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Outline of Session 10

I Part A: Comparing biomarkers and risk models as principal

surrogate endpoints (Huang and Gilbert 2011)

I Part B: Sampling Design and Estimation (Huang, Gilbert, and
Wolfson 2013)



Outline of Part A

I (I) the predictiveness curve technique for evaluating and
comparing risk prediction models

I (II) evaluation of markers and models for principal surrogate

effects

— Summary measure

— Semiparametric estimation method
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Part A (I): The Predictiveness Curve

I Setting:

Evaluate the capacity of a continuous marker S to predict the

risk of a binary disease outcome Y , Y = 0, 1

I Risk(S) = P(Y = 1|S)

I ρ = P(Y = 1)

I Definition:

”Predictiveness”: the distribution of Risk in the population.

How do we characterize the distribution of Risk?



The Predictiveness Curve
Definition:

I ”Predictiveness curve”: (Bura and Gastwirth 2001, Huang et
al. 2007)

— the Risk-quantile plot
— the curve of R(v) vs v , where R(v) is the v th quantile of

Risk in the population, v ∈ (0, 1),
predictiveness curve
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Predictiveness Curve (Cont.)
I Useless marker: horizontal line at ρ = P(Y = 1)

I Perfect marker:

Risk =

{

0, v ∈ (0, 1− ρ)

1, v ∈ (1 − ρ, 1)
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Properties of the Predictiveness Curve

I Area under the curve = E [E(Y |S)] = P [Y = 1] ≡ ρ

I Monotone increasing curve

I Provide a common scale to compare markers (or models): S

could be multivariate

I Summary measure needed for comparison
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Total Gain

TG =

∫ 1

0
|R(v)− ρ|dv (Bura and Gastwirth 2001)

I Useless marker: TG=0

I Perfect marker: TG=2ρ(1− ρ)
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Total Gain (Cont.)

I For a risk threshold c ,

Sensitivity(c) = P(Risk > c |Y = 1)

1 − Specificity(c) = P(Risk > c |Y = 0)

I Standardized TG

TG

2ρ(1− ρ)
= sup

c
{Sensitivity(c) + Specificity(c)} − 1

(Huang and Pepe 2009)
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Estimation of The Predictiveness Curve Based on a Risk
Model

I Fit the risk model (allow for large flexibility)

P(Y = 1|S) = G(β, S)

I Estimate the distribution of Risk

(Huang & Pepe 2007, 2009)



Part A (II): Evaluation of the Principal Surrogate
Endpoints

Thai Trial (2004-2009)

I Goal: assessing the efficacy of the ALVAC/AIDSVAX vaccine

regimen on preventing HIV infection

I 16,395 HIV-seronegative participants 1:1 randomized to

vaccine (ALVAC/AIDSVAX) or placebo

I Immune correlates (biomarkers): immunogenicity measured in
case-control sample (at 1:5 ratio) at week 26 prior to HIV

infection

— Antibody binding to V1/V2 region, Neutralization
antibody ...

Ouestion: can treatment effects on these biomarkers reliably
predict treatment effects on the clinical endpoint?
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Goals of Surrogates

Qin et al 2007, Gilbert et al 2008, 2011
I Ultimate Goal:

Bridging/general surrogates: predict clinical treatment effect
in a new setting (new population, new vaccine)

— involves untestable assumptions
— meta-analysis of multiple efficacy trials, phase IV

post-licensure studies ... (Daniels and Hughs 1997;
Molenberghs et al., 2008)

I First Step:

Specific surrogates: predictions restricted to the same setting

as current trial
— statistical surrogate (Prentice 1989)

— controlled natural direct and indirect effects
— principal surrogate (particularly suitable for vaccine

development) (Gilbert et al 2011)



Notation

Consider a randomized clinical trial

I Y : clinical endpoint, binary disease outcome

I Z : binary treatment indicator, Z = 0, 1

I S: candidate surrogate biomarker of interest

I W : baseline covariates, measured on everyone

Potential Outcome: for unit i , Yi (z), Si (z)
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Principal Surrogate

Based on a potential-outcomes framework, comparing

risk(1)(s1, s0) ≡ P{Y (1) = 1|S(1) = s1, S(0) = s0}
and

risk(0)(s1, s0) ≡ P{Y (0) = 1|S(1) = s1, S(0) = s0}

I Average Causal Necessity (ACN) (Frangakis and Rubin 2002,
Gilbert and Hudgens 2008)

risk(1)(s1, s0) = risk(0)(s1, s0) for all fixed s1 = s0

I Average Causal Sufficiency (ACS) (Gilbert and Hudgens 2008)

if s1 − s0 > C for a threshold C , then

risk(1)(s1, s0) < risk(0)(s1, s0)



Principal Surrogate Value

I For a univariate marker, ACN and ACS can be assessed
(Gilbert and Hudgens 2008)

I Open question: quantify how valuable/reliable the biomarker

is as a surrogate, and compare the surrogate value of different
models

— Compare markers

— Evaluating a marker’s incremental value
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Generalization of the Predictiveness Curve

Risk prediction Surrogate markers
markers

Binary Y Y (0) − Y (1), assuming Y (0) ≥ Y (1)
outcome

0: non-diseased 0: vaccine ineffective
1: diseased 1: vaccine effective

Variable Risk(S) risk(0){S(1), S(0)} − risk(1){S(1), S(0)}
of interest = P(Y |S) = P{Y (0) − Y (1)|S(1), S(0)}

I The predictiveness curve R(v) vs v , where R(v) is the v th quantile
of risk(0){S(1), S(0)} − risk(1){S(1), S(0)}

I Area under the curve always equals to
ρ0 − ρ1 = P{Y (0) = 1} − P{Y (1) = 1}



Standardized Total Gain

I For a threshold c ,

Sensitivity(c) = P{risk(0) − risk(1) > c |Y (0)− Y (1) = 1}

1 − Specificity(c) = P{risk(0) − risk(1) > c |Y (0)− Y (1) = 0}
I

TG

2(ρ0 − ρ1){1− (ρ0 − ρ1)}
= sup

c
{Sensitivity(c)+Specificity(c)}−1

— if we use risk(0){S(1), S(0)} − risk(1){S(1), S(0)} as a decision

variable to classify a subject into the binary group Y (0) = Y (1) or

Y (0) > Y (1)

I Free of disease prevalence
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Case CB

I Constant Biomarkers: Si (0) = c for all i for some constant c

— take c = 0 when S is immune response to vaccine (Gilbert
and Hudgens 2008)

I From now on, we omit S(0) and use S to denote S(1)



0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

risk

Marker

ri
s
k

ρ0

ρ1

risk0, marker1

risk1, marker1

risk0, marker2

risk1, marker2

0 2 4 6 8

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

risk0−risk1

Marker

ri
s
k
0
−

ri
s
k
1

ρ0 − ρ1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Predictiveness Curve

CDF of risk0−risk1

ri
s
k
0
−

ri
s
k
1

STG=0.028

STG=0.29

ρ0 − ρ1

Figure: Comparing two markers.
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Challenges for Surrogates Evaluation

I In a standard trial design, for subjects in placebo arm, we do

not know what their immune responses would be if they
receive vaccination instead

I Two ways have been proposed in Follmann 2006 for dealing
with missing S

— Use baseline predictor W to predict immune response

(BIP)

— Augment the study design with a closeout placebo
vaccination (CPV) component



Baseline Predictor Approach

I Utilize baseline predictors W that are correlated with S, such

as immune responses to non-HIV vaccine

I Since S(1) is missing in all placebo subjects, identifiability of
the risk model with BIP only replies on untestable imposed

constraint (Gilbert and Hudgens 2008)
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Closeout Placebo Vaccination (CPV) (Review)

I Identifiability of risk model replies on untestable imposed

constraint when S(1) is missing in all placebo subjects

I CPV: a portion of placebo patients who are uninfected at the

end of the trial receive vaccine at closeout and their immune
response Sc is measured (Follmann 2006)
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Closeout Placebo Vaccination (CPV)

I Under time constancy assumption, substitute closeout
immune response Sc for S(1)

I Allows fully nonparametric estimation of risk conditional on
S, Z , W (Follmann 2006)

P{Y (0) = 1|S, W }

= 1 − P{S|Y (0) = 0, W } [1 − P{Y (0) = 1|W }]
P(S|W )
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Assumptions

I Stable unit treatment value and Consistency:

S(1), S(0), Y (1), Y (0) for a subject are independent of the
treatment assignments of other subjects

I Ignorable treatment assignments:

Z ⊥ W , S(1), S(0), Y(1), Y (0)
They imply that {S(1), S(0)|Z = 1, W } has the same
distribution as {S(1), S(0)|Z = 0, W }.

I Assumption: time constancy of immune response Sc
d
= S

— S(1) = Strue + U1

— Sc = Strue + U2

— U1 and U2 are iid



Conditional Likelihood

I Missing at random (by design)

I Let δ indicates availability of S , i.e. S(1) or Sc , subject i ’s
contribution to the likelihood

1. δi = 1 : P(Yi |Zi , Wi , Si)

2. δi = 0 : P(Yi |Zi , Wi) =
∫

P(Yi |Zi , s, Wi)dF (s|Wi),

where F is joint CDF for S conditional on W.

I In a randomized trial, {S |Z = 1, W } has the same distribution as

{S |Z = 0, W }
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Estimated Likelihood Approach

An estimated likelihood approach for dealing with missing data is

natural in this scenario (Pepe and Fleming 1991)

I estimate distribution of S conditional on W based on a

validation set in vaccine group

— Obtain F̂ (S|W )

I estimate probability of Y conditional on Z and W , and enter

that into the conditional likelihood

— Maximize

∏

δi=1 P(Yi |Zi , Wi , Si)
∏

δi=0

∫

P(Yi |Zi , s, Wi)dF̂ (s|Wi)



Estimated Likelihood Approach

Gilbert and Hudgens 2008

I Fully parametric wrt P(Y |Z , W , S) and F (S|W )

I Nonparametric: requiring discretized S and W

Semiparametric method (Huang and Gilbert 2011):

I Parametric P(Y |Z , W , S)

I Semiparametric location-scale model for F (S|W )
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Estimation

I Semiparametric modeling approach for estimating a risk

model

I Incorporate multiple biomarkers



Risk Model

Let S1, . . . , SJ indicate potential marker values with vaccination for

markers j , j = 1, . . . , J

risk(Z )(S1, . . . , SJ , W )

= P{Y (Z) = 1|S1 = s1, . . . , SJ = sJ , W = w}

= g



β0 + β1Z +

J
∑

j=1

β2jSj +

J
∑

j=1

β3jSjZ + βT
4 W
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Modeling joint distribution of markers conditional on W

I Validation subset: nV subjects in the vaccine group with δ = 1

I Model F(s1, . . . , sJ|W ) semiparametrically

I Assuming for each j in 1, . . . , J, Sj |W follows a location-scale model
with mean and log-scale parameter being functions of W (Heagerty
and Pepe 1999)

F (sj |W ) ∼ F
(0)
(j)

(

sj − µj(W )

σj(W )

)

= F
(0)
(j)

(εj)

where F
(0)
(j) are un-specified univariate baseline CDFs for residuals εj .



Modeling distribution of S1, . . . ,SJ conditional on W

I Suppose µj(W ), log{σj(W )}, j = 1, . . . , J are parametric functions
of W :

µj(W ) = γ′

j W , log{σj(W )} = η′

jW

Estimating γj , ηj by solving estimating equations for mean and
variance for Sj separately.

n
∑

i=1

Wi (Yi − γ′

jWi)

σ2
j (Wi )

= 0

n
∑

i=1

Wi [(Yi − γ′

j Wi)
2 − σ2

j (Wi )]

σ2
j (Wi )

= 0.

I Applying to the nV subjects in the vaccinated group with δ = 1 and
obtain γ̂j , η̂j .

I For j = 1, . . . , J, estimate

ej =
Sj − γ̂′

j (W )

exp{η̂′

j(W )} .
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Estimated Likelihood

I Obtain a series of pairs of residuals (e1k , . . . , eJk), k = 1, . . . , nV

I For subject i with δi = 0, estimate

P(Yi = 1|Zi , Wi) =
∫

risk(Zi )(s1, . . . , sJ , Wi)dF(s1, . . . , sJ |Wi) with

1

nV

nV
∑

k=1

risk(Zi ) (S1 = S?
i1k , . . . , SJ = S?

iJk , Wi)

where S?
ijk = γ̂′

j Wi + exp(η̂′

jWi)ejk , j = 1, . . . , J; k = 1, . . . , nV .

I Entering this into the likelihood,

L(β; Y , Z , S1, . . . , SJ , W , δ)

=
∏

i :δi=1

P(Yi |Zi , Si1, . . . , SiJ , Wi)
∏

i :δi=0

P̂(Yi |Zi , Wi)



Approximated Score Equations

Let

U(Y |Z , S1, . . . , SJ , W ) =
∂ log {P(Y |Z , S1, . . . , SJ , W )}

∂β

The score for a subject i with δ = 0 is:

∂ log {P(Yi|Zi , Wi )}

∂β

=

R
U(Yi |Zi , s1, . . . , sJ , Wi )P(Yi|Zi , s1, . . . , sJ , Wi )P(s1, . . . , sJ |Wi )ds1 . . . sJR

P(Yi|Zi , s1, . . . , sJ , Wi )P(s1, . . . , sJ |Wi )ds1 . . . sJ

,

which can be approximated by

nV
∑

k=1

U(Yj |Zj , S
?
i1k , . . . , S

?
iJk , Wi)P(Yi |Zi , S

?
i1k , . . . , S

?
iJk , Wi)

∑nV

k=1 P(Yi |Zi , S?
i1k , . . . , S?

iJk , Wi)
,

where S?
ijk = γ̂′

j Wi + exp(η̂′

jWi )ejk .
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Algorithm

1. Apply semiparametric location-scale model to subjects in the
validation set

2. Start with an initial estimate of β

3. Use the units with δ = 1 as they are. For each i with δj = 0,
construct a set of filled-in data,
{Yi , S

?
i1k , . . . , S?

iJk , Zi , Wi} , k = 1, . . . , nV .

4. For each filled-in observation
{Yj , S

?
i1k , . . . , S?

iJk , Zi , Wi} , k = 1, . . . , nV , calculate an associated
weight,

wjk =
P(Y1|S?

i1k , . . . , S?
iJk , Zi , Wi)

∑nV

k=1 P(Yi |S?
i1k , S?

iJk , Zi , Wi)

5. Fit a weighted GLM to the augmented dataset and obtain a new
estimate of β

6. Repeat steps 3 to 5 till convergence



Estimation of Standardized Total Gain

Given a W of interest, for k = 1, . . . , nV , compute

S?
jk = γ̂ ′

jW + exp(η̂′
jW )ejk , j = 1, . . . , J,

I For randomly sampled S1, . . . , SJ from vaccine arm

ρ̂z =
1

nV

X drisk(z)(S
?
1k , . . . , S?

Jk , W )

cTG =
1

nV

X ˛̨
˛drisk(0)(S

?
1k , . . . ,S?

Jk ,W ) − drisk(1)(S
?
1k , . . . , S

?
Jk , W ) − {ρ̂0 − ρ̂1}

˛̨
˛

I Inverse probability weighting (IPW) to account for biased
sampling
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Simulation

I 3000 subjects, 1:1 randomized to placebo and vaccinated
groupsI
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I

risk(Z )(S1, S2, W )

= logit (β0 + β1Z + β2S1 + β3S1Z + β4S2 + β5S2Z + β6W ) ,

such that P(Y = 1|Z = 1) = 0.06, P(Y = 1|Z = 0) = 0.12.

I Assume all subjects in vaccinated group and all uninfected
subjects in placebo group have S1, S2 measured



Table: Performance of the estimators for risk model parameters.
One-marker model:
risk(Z)(S1, W ) = Φ (γ0 + γ1Z + γ2S1 + γ3S1Z + γ4W + γ5WZ).

Parameter
One-marker model

n γ0 γ1 γ2 γ3 γ4 γ5

2.12 -0.60 -0.80 -0.094 -0.49 0.093

Bias 500 0.17 -0.04 -0.07 0.003 -0.04 0.02
1000 0.07 0.003 -0.03 -0.01 -0.02 0.01
3000 0.034 -0.02 -0.018 0.01 -0.003 -2e-4

SE 500 1.00 1.20 0.54 0.60 0.22 0.31
1000 0.62 0.75 0.33 0.37 0.14 0.21
3000 0.34 0.43 0.18 0.20 0.08 0.11

Cover∗ 500 92.37 93.95 92.87 93.86 92.77 95.24
1000 92.85 94.45 93.38 93.98 93.32 94.18
3000 93.60 93.52 93.77 94.75 93.85 94.59

∗Coverage of 95% bootstrap percentile confidence interval
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Table: Performance of the estimators for risk model parameters.
Two-marker model: risk(Z)(S1, S2, W ) =
Φ (β0 + β1Z + β2S1 + β3S1Z + β4S2 + β5S2Z + β6W + β7WZ).

Two-marker model
n β0 β1 β2 β3 β4 β5 β6 β7

3.04 -0.40 -0.40 -0.05 -0.90 -0.25 -0.40 0.12
bias 500 0.42 -0.03 -0.06 0.01 -0.14 -0.04 -0.06 0.03

1000 0.19 -0.01 -0.03 -0.003 -0.06 -0.01 -0.03 0.01
3000 0.08 -0.04 -0.02 0.01 -0.02 0.005 -0.004 0.001

SE 500 1.41 1.79 0.59 0.68 0.69 0.84 0.27 0.40
1000 0.86 1.08 0.39 0.44 0.43 0.52 0.16 0.24
3000 0.43 0.54 0.2 0.23 0.22 0.26 0.09 0.13

Cover∗ 500 91.39 94.15 94.46 95.28 94.46 94.97 91.49 95.28
1000 92.76 94.5 93.70 94.17 92.56 93.36 92.82 93.76
3000 93.93 94.34 94.09 94.67 93.52 94.18 93.52 94.59

∗Coverage of 95% bootstrap percentile confidence interval



Table: Performance of the semiparametric estimator for estimating TG
and STG.

One-marker model Two-marker model
W=1.72 W=3.00 W=1.72 W=3.00

n TG STG TG STG TG STG TG STG
0.053 0.206 0.032 0.388 0.08 0.313 0.043 0.517

Bias 500 0.02 0.08 0.002 0.05 0.04 0.15 0.01 0.13
1000 0.01 0.03 -8e-4 0.01 0.02 0.08 0.01 0.07
3000 0.002 0.01 1.2e-5 0.005 0.01 0.03 0.001 0.02

SE 500 0.04 14.95 0.02 4.66 0.04 1.81 0.02 22.38
1000 0.03 0.21 0.02 0.29 0.03 0.13 0.02 0.75
3000 0.02 0.08 0.01 0.11 0.02 0.06 0.01 0.07

Cover∗ 500 92.37 95.74 95.14 97.52 81.23 87.59 92.51 93.23
1000 95.86 96.19 94.39 96.79 88.4 87.59 93.7 94.3
3000 95.11 94.92 93.48 94.72 91.33 90.03 93.74 93.35

∗: Coverage of 95% bootstrap percentile confidence interval
Note P(Y = 1|Z = 0, W ) and P(Y = 1|Z = 1, W ) are 0.31 and 0.16 at W = 1.72

and 0.075 and 0.032 at W = 3.0.
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Table: Performance of the semiparametric estimators to detect a higher
TG and STG with a two-marker model compared with a one-marker
model.

W=1.7 W=3.0
n TG diff STG diff TG diff STG diff

0.027 0.107 0.011 0.129
Bias 500 0.01 0.03 0.003 0.04

1000 0.01 0.03 0.002 0.03
3000 0.002 0.01 3e-4 0.004

SE 500 0.04 15.7 0.02 23.1
1000 0.03 0.14 0.01 0.82
3000 0.02 0.06 0.01 0.09

Cover∗ 500 97.72 99.28 98.76 97.1
1000 97.24 97.98 96.3 96.97
3000 96.09 96.61 93.87 93.87

∗Coverage of 95% bootstrap percentile confidence interval



Conclusion

I Identifying risk difference as a function of marker values allows

us to use the predictiveness curve methodology to evaluate
multiple surrogate markers together

I Total gain is a clinically meaningful summary measure of the
corresponding predictiveness curve

I Semiparametric estimated-likelihood method provides a

relatively robust way of estimating principal surrogate value of
multiple markers
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Conclusion and Discussion

I Generalize to other designs where W only measured in a
subcohort sample (e.g. a case-control sample)

— use only the subcohort data, weighted likelihood

I More general settings: when CB does not hold, assuming
time-constancy at baseline and marker measurement, use S at

baseline to substitute S(0)

I Optimization of sampling scheme



Part B

Sampling Design Optimization and Estimation for Evaluating

Principal Surrogate Markers in HIV Vaccine Trials
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Outline of Part B

I Surrogates of Protection in HIV vaccine trials

— Characterization of surrogate effects

— Limitation of existing design

I Design and Estimation for evaluating surrogates

I Optimize sampling scheme for immune assays



Surrogates of Protection

I Existing HIV vaccine does not have sufficient efficacy to

warrant licensure

I Vaccine in RV144 Thai Trial achieved 30% efficacy

(Rerks-Ngarm et al. 2009)

I Finding immune biomarkers such as T-cell responses and
antibody binding levels are important for vaccine development

I Summary measures to characterize surrogate effect

— vaccine efficacy curve

— predicted population average effect of a refined vaccine

I HIV vaccine trials only enroll subjects without previous
infectious with the pathogen: S(0) is zero for all subjects, use

S to denote S(1)
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Vaccine Efficacy Curve

Curve of VE(S) versus S (or CDF of S) provides a way to compare

the ability of different immune responses to predict VE in the
current setting
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Bridging to a New Vaccine

I Let Znew denote a refined vaccine with potential marker value
S(1)new

I It is interesting to predict

CEnew = P(Y = 1|Znew = 0) − P(Y = 1|Znew = 1)

based on information about risk(Z )(S) and S(1)new

I How good this prediction is depends on:

— Performance of the specific surrogate marker in the current
setting

— Our understanding about the biological mechanism of the
surrogate and vaccine
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Plot of CEnew versus ∆ (the location shift in S(1)new relative to

S(1))
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Strategies for Estimating Prinicipal Surrogate Effects

I Use baseline predictor W to predict immune response (BIP)

— Important for efficiency

I Augment the study design with a closeout placebo vaccination

(CPV) component

— Important for testing risk model assumptions

Model

P{Y (Z) = 1|S, W )} = g(β0+β1Z+β2S+β3SZ+βT
4 W +βT

5 WZ).
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Existing Methods (Review)

An estimated likelihood approach (Pepe and Fleming 1991) for
maximizing

∏

δi=1

P(Yi |Zi , Si , Wi)
∏

δi=0

∫

P(Yi |Zi , s, Wi)dF (s|Wi),

where δ indicates whether S(1) or Sc is available.

I estimate F̂ (S|W ): distribution of S conditional on W based
on a validation set in vaccine group

(Gilbert and Hudgens 2008; Wolfson and Gilbert 2009; Huang

and Gilbert 2011)

I estimate probability of Y conditional on Z and W , and enter

that into the conditional likelihood, maximize
∏

δi=1 P(Yi |Zi , Wi , Si)
∏

δi=0

∫

P(Yi |Zi , s, Wi)dF̂ (s|Wi)



Plan of the South Africa Trial

Gilbert, P.B., Grove, D., Gabriel, E., Huang, Y., Gray, G., Hammer,

S. M., Buchbinder, S.P., Kublin, J., Corey, L., Self, S.G. (2011) A
Sequential Phase 2b Trial Design for Evaluating Vaccine Efficacy

and Immune Correlates for Multiple HIV Vaccine Regimens.
Statistical Communications in Infectious Diseases.

I Simultaneously evaluate multiple prime/boost vaccine

regimens against a shared placebo group

I Use sequential monitoring to evaluate efficacy and durability
for each vaccine regimen

I Evaluation of the vaccine efficacy curve is being planned as a
secondary objective
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CPV Design (cont.)

Estimated likelihood method can be applied with or without CPV

When CPV is used, consider case-control sampling in the second

phase

I IPW: use validation sample in vaccine arm only for estimating

F (S(1)|W ) since P(δ = 1|Z = 0, Y = 1) = 0

I incorporate CPV sample in the risk model

Following the notation in Follmann (2006), we consider the
following two designs

— BIP: using baseline covariate (W) to predict S

— BIP + CPV



1 Vac Arm 2 Vac Arm 3 Vac Arm

BIP

BIP+CPV

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure: Power for testing β3 = 0

risk(Z ) = Φ(β0 + β1Z + β2S + β3SZ); VE(0)=0% and VE(4)=90%

Results show that the design without CPV is more powerful?
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Figure: Variance of risk model parameter estimators from parametric
estimated likelihood method. X-axis is ratio of CPV samples relative to
infected placebos



I Counter-intuitive findings based on estimated likelihood
approach seem to result from using two different sets of data

in marker distribution estimation and risk model estimation in
the BIP+CPV design

— samples with δ = 1 contribute to P(Y |Z , W , S) in the

conditional likelihood

— samples with δ = 1 and Z = 1 are used in estimating
F (S|W )

I Would a method that incorporates CPV in marker distribution

estimation help?
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A Pseudo-Score Type Estimator

U(β, F ) =
∂l(β, F )

∂β
=

∑

δi=1

Uβ(Yi |Si , Zi , Wj) +
∑

δj=0

Uβ(Yj |Zj, Wj),

where

Uβ(Yj |Zj , Wj) =

∫

Uβ(Yj |s, Zj, Wj)fβ(Yj |s, Zj, Wj)dF (s|Wj)
∫

fβ(Yj |s, Zj, Wj)dF (s|Wj)

=

∫

Uβ(Yj |s, Zj, Wj)
fβ(Yj |s ,Zj ,Wj)
P(δ=1|s ,Wj)

dF (s|Wj , δ = 1)
∫ fβ(Yj |s ,Zj ,Wj )

P(δ=1|s ,Wj)
dF (s|Wj , δ = 1)

From Bayes’ theorem

dF (S|W ) =
dF (S|W , δ = 1)P(δ = 1|W )

P(δ = 1|S, W )



A Pseudo-Score Type Estimator (Cont.)

To construct the pseudo-score, estimate

— F (S |W , δ = 1)

— P(δ = 1|S , W ) =
∫ ∫

P(δ = 1|y , z , S , W )fβ(y |S , z , W )f (z)dydz

Huang, Gilbert, Wolfson 2013, extending the work of Chatterjee,
Chen, Breslow 2003
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Consider the validation set to be the set used for accommodating
the estimation of S|W ,

The PS method can be applied to

— BIP design

— BIP+CPV design, with either vaccine samples or vaccine +
CPV samples as the validation set

— requires P(δ = 1|S, W ) > 0



Simulation Studies

(S, W ∗) bivariate normal with correlation ρ = 0.5
W : discretizing W ∗ by quartiles

P(Y |S, Z , W ) = Φ(β0 + β1Z + β2S + β3SZ)

Study Design:

I Phase 1: n = 4, 000 subjects 1:1 randomized to Z = 0, 1
arms, with W , Z , Y measured

I Phase 2: S measured, Bernoulli sampling stratified by Z , Y

All cases with Z = 1 sampled; a portion of controls with

Z = 1 and controls with Z = 0 sampled to achieve

I Parameters are chosen such that infection rate is 0.12 and
0.06 in Z = 0 and Z = 1 arm respectively
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Pseudo-Score Estimator (PS) with Empirical Likelihood
Estimator (EL)

Sampling ratio vs infected vaccinees

Vaccine controls Placebo controls Efficiency?

(CPV)

1 0 1.08

5 0 0.99
1 1 1.36

5 5 1.08
1 2 1.72

Efficiency?:
var(EL)
var(PS)



Asymptotic Property for Pseudo-score Estimator

I The pseudo-score estimator is asymptotically normally

distributed

√
N(β̂ps − β) = −Ψ−1

β

1√
N

N
∑

i=1

φ(Ri , Yi , Si , Zi, Wi) + op(1),

with variance contributed by estimating

1. β as a MLE

2. S |W , δ = 1

3. P(δ = 1|Y , Z , W )
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Optimization of Marker Sampling Scheme

I Given limited resource in measuring S(1), how to divide the
samples between treatment arms

I Suppose we sample all cases in vaccine arm, varying the
percent of non-infected samples between vaccine and placebo

arms

I Plot asymptotic efficiency of PS estimator for % controls
allocated to vaccine arm relative to the design where equal

number of controls are sampled between vaccine and placebo
arms



Optimization of Marker Sampling Scheme (Cont.)

Parameters of interest

I β0, β1, β2, β3

risk(Z ) = Φ(β0 + β1Z + β2S + β3SZ)

I VE(90%): VE(S) for S being 90th percentile

I CEnew : predicted CEnew for a refined vaccine with true
CEnew=75%
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Figure: Efficiency relative to the design where equal numbers of controls
have biomarker measured between vaccine and placebo arms;
Cor(S , W ) = 0.5.
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Sub-Sampling of Baseline Predictors (Ongoing Work)

I In RV144 Thai Trial, characteristics such as patients

demographics and risk behavior are poorly correlated with
immune response

I We target lab assay for candidates of future baseline predictor
— immune response to tetanus and HBV vaccine
— non-vaccination BIP

I Sub-sampling of baseline predictor is warranted for estimating
vaccine efficacy in a cost-effective manner



Correlates of Protection for Herpes-Zoster Vaccine

I 22439 subjects 1:1 randomized to receive either the HZ
vaccine or a placebo, VE=69.8% for preventing HZ

(Schmader et al. 2012)

I '2400 subjects have gpELISA antibody titers measured at
baseline and week six after vaccination

67

0.0 0.5 1.0 1.5 2.0−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

log10 (Week6−Week0 Titers)

V
E



Plan of the Research Trial in South Africa

Three arms with two primary vaccine regimens:

I 1700 receiving a vaccine regimen with NYVAC and protein

I 1700 receiving a vaccine regimen with DNA, NYVAC, protein

I 1700 placebo recipients

For vaccine regimen(s) that shows positive efficacy over 18
months, surrogates of protection with be assessed
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Plan of the Research Trial in South Africa

I We will use BIP and possibly CPV approaches

— a fraction of subjects will have baseline predictors measured
(e.g. immune responses to tetanus and/or HBV vaccines)

— all infected vaccinees and a fraction of uninfected vaccinees
will have HIV vaccine-induced immune responses measured

— a fraction of uninfected placebo recipients at the end of
the trial will possibly receive vaccination and have HIV

vaccine-induced immune responses measured

I Pseudo-score approach will be used to estimate the vaccine
efficacy curve

I More investigations needed to determine the cost-effective
sampling scheme (fraction, stratification) for measuring BIP

and potential surrogates



Summary

I Plan to use the BIP + CPV design with subsampling of W in
future efficacy trials; CPV is crucial because it allows

estimating VE curves without relying on unverifiable
assumptions

I When CPV samples is not available, sensitivity analysis is

needed for partial identifiability

I Future work involves optimization of sampling design for W

and S, and selection of covariates as risk predictors and/or
baseline predictors
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