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•  per-‐contact	  RR	  is	  retrospec5ve	  RR	  if	  
(during	  the	  trial	  follow-‐up	  period)	  

1.  Infec*on	  is	  possible	  from	  at	  most	  one	  strain	  
2.  The	  rela*ve	  prevalence	  of	  strains	  is	  constant	  
3.  Exposure	  distribu*ons	  are	  the	  same	  in	  both	  treatment	  

groups,	  and	  homogeneous	  across	  subjects*	  
•  Proof	  in	  Gilbert,	  Self,	  Ashby	  (1998)	  
– Holds	  for	  all	  of	  the	  aforemen*oned	  models	  
–  *	  the	  homogeneity	  aspect	  of	  this	  assump*on	  can	  be	  
relaxed.	  See	  Gilbert,	  Sta*s*cs	  in	  Medicine	  2000.	  	  

–  See	  Gilbert,	  et	  al	  (2001)	  for	  more	  discussion	  
•  Allows	  for	  the	  interpreta*on	  of	  strain-‐specific	  VE	  as	  
prospec*ve,	  per-‐contact-‐by-‐s	  VE	  

	  



ASSUMPTIONS	  and	  A1-‐A3	  
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•  ASSUMPTIONS	  
1.  Infec*on	  is	  possible	  from	  at	  most	  one	  strain	  
2.  (A3)	  The	  rela*ve	  prevalence	  of	  strains	  is	  constant	  
3.  (A2)	  Exposure	  distribu*ons	  are	  the	  same	  in	  both	  

treatment	  groups,	  and	  homogeneous	  across	  subjects	  
	  

Interpretation of βs

• Assumptions:
A1: For each strain s ∈ {1, · · · ,K},
the probability of infection with strain s
resulting from a specified amount of exposure
is homogeneous and constant over time among
vaccinated and placebo subjects, so that
vaccination reduces the transmission probability
by the same fraction exp{γs}
for all vaccinees (i.e., “leaky” protection against
each strain; Halloran, Haber, and Longini, 1992)



•  Retrospec*ve	  vs	  Prospec*ve	  Category	  Probabili*es	  

•  Retrospec*ve	  vs	  Prospec*ve	  Rela*ve	  Risks	  
	  

Retrospec.ve	  vs	  prospec.ve	  
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• Retrospective vs Prospective Category Probabilities
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�� infected in [0,t], vaccine treatment assignment is V
�

pV ⌘ Pr
�

infected in [0,t]
��V

�
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V s ⌘ Pr

�
infected by strain s in [0,t]

��V
�

= pV ⇥Pr
V s

• Retrospective vs Prospective Relative Risk
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• Per-Contact Relative Risk

With the help of assumption A1: that for each strain s 2 {1, . . . ,K}, the probability of clinically significant
infection with strain s resulting from a specified amount of exposure is homogeneous and constant in [0,t] among
unvaccinated subjects and among vaccinated subjects, so that vaccination reduces the transmission probability by
the same fraction exp(gs) for all vaccinees (that is, vaccine protection is ‘leaky’ against each strain, a term coined
by Halloran et al. 1992), the per-contact infection probability

Pr
�

infected by strain s at time t
�� one exposure to strain s at time t, vaccine treatment assignment is V

�

is independent of time t. Thus we may define

Ppc
V s ⌘ Pr

�
infected by strain s

�� one exposure to strain s, vaccine treatment assignment is V
�
, and
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�
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�

Pr
�
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� =
Ppc
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Ppc
us

.
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• Per-Contact Relative Risk

With the help of assumption A1: that for each strain s 2 {1, . . . ,K}, the probability of clinically significant
infection with strain s resulting from a specified amount of exposure is homogeneous and constant in [0,t] among
unvaccinated subjects and among vaccinated subjects, so that vaccination reduces the transmission probability by
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by Halloran et al. 1992), the per-contact infection probability
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.



Per-‐contact	  probabili.es	  and	  RRs	  
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• Retrospective vs Prospective Category Probabilities
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• Per-Contact Relative Risk

By assumption A1, the per-contact infection probability

Pr
�

infected by strain s at time t
�� one exposure to strain s at time t, vaccine treatment assignment is V

�

is independent of time t. Thus we may define

Ppc
V s ⌘ Pr

�
infected by strain s

�� one exposure to strain s, vaccine treatment assignment is V
�
, and

RRpc(s)⌘
Pr
�

infected by strain s
�� one exposure to strain s, vaccine recipient

�

Pr
�

infected by strain s
�� one exposure to strain s, placebo recipient

� =
Ppc
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Ppc
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.

Define the hazard function of infection by strain s at time t 2 [0,t] for an individual with vaccination status
V as

l (t,s|V )⌘ lim4t&0
Pr
�
t  T < t +4t,Y = s

�� T � t,V
�

4t
,
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and note that

Pr
�
t  T < t +4t,Y = s

�� T � t,V, subject-specific covariates
�
=

Pr
�

exposed to strain s in [t, t +4t)
��V, subject-specific covariates

�

⇥Pr
�
t  T < t +4t,Y = s

�� T � t,V, exposed to s in [t, t +4t), subject-specific covariates
�
.

If you assume ASSUMPTION 3 (A2): that the exposure distributions depend only on time and are indepen-
dent of all subject-specific covariates, including treatment assignment, then the first term on the right-hand-side
is the density of a Markov process in t, indexed by s but not by V . Then dividing both sides by 4t and taking the
limit as 4t & 0 gives

l (t,s|V ) = f N
Es(t)⇥Ppc

V s ,

where NEs is the counting process counting exposures to strain s, with Markov intensity f N
Es defined by

f N
Es(t)⌘ lim4t&0

Pr
�
exposed to strain s in [t, t +4t)

�

4t
,

the integral of which will be denoted by FN
Es(t)⌘

R t
0 f N

Es(t)dt.

• Unbiased odds ratios

Using the equation Pr(T � t|V ) = e�L(t|V ) relating a survivor function to a cumulative hazard function, it
follows that

Pr(T � t|V ) = exp
✓
�
Z t

0
l (u|V )du

◆
= exp

 
�
Z t

0
Â

l
l (u, l|V )du

!
= exp

 
�
Z t

0
Â

l
f N
El(u)P

pc
V l du

!
.

Pp
V s =

Z t

0
lim4t&0

Pr(t  T < t +4t,Y = s|T � t,V )

4t
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Z t

0
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Z t

0
f N
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Z t

0
f N
Es(t)P

pc
V s exp

 
�
Z t

0
Â

l
f N
El(u)P

pc
V l du

!
dt.

Now if you assume ASSUMPTION 2 (A3): that the strain-specific exposure intensities are proportional, i.e.,

f N
Es(t) = qs f N

E0(t),

then

• Retrospective vs Prospective Category Probabilities
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• Per-Contact Relative Risk

By assumption A1, the per-contact infection probability
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and note that

Pr
�
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dent of all subject-specific covariates, including treatment assignment, then the first term on the right-hand-side
is the density of a Markov process in t, indexed by s but not by V . Then dividing both sides by 4t and taking the
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Now if you assume ASSUMPTION 2 (A3): that the strain-specific exposure intensities are proportional, i.e.,

f N
Es(t) = qs f N

E0(t),

then
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and note that

Pr
�
t  T < t +4t,Y = s
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�
=
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Es(t)⌘ lim4t&0

Pr
�
exposed to strain s in [t, t +4t)

�
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Es(t)⌘

R t
0 f N

Es(t)dt.

• Unbiased odds ratios
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Now if you assume ASSUMPTION 2 (A3): that the strain-specific exposure intensities are proportional, i.e.,

f N
Es(t) = qs f N

E0(t),

then

Pp
V s =

Z t

0
f N
Es(t)P

pc
V s exp

⇣
�
Z t

0
Â

l
f N
El(u)P

pc
V l du

⌘
dt
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f N
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⇣
�
Z t

0
f N
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⇣
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⌘
dt
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�����
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⇣
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⇣
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1�Pr(T � t|V )

� qsP
pc

V s

Âl qlP
pc

V l
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V s

Âl qlP
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V l
,

which, since Pp
V s = pV ⇥Pr

V s, implies that

Pr
V s =

qsP
pc

V s

Âl qlP
pc

V l
.

Finally, this result guarantees equivalence of retrospective, prospective, and per-contact odds ratios, since
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v1/Pr

u1
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vs/Pr
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Pr
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u1
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=
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u1
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• Biased Relative Risks

The result that Pr
V s =
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=
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Pp
V s =
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0
f N
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⇣
�
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0
Â
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⇣
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⇣
�FN

E0(t)Â
l

qlP
pc

V l

⌘
dt

=

�����
�1

Âl qlP
pc

V l
exp

⇣
�uÂ

l
qlP

pc
V l

⌘�����

FN
E0(t)

0

⇥qsP
pc

V s

=
⇣

1� exp
�
�FN

E0(t)Â
l

qlP
pc

V l
�⌘ qsP

pc
V s

Âl qlP
pc

V l

=
�
1�Pr(T � t|V )

� qsP
pc

V s

Âl qlP
pc

V l

= pV
qsP

pc
V s

Âl qlP
pc

V l
,

which, since Pp
V s = pV ⇥Pr
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Finally, this result guarantees equivalence of retrospective, prospective, and per-contact odds ratios, since
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=
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Pp
V s =

Z t

0
f N
Es(t)P

pc
V s exp

⇣
�
Z t

0
Â

l
f N
El(u)P

pc
V l du

⌘
dt

= qsP
pc

V s

Z t

0
f N
E0(t)exp

⇣
�
Z t

0
f N
E0(u)duÂ

l
qlP

pc
V l

⌘
dt

= qsP
pc

V s

Z t

0
f N
E0(t)exp

⇣
�FN

E0(t)Â
l

qlP
pc

V l

⌘
dt

=

�����
�1

Âl qlP
pc

V l
exp

⇣
�uÂ

l
qlP

pc
V l

⌘�����

FN
E0(t)

0

⇥qsP
pc

V s

=
⇣

1� exp
�
�FN

E0(t)Â
l

qlP
pc

V l
�⌘ qsP

pc
V s

Âl qlP
pc

V l

=
�
1�Pr(T � t|V )

� qsP
pc

V s

Âl qlP
pc

V l

= pV
qsP

pc
V s

Âl qlP
pc

V l
,

which, since Pp
V s = pV ⇥Pr

V s, implies that

Pr
V s =

qsP
pc

V s

Âl qlP
pc

V l
.

Finally, this result guarantees equivalence of retrospective, prospective, and per-contact odds ratios, since

ORr(s)⌘
Pr

vs/Pr
us

Pr
v1/Pr

u1

=
Pr

vs/Pr
v1

Pr
us/Pr

u1

=
qsP

pc
vs /q1Ppc

v1
qsP

pc
us /q1Ppc

u1

=
Ppc

vs /Ppc
v1

Ppc
us /Ppc

u1

= ORpc(s).

• Biased Relative Risks

The result that Pr
V s =

qsP
pc

V s
Âl qlP

pc
V l

implies that the retrospective relative risk is biased as an estimator of the per-
contact relative risk, since

RRr(s) =
Pr

vs
Pr

us

=
Ppc

vs /Âl qlP
pc
vl

Ppc
us /Âl qlP

pc
ul

= RRpc(s)
Âl qlP

pc
ul

Âl qlP
pc
vl

Note that the extra term (the multiplicative bias) is not a function of the strain category, so it cancels when
taking a ratio as in ORr(s) = RRr(s)/RRr(1).

• Unbiased Hazard Ratios

Note that the “crude” hazard ratio l (t,s|v)/l (t,s|u) is an unbiased estimator of the per-contact relative risk,
even without ASSUMPTION 2 (A3), since
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l (t,s|u) =
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• Estimation of strain-specific vaccine efficacy and differential vaccine efficacy

Strain-specific VE is defined as VEs = 1�RRpc(s).
Differential VE (between strains s and l) is defined as when VEs 6= VEl , and can be tested by comparing the

strain-specific per-contact relative risks RRpc(s) and RRpc(l), for instance by testing the hypothesis that RRpc(s)/
RRpc(l) = 1.
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s parameters of the MLR model satisfy b mlr

s = log
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The b lm
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• Equivalence of failure time and count models under ASSUMPTION 2 (A3)

ASSUMPTION 2 (A3) has two equivalent mathematical expressions. From the binary-endpoint perspective,
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Note that the extra term (the multiplicative bias) is not a function of the strain category, so it cancels when
taking a ratio as in ORr(s) = RRr(s)/RRr(1).

• Unbiased Hazard Ratios

Note that the “crude” hazard ratio l (t,s|v)/l (t,s|u) is an unbiased estimator of the per-contact relative risk,
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• Estimation of strain-specific vaccine efficacy and differential vaccine efficacy

Strain-specific VE is defined as VEs = 1�RRpc(s).
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Note that the extra term (the multiplicative bias) is not a function of the strain category, so it cancels when
taking a ratio as in ORr(s) = RRr(s)/RRr(1).

• Unbiased Hazard Ratios

Note that the “crude” hazard ratio l (t,s|v)/l (t,s|u) is an unbiased estimator of the per-contact relative risk,
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Differential VE (between strains s and l) is defined as when VEs 6= VEl , and can be tested by comparing the

strain-specific per-contact relative risks RRpc(s) and RRpc(l), for instance by testing the hypothesis that RRpc(s)/
RRpc(l) = 1.
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s parameters of the MLR model satisfy b mlr
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�
, and therefore (under A1-A3), b mlr
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.

Together, the amlr
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, and therefore
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Differential VE (between strains s and l) is defined as when VEs 6= VEl , and can be tested by comparing the
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Note that the extra term (the multiplicative bias) is not a function of the strain category, so it cancels when
taking a ratio as in ORr(s) = RRr(s)/RRr(1).

• Unbiased Hazard Ratios
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• Estimation of strain-specific vaccine efficacy and differential vaccine efficacy

Strain-specific VE is defined as VEs = 1�RRpc(s).
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Note that the extra term (the multiplicative bias) is not a function of the strain category, so it cancels when
taking a ratio as in ORr(s) = RRr(s)/RRr(1).

• Unbiased Hazard Ratios

Note that the “crude” hazard ratio l (t,s|v)/l (t,s|u) is an unbiased estimator of the per-contact relative risk,
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Note that the extra term (the multiplicative bias) is not a function of the strain category, so it cancels when
taking a ratio as in ORr(s) = RRr(s)/RRr(1).

• Unbiased Hazard Ratios

Note that the “crude” hazard ratio l (t,s|v)/l (t,s|u) is an unbiased estimator of the per-contact relative risk,
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contact relative risk, since

RRr(s) =
Pr

vs
Pr

us

=
Ppc

vs /Âl qlP
pc
vl

Ppc
us /Âl qlP

pc
ul

= RRpc(s)
Âl qlP

pc
ul

Âl qlP
pc
vl

Note that the extra term (the multiplicative bias) is not a function of the strain category, so it cancels when
taking a ratio as in ORr(s) = RRr(s)/RRr(1).

• Unbiased Hazard Ratios

Note that the “crude” hazard ratio l (t,s|v)/l (t,s|u) is an unbiased estimator of the per-contact relative risk,
even without ASSUMPTION 2 (A3), since

l (t,s|v)
l (t,s|u) =

f N
Es(t)⇥Ppc

vs

f N
Es(t)⇥Ppc

us
= RRpc(s).

• Estimation of strain-specific vaccine efficacy and differential vaccine efficacy

Strain-specific VE is defined as VEs = 1�RRpc(s).
Differential VE (between strains s and l) is defined as when VEs 6= VEl , and can be tested by comparing the

strain-specific per-contact relative risks RRpc(s) and RRpc(l), for instance by testing the hypothesis that RRpc(s)/
RRpc(l) = 1.

The b mlr
s parameters of the MLR model satisfy b mlr

s = log
�
ORr(s)

�
, and therefore (under A1-A3), b mlr

s =
log

�
ORpc(s)

�
.

Together, the amlr
s and b mlr

s parameters of the MLR model satisfy amlr
s +b mlr

s = log
�
RRr(s)

�
. RRr(s) is a

biased estimate of RRpc(s).
The b ph

s parameters of the proportional hazards model satisfy b ph
s = log

�
l (t,s|v)/l (t,s|u)

�
, and therefore

(under A1-A2), b ph
s = RRpc(s).

The b lm
s parameters of the Lunn & McNeil (1995) recoded proportional hazards model satisfy b lm

s = log
� l (t,s|v)

l (t,s|u)/
l (t,1|v)
l (t,1|u)

�
, and therefore (under A1-A2), b lm

s = ORpc(s).

• Equivalence of failure time and count models under ASSUMPTION 2 (A3)

ASSUMPTION 2 (A3) has two equivalent mathematical expressions. From the binary-endpoint perspective,
the assumption says that the exposure intensities are proportional:

f N
Es(t)⌘ qs ⇥ f N

E0(t),

while from the time-to-event perspective, the assumption says that the strain-specific baseline hazards are pro-
portional:

l (t,s
��V = u)⌘ qs ⇥l (t,1

��V = u).

The fact that ASSUMPTION 2 (A3) represents the extra assumption needed for the MLR model to possess
the same biological interpretation for sieve analysis as the proportional hazards model is connected to a result of
Prentice et al. (1978). They showed that under the cause-specific proportional hazards model with proportional
baseline risks, given by

ls(t
��z) = exp

�
as +b T

s z
�
l1(t),

the marginal probability distribution of failure type satisfies the MLR model. Thus, when censoring is non-
informative, the failure time and count models intersect under A3.

Kochar and Proschan (Statistica Sinica 1991) showed that the failure time and type are mutually independent
if and only if this model holds.

Under assumption A3 and non-informative censoring, strain-specific proportional hazards models and the
MLR model are equivalent tools for sieve analysis. On the other hand, if A3 is violated, the incorporation of
failure times can potentially improve inference.


