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1. Web Appendix A: Causal Assumptions

We use a counterfactual framework for defining causal effects. Let Ti(z) be the potential time

to the first event when subject i is assigned treatment z, so that Ti = (1−Zi)Ti(0)+ZiTi(1);

similarly, define Ji(z) as the potential type of event under this same treatment assignment.

We assume that the treatment assignment of the ith individual does not affect the potential

outcomes of other individuals and that there are no multiple forms of treatment, i.e. that

the single unit treatment value assumption (SUTVA) holds. We also adopt the axiom of

consistency: if a unit is assigned to treatment z, then it must be that (Ti, Ji) = (Ti(z), Ji(z)).

The full data we would like to see for each subject are denoted Xi(z) = (Ti(z), Ji(z),Wi).

Our goal is estimation of the cumulative incidence of events of type J = 1 at a fixed time

t0 under fixed treatment assignment z0:

Fz0(t0, 1) = P (T (z0) 6 t0, J(z0) = 1) for z0 = 0, 1. (1)

To identify this causal quantity based on the observed data, we must make several non-

testable assumptions:

(1) Conditionally independent treatment assignment: (Z ⊥ T (z)) | W for z = 0, 1

(2) Positivity: P (U(z) > t0 | Z = z,W = w) > 0 forP0 − almost every w and for z = 0, 1

(3) Coarsening at random (CAR): PO|Z=z,X(z) = PO|Z=z,W for z = 0, 1

Assumption 1 would be satisfied in any trial where treatment probabilities are known based

on baseline covariates W , as would be in a randomized trial. Assumption 2 calls for a positive

probability of remaining uncensored up to time t0 within each strata of W ; this ensures

counterfactual event times are well defined (Petersen et al., 2010). Assumption 3 requires

there be no unmeasured confounders of T (z) and U(z) (van der Laan and Robins, 2003;

Tsiatis, 2007). If we are unwilling to make untestable assumptions, as perhaps we would be
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in an observational study, the statistical parameter defined in Section 2 Equation (1) may

still be an interesting parameter for assessing treatment efficacy.

2. Web Appendix B: Proof of Theorem 1

We provide two derivations of the efficient influence curve: the first via projections onto

tangent spaces generated by fluctuation submodels for Q, the second as a direct application

of Theorem 1 in van der Laan and Gruber (2012). These two proofs arrive at different, but

equivalent representations of the efficient influence curve.

2.1 Representation 1

The first method of obtaining the canonical gradient D∗(P ) of the pathwise derivative of

Ψ : M → [0, 1] at P involves projecting an initial gradient, DIPCW (P ), onto the tangent

space of the model at P , denoted T (P ). Because Ψ is only a function of P through the Q

portion of the likelihood, we can consider the submodel M(g) of M where g is treated as

fixed and known. Due to the factorization of P = Qg, it follows that the canonical gradient

in this smaller model will be the same as in the full model (van der Laan and Robins, 2003).

The tangent space in the reduced model is a sum space consisting of the tangent spaces

generated by submodels P (ε) that only vary the conditional distributions of W , dN1(t), and

dN2(t); we denote these tangent spaces as TdN1(t)(P ), TdN2(t)(P ), t = 1, ..., τ, and TW (P ),

respectively.

These tangent spaces are defined as the mean-square closure of the space spanned by the

scores of regular parametric submodels through P (O(t) | Pa(O(t))). Thus, we can write the



3

tangent spaces as

TW (P ) = {v(W ) ∈ L0
2(P ) : E[v(W )] = 0}

TdN1(t)(P ) = {v(dN1(t), Pa(dN1(t))) ∈ L0
2(P ) :

E[v(dN1(t), Pa(dN1(t))) | Pa(dN1(t))] = 0}

TdN2(t)(P ) = {v(dN2(t), Pa(dN2(t))) ∈ L0
2(P ) :

E[v(dN2(t), Pa(dN2(t))) | Pa(dN2(t))] = 0},

where L0
2(P ) is the Hilbert space of mean zero functions with finite variance with respect to

P equipped with inner product < f, g >:= P (fg). The projection operator is given by

Π(D(P ) | TO(t)(P ))(o(t), pa(o(t)))

= E[D(P )(O) | O(t) = o(t), Pa(O(t)) = pa(o(t))]− E[D(P )(O) | Pa(O(t)) = pa(o(t))].

For the binary variables dN1(t), dN2(t), this projection operator takes the special form

Π(D(P ) | TO(t)(P )) = HO(t)(Pa(O(t)))[O(t)− P (O(t) = 1 | Pa(O(t)))], (2)

where

HO(t)(pa(o(t))) := E[D(P )(O) | O(t) = 1, Pa(O(t)) = pa(o(t))]

−E[D(P )(O) | O(t) = 0, Pa(O(t)) = pa(o(t))]. (3)

See van der Laan and Rose (2011) (p 538-542) for proofs of these results.

We note that this derivation uses a parameterization of the distribution of (dN1(t), dN2(t))

considering the distribution of dN1(t) given Pa(dN1(t)) and of dN2(t) given Pa(dN2(t))

and dN1(t). A different, but equivalent representation could be arrived at by changing the

ordering of this parameterization.

Now consider the gradient in M(g) at P evaluated at a standard data unit o,

DIPCW (P )(o) = Hg(t0, o(t0 − 1))n1(t0)− F (t0, 1 | Z = z0), (4)
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where Hg(t0, o(t0 − 1)) is as defined in Theorem 1. We now project this gradient onto

TW (P ), TdN1(t)(P ), and TdN2(t)(P ).

The projection onto TW (P ) is easily seen to be

Π[DIPCW (P ) | TW (P )](o) = E[DIPCW (P )(o) | W = w]

= F (t0, 1 | Z = z0,W = w)− F (t0, 1 | Z = z0).

To calculate the projection onto TdN1(t)(P ), we must calculate (3) for O(t) = dN1(t). Note

that (2) will be 0 if N1(s− 1) = 1, N2(s− 1) = 1, or C(s− 1) = 1, for any s < t. It follows

that we can condition on N1(t−1) = N2(t−1) = C(t−1) = 0 in our calculations; we denote

this condition as T̃ > t.

The first term in (3) for t 6 t0 is

E[DIPCW (P )(o) | dN1(t) = 1, T̃ > t, Pa(dN1(t)) = pa(dn1(t))]

= Hg(t, o(t− 1))− F (t0, 1 | Z = z0),

For t > t0, E[DIPCW (P )(O) | dN1(t) = 1, Pa(dN1(t)) = pa(dn1(t))] = −F (t0, 1 | Z = z0).

The second term in (3) for t < t0 is,

E[DIPCW (P )(o) | dn1(t) = 0, T̃ > t, Pa(dn1(t))]

= Hg(t, o(t− 1))(1− Q̌z0,0
2 (t, w))

t0∑
s=t+1

Q̄z0,0
1 (s, w)

s−1∏
m=t+1

(1− Q̄z0,0
1 (m,w)− Q̄z0,0

2 (m,w))

= Hg(t, o(t− 1))(1− Q̌z0,0
2 (t, w))R(t, w).

For t > t0, E[DIPCW (P )(O) | dN1(t) = 0, T̃ > t, Pa(dN1(t)) = pa(dn1(t))] = −F (t0, 1 |

Z = z0). Combining these results, we conclude that

HdN1(t)(t, o(t− 1)) = Hg(t, o(t− 1))[I(t < t0)[1− (1− Q̌z0,0
2 (t, w))R(t, w)] + I(t = t0)].

We can similarly use (2) and (3) to determine the projection of DIPCW (P ) onto TdN2(t)(P ).

The projection will be 0 when N1(t) = 1, N2(t − 1) = 1, or C(t − 1) = 1; we use {T̃ >
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t, dN1(t) = 0} to denote the complement of this condition. The first term in (3) is −F (t0, 1 |

Z = z0) ∀ t ∈ {1, ..., t0}. The second term in (3) for t < t0 is,

E[DIPCW (P )(o) | dN2(t) = 0, Pa(dN2(t)) = pa(dN2(t)), T̃ > t, dn1(t) = 0]

= Hg(t, o(t− 1))

t0∑
s=t+1

Q̄z0,0
1 (s, w)

s−1∏
m=t+1

(1− Q̄z0,0
1 (m,w)− Q̄z0,0

2 (m,w))− F (t0, 1 | Z = z0)

= Hg(t, o(t− 1))R(t, w)− F (t0, 1 | Z = z0).

For t > t0, this term is −F (t0, 1 | Z = z0). Combining these we conclude that

HdN2(t)(t, o(t− 1)) = −I(t < t0)Hg(t, (o− 1))R(t, w)

Now, by summing over all the projections, we have the first form of the efficient influence

curve:

D∗(P )(o) =
τ∑
t=1

Hg(t, o(t− 1))HdN1(t)(t, o(t− 1))(dn1(t)− Q̄z0,0
1 (t, w))

+
τ∑
t=1

Hg(t, o(t− 1))HdN2(t)(t, o(t− 1))(dn2(t)− Q̌z0,0
2 (t, w))

+F (t0, 1 | Z = z0,W = w)− F (t0, 1 | Z = z0). (5)

It can be easily shown that this form is equivalent to the form given in the theorem. �

2.2 Representation 2

Theorem 1 in van der Laan and Gruber (2012) gives the form of the efficient influence curve

for longitudinal parameters under multiple time point interventions as established in Bang

and Robins (2005). By viewing censoring as a sequentially randomized treatment (equivalent

to assuming CAR, see e.g. van der Laan and Rose (2011) Appendix 5) and the event process

N2(·) as a time-varying confounder, we may directly apply the results of this theorem.

We begin by showing that the conditional expectation representation of the cumulative

incidence curve does in fact hold. To see this, note that for m = 1, ..., t0, Q̃z0,0
m (w) can be
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written

Q̃z0,0
m (w) =I(n1(m− 1) = n2(m− 1) = 0)

×

[
t0∑
t=m

Q̄z0,0
1 (t, w)

t−1∏
s=m

(1− Q̄z0,0
1 (s, w)− Q̄z0,0

2 (s, w))

]
+ I(n1(m− 1) = 1)

=I(n1(m− 1) = n2(m− 1) = 0)R(m− 1) + I(n1(m− 1) = 1),

taking empty products to be 1 and empty sums to be 0 as necessary so that this form applies

for all m = 1, ..., t0. Letting m = 1 we see that Q̃z0,0
1 (w) = F (t0, 1 | Z = z0,W ). Taking the

expected value of this with respect to QW gives the unconditional cumulative incidence.

Now we show the form of the efficient influence curve for this representation of the

parameter. A direct application of Theorem 1 in van der Laan and Gruber (2012) gives

the efficient influence curve at P to be
∑t0

t=0D
∗
t (P ), where

D∗t0(P )(o) = Hg(t0, o(t0 − 1))[dN1(t0)− Q̄z0,0
1 (t0, w)]

D∗t (P )(o) = Hg(t, o(t− 1))[Q̃z0,0
t+1(w)− Q̃z0,0

t (w)], for t = t0 − 1, ..., 1

D∗0(P )(o) = F (t0, 1 | Z = z0,W = w)− F (t0, 1 | Z = z0)

First note that for t = t0, we have D∗t0(P )(o) = D1(t0, o) + D2(t0, o) = D1(t0, o) from our

Theorem 1. Now for all t = t0 − 1, ..., 1, we have the following equalities that will be used:

R(t)−R(t− 1) = −(1−R(t))Q̄z0,0
1 (t, w) + Q̄z0,0

2 (t, w)R(t)

I(N1(t) = 1)− I(N1(t− 1) = 1) = dN1(t);

I(N1(t) = N2(t) = 0) = (1− dN1(t)− dN2(t))I(N(t− 1) = 0);

I(N(t− 1) = 0)dN1(t) = dN1(t).



7

For t = t0 − 1, ..., 1, we can then write

(Q̃z0,0
t+1(w)− Q̃z0,0

t (w))

= (I(n(t) = 0)R(t, w) + I(n1(t) = 1)− I(n1(t− 1) = 0)R(t− 1, w)− I(n1(t− 1) = 1))

= (dn1(t) + [1− dn1(t)− dn2(t)]I(n(t− 1) = 0)R(t)− I(n(t− 1) = 0)R(t− 1))

= I(n(t− 1) = 0)(dn1(t)−R(t)dn1(t)−R(t)dN2(t) +R(t)−R(t− 1))

= I(n(t− 1) = 0)([1−R(t)]dn1(t)− [1−R(t)]Q̄z0,0
1 (t, w)−R(t)dn2(t) + Q̄z0,0

2 (t, w)R(t))

= I(n(t− 1) = 0)([1−R(t)][dn1 − Q̄z0,0
1 (t, w)]−R(t)[dn2(t)− Q̄z0,0

2 (t, w)]),

which is equivalent to D1(t, o)+D2(t, o) from Theorem 1. Finally note that D∗0(P ) = DW (P )

from Theorem 1, which completes the proof.

3. Web Appendix C: Regularity Conditions for Lemma 1

Lemma 1 will hold for estimators Qn and gn that satisfy the following conditions:

(1) (Pn − P0)[D∗(Qn, gn)−D∗(Q0, g0)] = op(n
−1/2)

(2) U(Q0, Qn, g0, gn) = op(n
−1/2),

where

U(Q0, Qn, g0, gn) = Ψ(Qn)−Ψ(Q0) + P0D
∗(Qn, gn),

is the remainder term resulting from the linearization of Ψ(Q) and involves second- and

higher-order differences between Qn and Q0 and between gn and g0. Condition (1) would

be satisfied if there exists a P0-Donsker class F such that D∗(Qn, gn) ∈ F with probability

tending to 1 and P0[D∗(Qn, gn) −D∗(Q0, g0)]2 →p 0. For a detailed proof see van der Laan

and Rose (2011) Appendix 18, Theorem A5.
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4. Web Appendix D: Constuction of TMLEs

4.1 Hazard-based TMLE

The hazard-based TMLE can be constructed as follows:

(1) Generate initial estimates, gz0,n(w) and GC,n(·, w), of the treatment and censoring mech-

anisms. These may be obtained through standard methods (e.g. parametric regression

for gz0,n(w); Kaplan-Meier for GC,n(·, w)), or using machine learning techniques, possibly

combined data-adaptively using the Super Learner.

(2) Generate initial estimates, Q̄z0,0
1,n,k(·, w) and Q̌z0,0

2,n,k(·, w), of the cause-specific hazards.

Again, these could be obtained through standard logistic regression, but ideall would

make use of more data adaptive methods. Let k = 0.

(3) Use the current estimates Q̄z0,0
1,n,k(·, w) and Q̌z0,0

2,n,k(·, w) to compute H1,n,k(·, o).

(4) Obtain ε1,n,k as the estimated coefficient in a logistic regression model of outcome dn1(t)

on covariate H1,n,k(t, o) with offset Q̄z0,0
1,n,k(t, w) in the subset of data with Z = z0, C(t−

1) = 0. Set Q̄z0,0
1,n,k+1(t, w) := Q̄z0,0

1,n,k(t, w)(ε1,n,k).

(5) Use Q̄z0,0
1,n,k+1(·, w) and Q̌z0,0

2,n,k(·, w) to compute H2,n,k+1(·, o).

(6) Obtain ε2,n,k as the estimated coefficient in a logisitic regression model of outcome dn2(t)

on covariate H2,n,k+1(t, o) with offset logit(Q̌z0,0
2,n,k(t, w)[1 − Q̄z0,0

1,n,k+1(t, w)]) in the subset

of data with Z = z0, C(t− 1) = 0. Set Q̌z0,0
2,n,k+1(t, w) := Q̌z0,0

2,n,k(t, w)(ε2,n,k).

(7) Iterate steps 3-6 until ε1,n,k ≈ 0 and ε2,n,k ≈ 0. Let Q̄z0,0,∗
1,n (t, w), Q̌z0,0,∗

2,n (t, w) denote the

estimates at the final iteration.

(8) Apply mapping in (??) using Q̄z,0̄∗
1,n (·, w), Q̄z0,0,∗

1,n (t, w), Q̌z0,0,∗
2,n (t, w), and QW,n(·) to obtain

the estimator ψ∗n := F ∗n(t0, 1|Z = z0).

4.2 Iterative mean-based TMLE

We begin by briefly discussing how to obtain initial estimators of Q̃z0,0
· (w) before detailing

the TMLE algorithm. Consider the conditional mean at the last time point, Q̃z0,0
t0 (w). The
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initial estimate of this quantity should trivially assign 1 to subjects who have failed due

to cause 1 prior to t0 and 0 to subjects who have failed due to cause 2. It remains to

estimate the conditional probability of a failure at time t0 given that a subject has not

already failed. This can be achieved through standard parametric regression or more data

adaptive methods, but in each case we only use data for subjects at risk and uncensored at

t0 − 1. Moving to the next time point, t0 − 1, the initial estimate of Q̃z0,0
t0−1(w) now assigns 1

to subjects who have failed due to cause 1 prior to t0 − 1 and 0 to subjects who have failed

due to cause 2. We then estimate the probability of a type 1 event at either t0 − 1 or t0 in

the subset of subjects who have not failed due to any cause by time t0 − 2. Again, this can

be done using standard parametric regression or more data adaptive methods. An example

of a standard regression approach would be a logistic regression model with Q̃z0,0
t0−1,n(w) as

the outcome and functions of w as predictors, fit using the subset of the data for which

Z = z0, C(t0− 2) = N(t0− 2) = 0. We iterate this estimation process at each time and note

that the subset of uncensored subjects used in the estimation at each step is getting larger.

Eventually at t = 1, all subjects are used to obtain an estimate of F (t0, 1 | Z = z0,W = w).

We would then average that estimate over covariate levels to obtain an estimate of the

unconditional cumulative incidence function.

The TMLE procedure follows the estimation procedure outlined above, but adds in a

targeting step to estimation at each time point. Thus, the procedure is as follows:

(1) Generate initial estimates, gz0,n(w) and GC,n(·, w), of the treatment and censoring mech-

anisms. Use these to compute Hg,n(·, o).

(2) Generate an initial estimate Q̃z0,0
t0,n(w) of the first conditional mean as outlined above.

(3) Obtain εt0,n by fitting logistic regression with dn1(t0) as outcome, Q̃z0,0
t0,n(w) as offset, and

Hg,n(t0, o) as covariate in the subset of data with Z = z0, C(t0 − 1) = N1(t0 − 1) =

N2(t0 − 1) = 0. Set Q̃z0,0,∗
t0,n (w) = Q̃z0,0

t0,n(w)(εt0,n). Let t = t0 − 1.
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(4) Generate an initial estimate Q̃z0,0
t,n (w) of the t-th conditional mean as outlined above

using Q̃z0,0
t+1,n(w) as the outcome in e.g. a logistic regression model or a data adaptive

learning algorithm.

(5) Obtain εt,n by fitting logistic regression with Q̃z0,0,∗
t+1,n(w) as outcome, Q̃z0,0

t,n (w) as offset,

and Hg,n(t, o) as covariate in the subset of data with Z = z0, C(t − 1) = N1(t − 1) =

N2(t− 1) = 0.

(6) Iterate steps 4-5 for t = t0 − 2, ..., 1.

(7) Use the empirical distribution of covariates to average Q̃z0,0,∗
1,n (w) = F (t0, 1 | Z = z0,W =

w) over w, obtaining estimator ψ∗n = F ∗n(t0, 1 | Z = z0).

4.3 Practical implementation

We first note that the targeting in the mean-based TMLE is completed in a single step,

as opposed to the hazard-based approach, which requires iteration. However, the mean-

based TMLE requires estimation of Q̃z0,0
t at each time, whereas there were only two steps of

initial estimation in the hazard-based approach. If the initial estimation is being done with a

computationally intensive method, e.g. Super Learner, then the mean-based approach might

be much slower to implement in practice. However, for a modest number of discrete time

points, as in the simulation studies presented, we found that the methods take approximately

the same amount of time to execute.

5. Web Appendix E: Simulation Details

5.1 Simulation parameters

Web Table 1 contains values for parameters used in the first simulation study. Additionally,

β0 = −3.876, exp(β1) = 0.474, and exp(β3) = 1 for all scenarios in simulation 1. The

exponentiated parameters can be interpreted as a cause-specific hazard ratio for a unit

difference in the associated covariate.
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Table 2 contains values for parameters used in the second simulation study, with β0 =

−3.876, exp(β1) = 3.123, exp(γ1) = 1.557 for all scenarios.

[Table 1 about here.]

[Table 2 about here.]

5.2 Super Learner libraries

Web Table 3 shows the algorithms included in the Super Learner library for cause-specific

hazards (TMLE-1), iterated conditional means (TMLE-2) and censoring (both TMLE-1 and

TMLE-2) in the simulation studies. The generalized additive models were computed using

the gam R package (Hastie, 2013) and the Super Learner algorithm was executed using the

SuperLearner R package (Polley and van der Laan, 2013).

[Table 3 about here.]

5.3 Standard error estimates

Web Figure 1 shows the performance of the influence curve-based standard error estimates

of F̂ (8, 1 | Z = z0) for z0 = 0, 1 from simulation study 1. The estimates perform well in all

settings.

[Figure 1 about here.]

6. Web Appendix F: Additional Simulation Studies

We examined the performance of our estimators when covariates are measured with error,

e.g. self-reported risk behavior in an HIV vaccine efficacy trial. To generate data with

measurement error, we suppose there exists a latent variable L1 ∼ N(0, σ2
L1

) and W1 is

a version of L1 subject to measurement error,

W1 = L1 + e1, e1 ∼ N(0, σ2
e1

), e1 ⊥ L1,
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so that W1 ∼ N(0, σ2
1), with σ2

1 = σ2
L1

+ σ2
e1

.

We suppose there exists a second latent variable, L?2, with

L?2 = L†2 + e2, L†2 ∼ N(0, σ2
L2

), e2 ∼ N(0, σ2
e2

), e2 ⊥ L†2,

so that L?2 ∼ N(0, σ2
2), with σ2

2 = σ2
L2

+ σ2
e2

. W2 is a dichotomized version of L?2, i.e. W2 ≡

I(L?2 > θ), which implies

W2 ∼ Bernoulli(Φ(−θ/σobs)),

where Φ is the standard normal CDF. We let L2 ≡ I(L†2 > θ) be the true variable we

would like to have measured. We denote ρ1 ≡ 1− σ2
e1
/σ2

1 as the fraction of variability of W1

explained by L1; similarly, ρ2 ≡ 1 − σ2
e2
/σ2

2 is the fraction of variability in L?2 explained by

L†2. We let ρ1 = 0.9 and repeated simulation study 1. We then let ρ1 = ρ2 = 0.9 and θ = 0

and repeated simulation study 2.

6.1 Simulation 1 Results

Web Figures 2, 3, and 4 show the results for the first simulation study when covariates are

measured with measurement error. We see that when covariates are measured with error

TMLE estimates have some bias and efficiency gains are less than when there is no error in

covariate measurement. In general, when covariates are not prognostic TMLE still performs

as well as Aalen-Johansen.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

6.2 Simulation 2 Results

Web Figure 5 shows the results for simulation study 2 when covariates are measured with

error. We see that TMLE still provides some gains in power over Aalen-Johansen for moder-
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ately effective vaccines. When there was no measurement error, TMLE offered a larger gain

in efficiency in the effect modification scenario. However, we see that the gain in power in the

effect modification scenario is smaller than the gain in the no effect modification scenario.

[Figure 5 about here.]

7. Web Appendix G: HVTN 505 Results

Web Figure 6 shows results from an analysis of the HVTN 505 HIV vaccine efficacy trial

using TMLE. We implemented the mean-based TMLE using a the Super Learner to generate

our initial estimates at each time point as well as the censoring. We considered self-reported

sexual risk behavior (number of sexual partners, unprotected sex, drug/alcohol use, and

a derived sexual risk score. The Super Learner library included generalized linear mod-

els, Bayesian generalized linear models, generalized additive models, and stepwise selection

procedures. The point estimates given by TMLE were very similar to those obtain via Aalen-

Johansen, while the estimated variances were generally 1-3% smaller (Web Figure 7).

[Figure 6 about here.]

[Figure 7 about here.]

8. Web Appendix H: R Code

R code for implementing the methods in this article is provided online. The functions

tmle.cmprsk1 and tmle.cmprsk2 execute the hazard-based and mean-based TMLE’s respec-

tively. For each method, the code calculates estimates of F (t0, 1 | Z = z0), z0 = 0, 1 for a

user-specified time point t0. The code has been annotated for easy referencing against the

description of the methods in this paper. The code for generating data and producing plots

shown in the simulation studies is also included. Due to confidentiality agreements, the real

RV144 data set could not be made available. We have instead included an illustration of our
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method on a similarly-structured data set and have included code to reproduce the RV144

plots included in the body of this paper.
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Web Figure 1: Monte Carlo standard deviation (SD) plotted against the mean standard
error (SE) estimate for simulation study 1 for the hazard-based TMLE (TMLE-1) and the

mean-based TMLE (TMLE-2). The dashed line is the identity line, along which points
should fall if estimates of standard error accurately reflect the true standard deviation of
the estimates. Circles indicate the low censoring rate setting and triangles represent high
censoring rate. Red points indicate high covariate predictiveness of censoring, while black

points indicate low covariate predictiveness of censoring.
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Web Figure 2: Bias of the hazard-based TMLE (TMLE-1), mean-based TMLE (TMLE-2),
and the Aalen-Johansen (A-J) estimator when covariates are measured with error. The bias

is presented as a percentage of the true cumulative incidence function.
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mean-based (TMLE-2) TMLE estimators compared to the Aalen-Johansen (A-J) estimator
when covariates are measured with error. Values below 1.0 indicate a smaller coefficient of

variation for the TMLE estimator.
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Web Figure 4: Relative mean squared error of the hazard-based (TMLE-1) and mean-based
(TMLE-2) estimators compared to the Aalen-Johansen (A-J) estimator when covariates are
measured with error. Values below 1.0 indicate a smaller mean squared error for the TMLE

estimator.
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Figure 7: Comparison of the estimated variance of Aalen-Johansen estimator and TMLE
estimator across time points in HVTN-505. Points below 1 indicate a smaller estimated

variance for TMLE estimators.
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Pred. cens. Cens. rate Pred. event exp(β2) γ0 exp(γ1) n

None Low None 1 -4.125 1 2180
None Low Medium 1.557 -4.115 1 2150
None Low High 3.123 -4.100 1 1570
None High None 1 -2.887 1 2630
None High Medium 1.557 -2.875 1 2450
None High High 3.123 -2.840 1 1780
High Low None 1 -4.210 1.557 2340
High Low Medium 1.557 -4.200 1.557 2180
High Low High 3.123 -4.130 1.557 1610
High High None 1 -2.935 1.557 2650
High High Medium 1.557 -2.920 1.557 2530
High High High 3.123 -2.850 1.557 1900

Web Table 1: Parameters for simulation study 1. The first three columns indicate the
scenario considered, consisting of all combinations of none/high covariate predictiveness of
censoring (Pred. cens.), low/high censoring rates (Cens. rate), none/medium/high covariate
predictiveness of events (Pred. event).
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Eff. Mod. VE exp(β1) exp(β3) γ0 n

No 0 1 1 -4.170 1640
No 0.25 0.726 1 -4.175 1880
No 0.5 0.474 1 -4.190 2190
No 0.75 0.225 1 -4.206 2630
Yes 0 1.620 0.280 -4.120 1200
Yes 0.25 1 0.474 -4.170 1880
Yes 0.5 0.830 0.220 -4.200 2150
Yes 0.75 0.375 0.250 -4.215 2630

Web Table 2: Parameters for simulation study 2. The first two columns indicate the scenario
considered, consisting of combinations of effect modification yes/no (Eff. mod.), and vaccine
efficacy 0,0.25,0.5,0.75 (VE).
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Model type Time Covariates

Hazard estimates (TMLE-1)

glm ∅ Z
glm ∅ Z +W1 +W2

glm ∅ Z +W1 +W2 + Z ∗W2

glm factor(t) Z +W1 +W2

glm factor(t) Z +W1 +W2 + Z ∗W2

gam ∅ Z + s(W1, df = 3) +W2

gam s(t, df = 3) Z +W1 +W2

gam ∅ Z + s(W1, df = 3) +W2 + Z ∗W2

gam s(t, df = 3) Z +W1 +W2 + Z ∗W2

Conditional mean estimates (TMLE-2)

glm ∅ Z
glm ∅ Z +W1 +W2

glm ∅ Z +W1 +W2 + Z ∗W2

gam ∅ Z + s(W1, df = 3) +W2

gam ∅ Z + s(W1, df = 3) +W2 + Z ∗W2

Censoring estimates (TMLE-1 & TMLE-2)

glm ∅ ∅
glm ∅ Z +W1 +W2

glm ∅ Z +W1 +W2 + Z ∗W2

glm factor(t) Z +W1 +W2

glm factor(t) Z +W1 +W2 + Z ∗W2

gam ∅ Z + s(W1, df = 3) +W2

gam s(t, df = 3) Z +W1 +W2

gam ∅ Z + s(W1, df = 3) +W2 + Z ∗W2

gam s(t, df = 3) Z +W1 +W2 + Z ∗W2

Web Table 3: Models included in Super Learner libraries for simulation studies. The columns
indicate what type of model was used (glm=generalized linear model, gam = generalized
additive model), how time was modeled (∅ denotes time was omitted from the model,
factor(t) indicates dummy variables were used), and what covariates were included (x ∗ y
indicates a cross product between covariates x and y). We use s(x, df = d) to denote that
variable x was modeled using a polynomial spline of degree d.


