z̄C (t, β) ≡ S
(1)
C (t, β)/S

(0)
C (t, β),

where

S
(1)
C (t, β) = n−1

K∑
k=1

nk∑
i=1

ρki (t)Zki (t)exp
{
βTZki (t)

}
Yki (t)

S
(0)
C (t, β) = n−1

K∑
k=1

nk∑
i=1

ρki (t)exp
{
βTZki (t)

}
Yki (t)
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Estimation of β0

• The potentially time-varying weight ρki (t) is set to zero for subjects
with incomplete data, eliminating them from the estimation

• Cases and subjects in the subcohort have ρki (t) > 0

• Usually ρki (t) is set as the inverse estimated sampling probability
(Using the same idea as the weighted GEE methods of Robins,
Rotnitzky, and Zhao, 1994, 1995)

• Different case-cohort estimators are formed by different choices of
weights ρki (t)

• Two classes of estimators (N and D), described next
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N-estimators

• The subcohort is considered a sample from all study subjects
regardless of failure status

• The whole covariate history Z (t) is used for all subcohort subjects
• For cases not in the subcohort, only Z (Ti ) (the covariate at the failure

time) is used

• Prentice (1986, Biometrika): ρi (t) = εi/α for t < Ti and
ρi (Ti ) = 1/α

• Self and Prentice (1988, Ann Stat): ρi (t) = εi/α for all t
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N-estimators

• General stratified N-estimator

• ρki (t) = εi/α̂k(t) for t < Tki and ρki (Tki ) = 1

• α̂k(t) is a possibly time-varying estimator of αk

• αk is known by design, but nonetheless estimating αk provides greater
efficiency for estimating β0 (Robins, Rotnitzky, Zhao,1994)

• A time-varying weight can be obtained by calculating the fraction of
the sampled subjects among those at risk at a given time point
(Barlow, 1994; Borgan et al., 2000, Estimator I)
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D-estimators

• Weight cases by 1 throughout their entire at-risk period

• D-estimators treat cases and controls completely separately

• αk apply to controls only, so that αk should be estimated using data
only from controls

• Conditional on failure status, the D-estimator case-cohort design is
similar to that of the case-control design whether or not the
subcohort sampling is done retrospectively
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D-estimators

• General D-estimator

ρki (t) = ∆ki + (1−∆ki )εki/α̂k(t)

• Borgan et al. (2000, Estimator II) obtained by setting

α̂k(t) =
n∑
i

εki (1−∆ki )Yki (t)/
n∑
i

(1−∆ki )Yki (t),

i.e., the proportion of the sampled controls among those who remain at
risk at time t

• the cch package in R (by Thomas Lumley and Norm Breslow)
implements the case-cohort Cox model for N- and D-estimators (code
for using cch to analyze a data set is provided at
http://faculty.washington.edu/peterg/SISMID2013.html)
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Main Distinctions between N- and D- Estimators

• D-estimators require data on the complete covariate histories of cases

• N-estimators only require data at the failure time for cases

• For Vax004, the immune response in cases was only measured at the
visit prior to infection, so N-estimators are valid while D-estimators are
not valid
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Main Distinctions between N- and D- Estimators

• For N-estimators, the sampling design is specified in advance,
whereas for D-estimators, it can be specified after the trial
(retrospectively)

• D-estimators more flexible
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Gaps of Both N- and D- Estimators

Does Not Need Allows Outcome-
Full Covariate Dependent

Estimator Histories in Cases Sampling

N Yes No
D No Yes

• For time-dependent correlates, none of the partial-likelihood based
methods are flexible on both points

• All of the methods require full covariate histories in controls

• Full likelihood-based methods can help (later)
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Outline

1 CoR Methods: Case-cohort sampling design Cox proportional hazards
model

• Continuous time

2 Key issues
• Sampling design
• Measurement error

3 Improved analysis method (Breslow et al., 2009)
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Some Sampling Questions to Consider Further

• Prospective or retrospective sampling?

• How much of the cohort to sample?

• Sampling design: Which subjects to sample?
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Prospective or Retrospective Sampling?

Prospective sampling: Select a random sample for immunogenicity
measurement at baseline

• Advantages of prospective sampling
• Can estimate case incidence for groups with certain immune responses
• Can study correlations of immune response with multiple study

endpoints
• Practicality: The lab will know what subjects to sample as early as

possible, and there is one simple subcohort list
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Prospective or Retrospective Sampling?

Retrospective sampling: At or after the final analysis, select a random
sample of controls for immunogenicity measurement

• Advantages of retrospective sampling
• Can match controls to cases to obtain balance on important covariates

• E.g., balanced sampling on a prognostic factor gains efficiency
(balanced sampling = equal number of subjects sampled within each
level of the prognostic factor for cases and controls)

• Can flexibly adapt the sampling design in response to the results of the
trial

• E.g., Suppose the results indicate an interaction effect, with VE >> 0
in a subgroup and VE ≈ 0 in other subgroups. Could over-sample
controls in the ‘interesting’ subgroup.

Retrospective sampling may also sample controls at periodic intervals
during the study follow-up period
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Prospective or Retrospective Sampling?

For cases where there is one primary endpoint and it is not of major
interest to estimate absolute case incidence, retrospective sampling may be
typically preferred
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How Many Controls to Sample?

• In prevention trials, for which the clinical event rate is low, it is very
expensive and unnecessary to sample all of the controls

• E.g., VaxGen trial: 368 HIV infected cases; 5035 controls

• Rule of thumb: A K : 1 Control:Case ratio achieves relative efficiency
of 1− 1

1+K compared to complete sampling

K Relative Efficiency
1 0.50
2 0.67
3 0.75
4 0.80
5 0.83
10 0.91
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Which Controls to Sample?

Two-Phase Sampling

• Phase I: All N trial participants are classified into K strata on the
basis of information known for everyone: Nk in stratum k ;
N =

∑K
k=1 Nk

• Phase II: For each k , nk ≤ Nk subjects are sampled at random,
without replacement from stratum k , and ‘expensive’ information
(i.e., the immunological biomarker S) is measured for the resulting
n =

∑K
k=1 nk subjects
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Which Controls to Sample?

Principle: Well-powered CoR evaluation requires broad variability in the
biomarker response and in the risk of the clinical endpoint

• Can improve efficiency by over-sampling the “most informative”
subjects

• Disease cases (usually sampled at 100%)
• Rare or unusual immune responses; or rare covariate patterns believed

to affect immune response (e.g., HLA subgroups)

• Baseline auxiliary data measured in everyone most valuable when they
predict the missing data (i.e., the biomarker of interest)
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Measurement Error

Measurement error can reduce power to detect a CoR

Illustrative Example

• ‘True’ CoR S∗ ∼ N(0, 1)

• ‘Measured CoR’ S = S∗ + ε, ε ∼ N(0, σ2)

• Infection status Y generated from Φ(α + βS∗)

with α set to give P(Y = 1|S∗ = 0) = 0.20 and β set to give
P(Y = 1|S∗ = 1) = 0.15

σ2 ranges from 0 to 2 (no-to-large measurement error)

P. Gilbert (U of W) Session 4: Evaluating CoRs 07/2013 26 / 33



Measurement Error Reduces Power

Simple Simulation Study

• Consider a study with n = 500 participants

• Consider power of a logistic regression model to detect an association
between S and Y
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Measurement Error Reduces Power
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Deterioration of Power to Detect a CoR with Increasing Measurement Error
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Typical Correlates Assessments are Inefficient

• Broadly in epidemiology studies, biomarker-disease associations are
commonly assessed ignoring much data collected in the study

• That is, only subjects with the biomarker measured (i.e., the Phase II
sample) are included in the analysis

• Standard case-cohort analyses use inverse probability weighting of the
subjects sampled in Phase 2, including all of the methods discussed so
far

• These ubiquitously-used methods are implemented in the R package
cch (Breslow and Lumley)
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Typical Correlates Assessments are Inefficient

• Breslow et al.∗ urge epidemiologists to consider using the whole
cohort in the analysis of case-cohort data

• Baseline data on demographics and potential confounders are typically
collected in all subjects (the Phase I data measured in everyone)

• These Phase I data are most valuable when they predict “missing”
data

∗Breslow, Lumley et al. (2009, American Journal of Epidemiology; 2009,
Statistical Biosciences)
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How Leverage All of the Data?

• Question: How can we use the Phase I data to improve the
assessment of CoRs?

• Answer: Adjust the sampling weights used in the conventional
analyses

• The long version of these slides include 20 slides borrow from
Professor Norman Breslow’s Plenary Lecture at the World Congress of
Epidemiology in Porto Alegre, Brazil, September 23, 2008.

• Long version of slides, plus R tutorial implementing the Breslow et al.
(2009) method with the cch R package, are available at
http://faculty.washington.edu/peterg/SISMID2013.html
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Take Home Messages from Breslow et al., 2009

1 Rule of thumb: Obtain ‘worthwhile’ efficiency gain for the CoR
assessment if baseline covariates can explain at least 40% of the
variation in the immunological biomarker (R2 ≥ 0.40)

2 If interested in interactions (evaluation of whether a baseline covariate
measured in everyone modifies the association of the biomarker and
the clinical endpoint), can obtain worthwhile efficiency gain with a
lower R2

3 Even if no gain for the CoR assessment, will usually dramatically
improve efficiency for assessing the associations of the Phase I
covariates with outcome

4 Therefore it may often be the preferred method, and all practicing
statisticians and epidemiologists should have the Breslow et al.
method in their analytic toolkit

5 However, Breslow et al. (2009) currently only applies for a single
immune response of interest measured at phase two, and does not
handle a time-dependent immune response (serious practical
limitationis that need more research to resolve)
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