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The role of serotonin in human brain function remains elusive due, at least in part, to our inability to measure rapidly the local
concentration of this neurotransmitter. We used fast-scan cyclic voltammetry to infer serotonergic signaling from the striatum of 14 brains
of human patients with Parkinson’s disease. Here we report these novel measurements and show that they correlate with outcomes and
decisions in a sequential investment game. We find that serotonergic concentrations transiently increase as a whole following negative
reward prediction errors, while reversing when counterfactual losses predominate. This provides initial evidence that the serotonergic
system acts as an opponent to dopamine signaling, as anticipated by theoretical models. Serotonin transients on one trial were also
associated with actions on the next trial in a manner that correlated with decreased exposure to poor outcomes. Thus, the fluctuations
observed for serotonin appear to correlate with the inhibition of over-reactions and promote persistence of ongoing strategies in the face
of short-term environmental changes. Together these findings elucidate a role for serotonin in the striatum, suggesting it encodes a
protective action strategy that mitigates risk and modulates choice selection particularly following negative environmental events.
Neuropsychopharmacology advance online publication, 14 February 2018; doi:10.1038/npp.2017.304
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INTRODUCTION

The neurotransmitter serotonin influences a broad range of
brain functions, including mood, sleep, learning, and
decision-making (Portas et al, 2000; Must et al, 2007;
Diekhof et al, 2008), and is thus implicated in a diverse
range of diseases, including obsessive compulsive disorder
(Hu et al, 2006), anorexia nervosa (Kaye et al, 1998), and
depression (Whittington et al, 2004; Risch et al, 2009).
However, there is much debate as to what it actually encodes.
Various data and arguments favor aspects of it as being
opponent to dopamine, thus suggesting a role in punishment
and loss (Deakin, 1983; Graeff and Deakin, 1991; Daw et al,
2002; Cools et al, 2008; Crockett et al, 2009; Tanaka et al,
2009; Boureau and Dayan, 2011). Other evidence suggests a
role in patience while waiting for a reward (Miyazaki et al,

2012; Worbe et al, 2014; Fonseca et al, 2015; Li et al, 2016),
disengagement (Tops et al, 2009), motor activity (Jacobs,
1994), or even reward (Dölen et al, 2013; Liu et al, 2014; Li
et al, 2016). Recent optogenetically tagged recordings from
serotonergic neurons in the raphé have not resolved these
debates (Cohen et al, 2015), perhaps partly because of
heterogeneity among serotonin neurons (Lowry, 2002). A
voltammetric approach in awake, behaving, humans may
offer new insights into the role of serotonin at a temporal
resolution that reveals dynamic events several orders of
magnitude faster than positron emission tomography (Yao
et al, 2009) whilst also observing concentrations of the
neurotransmitter at downstream structures directly, rather
than assuming linearity with firing rates in the raphé
(Montague et al, 2004).
Recently, we developed a fast-scan cyclic voltammetry

procedure to identify dopamine fluctuations in patients with
Parkinson’s disease who were undergoing surgery for deep
brain stimulator implantation (Kishida et al, 2016). These
unique multi-subject recordings provided millisecond-resolved
estimates of relative fluctuations in the concentration of this
neurotransmitter whilst patients played an investment task that
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was designed to elicit adaptive behavior in the face of rewards
and punishments. Serotonin also produces redox reactions
around this range; thus, were it possible to distinguish
serotonin from dopamine, we could measure relative seroto-
nergic responses from exactly these same signals, thus
addressing its involvement in the same task. There are
approaches to perform this separation or boost serotonin
signals in slices or in vivo in other animals such as picking
peaks in the voltammetric recordings visually (John and Jones,
2007), using drugs (John and Jones, 2007; Hashemi et al, 2011)
or even optogenetics (Xiao et al, 2014). However, these do not
readily extend to studies in humans.
Here we derived a principled supervised learning method

to apply to these same human recordings to measure trial-
by-trial fluctuations in extracellular concentrations of
serotonin, distinguished from dopamine. We used this to
measure serotonin transients in 16 hemispheres from
patients as they performed the investment task (12 of these
recordings were used in the previous dopamine assessment).
In the task, patients selected an investment level on each trial
as market prices unfolded according to real historical
financial markets (Lohrenz et al, 2007). Dopamine transients
in this task were found to encode not the typical ‘reward
prediction error (RPE)’ but rather a signal that combined
actual and counterfactual RPEs (the latter when subjects
invested little, and so experienced regret or rejoicing when
the market rose or fell, respectively) (Kishida et al, 2016). We
hypothesized that serotonin may function in a similar way
but in the loss domain, with the potential to represent
counterfactual losses from foregone gains akin to a regret
signal (a positive RPE when investments are low). Moreover,
given the theorized role of serotonin in active avoidance
(Dayan and Huys, 2008), we investigated whether fluctua-
tions in serotonin correlated with avoidance behavior in the
task (ie reducing one’s level of exposure) to actual or
counterfactual losses.

MATERIALS AND METHODS

Participants and Fast-Scan Cyclic Voltammetry

Fourteen patients (aged 61.1± 9.7 years, 2 female) under-
going surgery for the implantation of deep brain stimulation
(DBS) electrodes participated in the experiment. Two
patients participated on separate days during right and left
implantation to give a total of n= 16 recordings. All patients
had a diagnosis of Parkinson’s disease. Participants provided
informed consent and were instructed that they could opt
out of the experiment at any time. Procedures were approved
by the Virginia Tech and Wake Forest Baptist Medical
Center Institutional Review Boards (IRB #11-078). No
adverse effect of the extended surgical procedure was
reported. Eleven of our participants (12 hemispheres)
formed part of the cohort reported in Kishida et al (2016).
In Supplementary Table 1 we provide details of disease
duration, medication, and comorbidities. During the surgery
and during our test period, all patients were off their
dopamine-related medications but remained on all other
pharmacological treatments. For details of the surgical and
voltammetry procedure see Supplementary Materials and
Methods. Our voltammetric electrochemical assays relied

upon redox reactions of serotonin along a carbon fiber (at
10 Hz), which we assumed would produce measurable
current changes in proportion to the concentration of the
chemical species in the extracellular space (for full details of
the carbon fiber and FSCV protocol see Supplementary
Materials and Methods and Kishida et al, 2011).

Investment Task

Participants played a decision-making game in a simulated
‘stock market’. Participants were first endowed with 100
points, and, on each trial they had to decide an amount to
invest in the stock market. This amount could be 0, 10, 20,
30, 40, 50, 60, 70, 80, 90, or 100% of their points. At the
beginning of a game with a single market, participants were
first shown a trajectory of previous market moves indicating
changes in the value of the market (Figure 3a). They were
then asked to make their first investment decision (submit
bet), and following a delay (840± 12 ms), the market value
change was revealed and players lost or gained points in
accordance with market returns. Following this outcome,
participants then submitted a further 19 investment or ‘bet’
decisions in a self-timed manner. On average, players waited
4.5 s to submit their next decision after the reveal event. In
all, 6 markets of 20 decisions were played. Our markets were
consistent with real historical markets (eg, mimicking events
before and after 1929 Wall St crash and 1987’s ‘black
Monday’).
We chose this decision-making task as it is engaging and it

could be used to interrogate the serotonergic response to
‘what is’ as well as ‘what could have been’. The latter involve
so-called counterfactual or fictive RPEs. These errors are
ecologically important as learning signals and have been
previously shown to activate the human striatum (Lohrenz
et al, 2007). For the details of how we computed RPE on each
trial see Supplementary Materials and Methods.
The game was designed with 6 markets of 20 decisions

(120 decisions). In 14 of our 16 experiments, the participants
completed the full game. For two patients, recordings were
stopped before experimental completion with 5 markets (100
decisions) and 2 markets (40 decisions) completed. Thus, a
total of 1820 trials were played. From those 1820 trials, a total
of 1729 trials could be associated with prospective actions
within a market (ie, where (bet(t+1)− bet(t)) can be
computed within a given market). In Figure 4 we present
the concentration differences in serotonin for negative
compared to positive RPEs at high (60–100%) and low (0–
50%) betting levels. Here 1724 trials are included as 5 trials
resulted in RPEs equal to zero. In Figures 5 and 6 we
examine these 1724 bet decisions parametrically and in terms
of the adjustments in bet made on the next trial. We show
the transients in serotonin associated with lowering, holding
or raising one’s bet, from investment levels of (0%), (10 and
20%), (30 and 40%), (50 and 60%), (70 and 80%), and (90
and 100%).

Testing RPEs and Action Control

For each voltammogram we applied the model’s serotonin
coefficients to predict concentration levels of serotonin at
100 ms temporal resolution. For each trial we collected
transient responses of 700 ms duration around the time of
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market reveal (0 ms) from − 100 to 600 ms. Data were
Z-scored over an individual market and baseline corrected
within their cell to zero at either − 100 (Figure 4) or 0 ms
(Figures 5 and 6).
To test for responses that corresponded with RPEs (Figure

4), we tested the fluctuations in serotonin transients at the
time of market reveal (the outcome of their decision) from 0
to 600 ms. For this analysis we spilt our trials according to
the outcome-related RPE and according to the bet size (high
or low). To test whether these prediction error-related
responses (Figure 4) further corresponded with prospective
action encoding (Figures 5 and 6) we performed a second
analysis. Specifically we tested, again, the fluctuations in
serotonin transients at the time of market reveal from 0 to
600 ms. For this analysis however, we spilt our trials
according to the outcome-related RPE (negative, Figure 5;
and positive, Figure 6), and according to the decision to
‘raise’, ‘hold’, or ‘lower’ the current bet from levels (0%, (10–
20%), (30–40%), (50–60%), (70–80%), and (90–100%)). We
aimed to examine differences in serotonin transients
associated with negative compared to positive RPEs. Given
our previous findings for dopamine (Figure 2), we were also
interested in the bet dependence on the prediction error
since, for example, positive RPEs might be coded as a poor

outcome if the bet decision on that trial was low. We also
aimed to determine whether these transients predicted
decision-making on the next trial—ie, what adjustment
might be applied from current investment levels. For full
details of the statistical analysis applied to test for RPE-
related serotonin responses and to test for action control-
related responses please see Supplementary Materials and
Methods.

RESULTS

Serotonin Concentrations: Estimation Results

We followed a supervised-learning approach for extracting
serotonin signals (Kishida et al, 2016). We created a training
set of voltammograms taken from a set of probes constructed
identically to those used in the patient recordings. The
probes were exposed to analytes in a flow cell containing a
known range of serotonin concentrations (from 0 to
8000 nM) confounded with various concentrations of
dopamine and pH levels. The concentration dependence of
the shape and magnitude of the serotonin redox current was
directly apparent (Figure 1a). We therefore trained a
multivariate penalized regression model (Tibshirani, 1996)

Figure 1 Serotonin concentration prediction from dual transmitter model. (a) An illustration of voltammograms acquired for varying levels of serotonin
concentration (left) and dopamine concentration (right) in the flow cell. We see that low to high concentration levels produce changes in current magnitude
around the oxidation potentials (insets). Concentration is denoted by []. (b) The flow cell predictions are illustrated for serotonin under varying concentrations
of dopamine in the mixture. Serotonin was sampled at each level of concentration from 0.1 to 8 μM in 0.1 μM increments. For each of these 80
concentrations we computed the serotonin prediction over different levels of dopamine. Not all concentration mixtures for dopamine and serotonin were
acquired and acquired mixtures are denoted by the asterisk. Over this test grid we interpolated (using linear triangulation) across the acquired tests samples to
produce a three-dimensional heat map of serotonin predictions. This plot show that serotonin predictions do not vary systematically with increasing dopamine
levels. We illustrate one outlying serotonin prediction, which was observed but not included in the interpolated plot for visualization purposes. (c) Flow cell
predictions for dopamine in the mixture, plotted as a function of increasing dopamine and increasing serotonin as per b. Again, dopamine predictions using our
model do not appear to be systematically affected by the level of serotonin in the sample. (d) We tested 200 out-of-sample voltammograms for each
concentration level to quantify the error in generalizability. Illustrated in gray are predictions for different concentration ranges and their 99.99% confidence
intervals. Red crosses denote the mean of the (correct) test range. For each range we randomly selected 20 predictions from the full test set.
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to extract serotonin concentration estimates from all points
of each trace (1000 samples over 10 ms, Figure 1a). We
aimed to produce a dual-transmitter model that could
predict both serotonin and dopamine, as we had previously
observed task-related dopamine fluctuations in these
samples.
We used L1-penalized regression to create a generalizable

dual-transmitter regression model that estimated the con-
centrations of DA independent of the ambient levels of 5-HT
and pH, and 5-HT, independent of the level of DA and pH
(Supplementary Figure S1). We found that regression
coefficients were distributed throughout the trace indicating
that concentration levels were best predicted by considering
not only the peaks of oxidation and reduction but also other
points distributed across the voltage sweep (Figure 1a).
Crucially, we were able to estimate the concentrations of
serotonin in each mixture independent of dopamine
(Figure 1b) and we could predict dopamine concentration
levels independent of serotonin (Figure 1c) Moreover, our
predictions for serotonin were trained to ignore altering pH
levels (Supplementary Figure S2). This model estimated the
true serotonin levels within 90% confidence intervals of
the estimated levels in absolute terms (Figure 1d), even in the
presence of dopamine and at differing pH. We also tested
whether at very low concentrations we could differentiate
5-HT concentrations and found a resolution of ~ 100 nM
(Supplementary Figure S2).
Figure 1a shows that determining the low contamination

of the models is difficult to observe by visual inspection, as
the voltammograms for changing dopamine concentrations
appear similar to those for serotonin (Figure 1a). For
additional validation of our procedure, we compared the
dopamine predictions to our previously published findings
(Figure 2). We confirmed that on the identical data sets to
those previously published (17 recordings in total), we could
replicate previous results on transient fluctuations in
dopamine from the dorsal striatum (Kishida et al, 2016)

(Figure 2). We also show in a supplemental analysis
(Supplementary Figure S2), the correlation structure
amongst our DA and 5 HT estimates, where small positive
correlations were found to exist.

Behavior on the Sequential Investment Task

Figure 3a shows the sequence of events in the investment
game (Lohrenz et al, 2007), which participants played during
voltammetric recordings from dorsal striatum. The game
was designed to elicit prediction-, prediction error-, reward-,
and future investment-related signals associated with revela-
tion of market price movements on 120 separate trials over 6
historical markets (20 moves per market). On each trial
participants chose a level of investment for their current
endowment with possible choices from 0 to 100% with 10%
increments (Figure 3a) and submitted their choices. Then
participants were shown the market move (its change in
value, Figure 3a) to end a trial. Our behavioral data showed
that over all subjects, bets were distributed bimodally across
these 11 possible investment choices (Figure 3b), with
investment levels distributed around 50% and also peaking
at 100%. RPEs measure the difference between the return on
a trial and a prediction. We defined the return as the
fractional change in wealth (combining the current bet size
and market change), and the prediction as an average of
recent previous returns. We also scaled this difference by the
SD of those previous returns (see Supplementary Materials
and Methods). Across the cohort, this led to a spectrum of
positive and negative RPEs (Figure 3c). Further, based on our
previous results (Kishida et al, 2016) we considered counter-
factual as well as real outcomes depending on the current
betting level. This study suggested that negative outcomes
could be experienced in two ways: the first were those
outcomes where negative RPEs were experienced and so
events were ‘worse than expected’ (as bets were high). The
second were counterfactual negative events, in which positive
RPEs occurred when bets were low and thus regret on

Figure 2 Dopamine replication in mixture model. We performed an in vivo validation by replicating the previous dopamine findings using our new
multivariate mixture model. We split trials into low (0–50%), medium (60–80%), and high (90–100%) bets and examined dopamine transients at these
different bet levels in response to positive and negative reward prediction errors. As per the findings reported previously for a univariate model (Kishida et al,
2016) dopamine estimates from the dual transmitter model predict dopamine encoding of prediction errors. Using two-way ANOVAs with factors RPE
(negative RPE and positive RPE) and bet levels (high, medium, low) we found a significant interaction at 200 (p= 0.005), 300 (p= 0.0001), 400 (p= 0.0016),
500 (p= 0.0079), and 600 ms (p= 0.02). Post hoc two-sample t-test results for each bet level and time point are illustrated (*po0.05, ***p⩽ 0.001). For
validation purposes, we report here, those measurements from the original cohort of 17 patients reported in Kishida et al, 2016. Data were baseline corrected
to zero at 0 ms, and bar graphs depict the mean and SEM.
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a foregone gain. We correlated the whole collection of
events and choices with relative fluctuations in transmitter
concentrations.

Serotonin Encodes Loss Prediction Errors

We assessed serotonin responses in voltammograms at a
repetition frequency of 10 Hz using the penalized regression
models developed above. We examined fluctuations in
estimated concentrations at the time of trial outcomes (as
the market move is revealed) and tested for the serotonergic
encoding of prediction errors. Figure 4a displays the
serotonin transients associated with positive and negative
RPEs. Remarkably, when considering all betting levels,
serotonin displayed an upward fluctuation to negative
prediction errors and a downward fluctuation to positive
prediction errors (Figure 4a and see also Supplementary
Figure S3). Given the potential difference in response to
negative RPEs at high and low betting levels (loss and
counterfactual loss/foregone gain, respectively), we examined
serotonin fluctuations across a median split of bet levels.
Figure 4b shows that this encoding reversed for the lower
half of bets with upward serotonin fluctuations encoding
positive errors and downward fluctuations encoding negative
errors. The inversion of the encoding can be understood as
the presence of a counterfactual term for serotonin, which
responds to negative outcomes both in the context of a
surprising loss when one was highly invested in the market
and a surprising gain when one was not. The difference
between Figure 4b and Supplementary Figure S3 is the

baseline normalization of the signals to 100 ms before
revelation of the outcome (Figure 4b) or at the time of
revelation (Supplementary Figure S3). We present both as a
form of exploratory result. They suggest that the dynamics of
how the prediction component of the prediction error is
represented in serotonin concentration would be worth
exploring in future studies; in particular, higher temporal
resolution in the voltammetric signal could elucidate
early dynamics that alter baseline properties (Schmidt et al,
2013,Supplementary Figure S3). Here the interaction of
RPE and bet amount was significant for the earlier
baseline (Figure 4b). In our Supplementary Information
(Supplementary Figure S3) we also include a random effects
analysis across patients to ensure that our results are not
driven by only a few subjects. These additional analyses
support our findings when accounting for individual
differences.
To allow for duration of serotonergic signaling to be

altered in response to RPEs, we computed the area under the
curve to indicate ‘cumulative serotonin’ responses. For this
analysis the interaction of prediction error (positive or
negative) and bet invested (high or low) was significant
(Figure 4c). In particular, the response to positive RPEs
seemed to induce a depression in serotonin that was more
prolonged than in the low bet condition. Further, a
parametric analysis revealed a small but significant negative
correlation between the serotonin response and RPE at high
bets and a small but significant positive correlation between
serotonin response and RPE at low bets (Figure 4d). To
examine the subjective effects of actual and counterfactual

Figure 3 Investment game and distributions of bets and RPEs over trials. (a) In this figure we provide an illustration of the overall task design. To investigate
the role of serotonin we used an investment game (Lohrenz et al, 2007) where participants were endowed with an initial 100 ‘points’ and were instructed to
invest a percentage of this amount for investment into a stock market (historic markets, eg, the 1929 Wall St crash). Participants could choose to invest
0–100% (color bar) in 10% increments (blue arrow, Bet(t)). On each trial participants submitted their investment (upper panel) and 840 ms later (±12 ms std)
were shown the market return (middle panel). On the outcome, participants either lost or gained in accordance with their investment. From these market
moves we calculated the reward prediction error on that trial. Following this outcome, participants submitted their next investment (blue arrow, Bet(t+1)) at
their own pace (lower panel). (b) Distribution of investment choices over all participants. (c) Distribution of reward prediction errors, calculated over each
market move over all participants.
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gains and losses, rather than to RPE per se, we conducted a
further supplemental analysis (Supplementary Figure S4).
This revealed a lack of a parametric effect in gains or losses
(Supplementary Figure S4).

Serotonin Protects Investors from Loss

Given these bet-dependent prediction error transients, we
sought to establish serotonin’s influence on investment
decisions. The effect of counterfactual outcomes on both
dopamine (Kishida et al, 2016) and serotonin (Figure 4)
suggests that it is crucial to perform the analysis of action
encoding (betting more or less) at different bet levels as a bet
of 0% could result in large foregone gains (ie, counterfactual

losses), while a bet of 100% could result in large actual losses.
In other words, in the context of this task, one’s next move
carries two distinct risks of loss on the upcoming trial. We
tested whether fluctuations in 5-HT could be used to predict
the bet level on the next trial. Using a multiple linear
regression we tested for serotonin and game factors in
predicting the next decision. Specifically, our independent
variables included the area under the curve of the 5-HT
transient from 100 to 600 ms, the bet level, the polarity of the
RPE at trial (t), as well as their interactions. Our dependent
variable was the change in bet at trial (t+1). Our regression
model revealed significant predictive power in upcoming
decision (F-statistic vs constant model: 32.4, p-value
o0.00001; Supplementary Table 2). Importantly the

Figure 4 Serotonin encodes negative reward prediction errors at high bets. (a) Testing across all outcomes and separating according to either a
concomitant positive or negative reward prediction error, we found that serotonin fluctuated significantly more positively for negative (black line) compared to
positive (cyan line) reward prediction errors. Six two-sample t-tests were performed over temporal bins (100–600 ms) comparing concentration levels;
significant effects of RPE were observed at 300 and 400 ms (*po0.05). Here we baseline corrected at − 100 ms. (b) Two-way analyses of variance of
serotonin’s transient response at presentation of the outcome or market move were performed for six temporal bins (100–600 ms), with factors reward
prediction error polarity; positive and negative and bet level; low (0–50%), and high (60–100%). These revealed a significant interaction of reward prediction
error and bet level at 100 (F= 14.34, p= 0.0002) and 500 ms (F= 4.89, p= 0.027). Post hoc two-sample t-tests were performed using permutation testing to
assess within bet range differences in the response to negative compared to positive reward prediction errors. For the high bet range (60–100% invested),
serotonin transients were significantly greater for negative compared to positive reward prediction errors at 100 ms, p= 0.001; 300 ms, p= 0.011; 400 ms,
p= 0.005; and 500 ms, p= 0.01. While for the low bet range (0–50% invested) responses were significantly greater for positive compared to negative reward
prediction errors at 100 ms; p= 0.016. Only the differential response at 100 ms in the high bet case survived FWE-correction p= 0.005 (**p⩽ 0.005,
*p⩽ 0.05, (**)FWE-corrected). We also applied one-sample, two-sided t-tests in order to investigate the effects of RPE and bet size on 5-HT responses
as compared to baseline. We find that the difference is driven by significant decreases in 5-HT following positive reward prediction errors at high bets,
and to negative reward prediction errors at low bets («po0.005, opo0.05). Bar graphs depict the mean and SEM. Comparisons of transients with an
alternate baseline is presented in Supplementary Figure S3. (c) The area under the curve in b revealed a significant interaction (F= 7.13, p= 0.0077) of RPE
and bet level with larger (in time and amplitude) negative-going transients for positive reward prediction error responses in the high bet condition.
(d) We tested the serotonin response at 100 ms and its correlation with the sign and polarity of the RPE. After omitting 65 outliers (~3% of trials) that may
drive the effect (outliers defined as RPEs with an absolute magnitude 43 and Z-scores with an absolute magnitude 45) we see a small but significant
correlation for the different bet levels. Serotonin transients are negatively correlated with the RPE for high bets (R=− 0.0714; p= 0.0113) and positively
correlated with the RPE for low bets (R= 0.0653; p= 0.0494). To explore these results more granularly, we examined individual bins. We found that the only
significant individual bins were at (20 and 30%), (60 and 70%), and (80 and 90%) with correlation coefficients and p-values of (R= 0.19; p= 0.01), (R=− 0.08;
p= 0.06), and (R=− 0.14; p= 0.009), respectively. This suggests that a putative ‘indifference point’ for counterfactual and actual losses occurs around 40–50%.
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regressor describing the interaction of serotonin and current
bet level was a significant predictor of the upcoming decision
(p= 0.04). This was a negative interaction indicting that for
large serotonin responses and large bets, participants tended
to decrease their bet, and for large serotonin responses and
small current bets, participants tended to increase their bets.
We found that the three-way interaction of serotonin, bet
level, and RPE sign was at trend level significance (p= 0.13;
Supplementary Table 2).
To examine and illustrate these regression effects, we first

separated out ranges of current bet levels (Figure 5a), and
examined how serotonin transients were associated with
decisions following a negative RPE (Figure 5). We tested the
relationship between serotonin responses and current bet
levels at trial (t) for decisions to ‘lower’ and for decisions to
‘hold or raise’ the bet on trial (t+1) (Figure 5b). These
analyses are a recapitulation of the negative RPE responses in
Figure 4 but separated according to what the subject decides
to do next. We found that under the conditions of the
decision to withdraw from the market following negative

RPEs there was a strong positive correlation between 5-HT
and current betting levels (Figure 5c). This is important
given that withdrawal from the market (ie, lowering one’s
bet) is consistent with the hypothesized role for serotonin in
forms of avoidance (Dayan and Huys, 2008). This striking
parametric effect is indicated in the serotonin time courses of
Figure 5b. We can see that reducing the bet from a high
amount implies reducing the risk of actual loss, and is
associated with positive serotonin fluctuations (Figure 5b).
Reducing the bet from an already low amount implies
increasing the risk of counterfactual losses, and is associated
with negative fluctuations. A trend toward a significant
positive correlation for serotonin and decisions to hold or
raise one’s bets was also observed. In the time courses we can
see that particularly at 10–20% bet levels, serotonin rises
following a negative RPE and is associated with a subsequent
raise-or-hold bet decision. This direction is again consistent
with serotonin protecting against counterfactual losses on the
next trial.

Figure 5 Serotonin and active avoidance following negative reward prediction errors. (a) Depiction of ‘next actions’. Responses to trial (t) were analyzed for
bet(t)= (0%, (10–20%), (30–40%), (50–60%), (70–80%), and (90–100%)). For each of these six levels we examined ‘lower bet’ next actions (black arrows)
and ‘hold-or-raise’ bet next actions (gray arrows). (b) The n= 842 negative RPE transients presented in Figure 4a and b are represented here but separated
according to next-bet decision and current betting level. These results are provided in order to explore the significant negative interaction between serotonin
and current bet on predicting change in bet (Supplementary Table 2). Consistent with this negative interaction in the regression analysis, we observe that large
positive 5-HT transients at large bets predict a lowering of the bet at trial t+1 (black line, right panels). While dips in 5-HT are associated with reducing one’s
bet at low bet levels to even lower levels (black line, left panels). The opposite effect is observed for holding or raising one bets, grey lines (with 0% not
showing any significant transient effects). Significance here is indicated for uncorrected t-tests against zero (*po0.05, **po0.01, ***po0.005). (c) Applying a
correlation analyses to examine the relationship between serotonin and current bet levels when the next decision is to lower one’s bet. We find that over all
‘lower bet’ decisions, serotonin, and the current bet level were positively correlated (R= 0.3; po0.00001). This indicates that market withdrawal is affected by
serotonin following poor outcomes. More specifically it indicates that serotonin may prevent further withdrawal (when investment is already low) and
promote withdrawal (when investment is high). (d) Correlating decisions to hold or raise bets suggests the opposite effect (but at only trend-level significance).
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In Figure 6 we explore the same dependencies but
following positive RPEs. Here at low bets, again from 10 to
20% levels we observe a upgoing serotonin transient
(Figure 6b) that dominates the low bet regime (Figure 4b).
At this betting level both ‘lower’ and ‘raise-hold’ decisions
are associated with a positive transient. Significant negative-
going fluctuations are observed at the lowest betting level
of 0%. No parametric effects are observed for either decision
following positive RPEs (Figure 6c and d).
In order to investigate the timing of these decision-related

transients further, we extracted the peak 5-HT response from
every trial and tested whether a faster time to peak
corresponded with decisions from investment on the next
trial. For responses to negative RPEs we found no timing
effects in an analysis of decision × bet level. However,
in response to positive RPEs we saw a significant
effect of time to peak on the decision to lower, hold, or
raise one’s bets following the outcomes. Specifically, the
decision to raise one’s bets was associated with slower 5-HT
transient peaks as compared to decisions to hold or reduce
current betting levels. No effect of bet level or interaction
was observed (Supplementary Figure S5). This may
suggest that fast serotonin signals are associated with
withdrawal from market investment, even when the ‘going
is good’.

DISCUSSION

We used a modern statistical method to extract serotonin
signals from fast-scan cyclic voltammetric data. We showed
in vitro using a flow cell that we could extract separate 5-HT
and dopamine signals from a single voltammogram, even at
variable pH, and then applied our method to recordings
taken in vivo from human Parkinson patients playing an
investment game. We found that at the time that the
outcome of a round was revealed, serotonin encoded a
prediction error for actual reward when subjects were
substantially invested, and an inverted prediction error for
counterfactual reward (ie, regret) when subjects had failed to
invest. Moreover, these serotonin concentration fluctuations
on a trial were positively correlated with protective choices
made by subjects in the subsequent trial following
negative RPEs.
Our findings provide novel evidence that serotonin

encodes loss-related prediction errors. This finding ratifies
and extends previous theoretical accounts, which hypothe-
sized a role for serotonin in aversive prediction and learning
(Deakin, 1983; Daw et al, 2002). For the high bet case, our
findings demonstrate the opposite of standard accounts of
the activity of dopamine neurons (Schultz et al, 1997; Kishida
et al, 2016) or transient fluctuations of dopamine

Figure 6 Serotonin and active avoidance following positive reward prediction errors. (a) Depiction of ‘next actions’ as per negative RPE analysis in Figure 5.
(b) Serotonin transients (n= 882) following positive reward prediction errors as per Figure 4a and b but shown here separated according to decision on next
trial and current bet level (lower bet on trial (t+1): cyan line; hold-or-raise bet on trial (t+1): dark green line). Only at low bets (where counterfactual losses
dominate) did we observe large transients—the direction of the transient was not discriminative however in terms of next-bet decision. (c) Unlike following
negative RPES, no parametric effect, in terms of current bet level and serotonin response, was observed for the decision to lower bet following positive reward
prediction errors. (d) Similarly, no parametric effects were observed for serotonin responses preceding a decision to raise or increase bet levels (following a
positive reward prediction error).
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concentrations (Flagel et al, 2011) recorded in conventional
Pavlovian or instrumental paradigms in animals other than
humans. For the low bet case, our results for serotonin are
the mirror image of those for dopamine on the same task,
showing a sensitivity to counterfactual as well as actual
outcomes (Kishida et al, 2016).
Our second major finding was an emergent action code in

serotonin that could be used to predict the change in
bet following negative RPEs. In particular, our findings
related to betting less or holding on the next trial are
consistent with computational accounts of serotonin in
active avoidance (Dayan and Huys, 2008; Dayan and Huys,
2009). However, here too the signaling was not unidirec-
tional. Positive fluctuations to lower bets and negative ones
to holding predominated when current bet levels were high.
However, they flipped polarity at 50%, suggesting that
serotonin drops when avoidance is overall detrimental, and
likely to expose the player to foregone gains. Colloquially this
might be deemed as a signal that both ‘secures in place’ when
risk is already low and ‘retreats’ from dangerous high-risk
investments. The dependencies on prior sensory experience
and its sensitivity to context (previous bet amounts) may
help clarify some formerly confusing and seemingly contra-
dictory findings with respect to learning signals and reward
error processing (Yacubian et al, 2006). (Figures 5b and c,
and 6a).
Recently, serotonergic firing in rodents has been associated

with patience (Miyazaki et al, 2012). They found that
optogenetic stimulation of rodent serotonergic neurons in
the dorsal raphé enables waiting for delayed reward
(Miyazaki et al, 2014). Similarly, fiber photometry recordings
from the dorsal raphé nucleus have recently demonstrated
increased tonic firing of serotonergic neurons during a
reward-related anticipatory period, and phasic firing on
reward acquisition (Li et al, 2016). In future work, an
experimental manipulation of the time from bet submission
to outcome in our task would enable us to formally test the
role of serotonin in signaling patience for anticipated reward.
With regard the outcome acquisition-related activity (Li et al,
2016), our results also find increased 5-HT to positive RPEs
but only in the context of low bets (when outcomes could
have been better). Studies that systematically vary actual and
counterfactual gains and losses might be required to unravel
these effects in animals.
Our findings are more directly comparable to studies,

which investigated lose-shift and win-stay behaviors. For
example, Bari et al (2010) have shown that an acute dose of
SSRIs in rodents can increase lose-shift behavior but that
longer-term chronic administration increased win-stay
behaviors. Similar effects on lose-shift behaviors in humans
have been associated with genetic polymorphisms in the
serotonin transporter gene (SERT), which was dissociated
from dopamine transporter polymorphisms on perseveration
(den Ouden et al, 2013) in the same task. We show that
serotonin estimates from our participants are associated
with lose-shift behaviours. But interestingly, the associated
shift behavior is not a simple ‘withdrawal’ from the game.
Rather, the shift behaviors associated with serotonin
increases (Figure 5b) is toward the center of our betting
levels. These effects are observed following negative RPEs
and might mean that the player is not exposed to ‘too much’

risk while also ensuring that they do not ‘miss out’ on
future gains.
Pharmacological manipulations using tryptophan deple-

tion in humans support this idea of behavioral effects of
5-HT in the face of aversive outcomes with reports of both
Pavlovian and instrumental predictions of negative events
reduced following dietary depletion (Crockett et al, 2012), as
well as reports of a specific model-based or goal-directed
deficit (Worbe et al, 2016). Overall, our methodology
provides a unique opportunity to understand the role of
serotonin in the human brain in computational terms.
Relating these findings to our previous work we provide
evidence for serotonin’s loss-opponency to dopamine’s
gain-dependent signals (Kishida et al, 2016) and further
extend this valence-dependent activity with evidence for a
role in subsequent action selection. Our analysis could be
further extended to examine, for example, individual
differences in RPEs or in decision-making. This may reflect
altered model-based goals. Testing such a proposal is beyond
the scope of the present work, but would start from
developing a quantitative parametrized computational ac-
count of the full task. For example, the proposed role of
serotonin in regulating temporal discounting and impulsivity
(Doya, 2007) could be explored with a temporal difference
model of the task (and manipulations of cue timings, for
example). Our results, at least informally, are consistent with
a role for serotonin in controlling impulsivity. In particular,
following negative RPEs, the impulsive choice may be to
lower further one’s investment. However, at low bet levels,
serotonin increases are associated with decisions to ‘hold’ or
even ‘raise’ the bet. This may be a protective signal that
guards against over-reactions to negative outcomes. Further
in our supplementary analysis (Supplementary Figure S5),
we show that after outcomes that elicit positive RPEs, the
serotonin transient is faster for lower, or hold decisions,
perhaps preventing an impulsive raise in betting levels. Our
reward-prediction error and action encoding transients
might also be considered in light of models of risk
assessment. Risk, typically modeled as predicted outcome
variance, has been mapped to serotonin function in the basal
ganglia (eg, in Balasubramani et al, 2014). Our transient
serotonin increases to negative RPEs at high bets and low
bets are associated with decisions to lower the bet and to
hold or raise bets, respectively. Thus, 5-HT may seek a mid-
point where the potential variability in both actual and
counterfactual losses are balanced (eg, minimizing maximal
losses).
Limitations of the current study are related to both the

human brains from which the signals were acquired and the
specificity of voltammetric signal extraction. Our cohort
comprised 14 patients with Parkinson’s disease. This
pathology has been associated with aberrations in some
decision-making parameters—including impulsivity (Voon
et al, 2014). Though our paradigm did not address learning
per se, the effect of valence on learning and subsequent
decision-making has been shown to be affected by dopamine
medication. In patients off medication positive outcomes
tend to affect learning more prominently, while patients off
dopamine medication show a greater sensitivity to negative
outcomes—effects thought to be controlled by a high
dopamine ‘tone’ or ‘floor’ on medication (Frank et al,
2004). Though in the absence of learning, a similar off/on
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study showed that decision-making tends to be improved by
dopamine medications in patients generally (Shiner et al,
2012), though here the loss domain was not explicitly
investigated. Other studies have corroborated (Frank et al,
2004) showing reduced sensitivity to negative feedback when
patients are on medications (Euteneuer et al, 2009). Our task
did not require learning. In other decision-making studies
without learning, it has been shown that patients with
Parkinson’s disease and age-matched controls perform
comparably (unlike Parkinson’s patients with dementia,
who are not in our cohort) (Delazer et al, 2009). Hence,
the type of game we chose for our participants has been
shown to engender near-normal performance. Nevertheless,
the pattern of choice selection may not fully reflect the
statistics of choice in people without neurological disease.
Second, patients with Parkinson’s disease may exhibit cross-
loading of these particular neurotransmitters into the
alternate axonal terminals. Specifically, levodopa is thought
to induce a ‘false transmission’ of dopamine via serotonin
axons, and may contribute to the dyskinesias associated with
long-term L-Dopa use (Mathur and Lovinger, 2012; Politis
et al, 2014). This cross-loading would reduce the distinct
effects of dopamine and serotonin in the striatum (Montague
et al, 2016). These caveats deserve study in their own right
using this type of protocol. Here we show the feasibility
of dissociating dopamine from serotonin and thus the
procedures may be extended to test particular cross-talk
hypotheses that might contribute to movement and decision-
making impairments. Our measurements were restricted to
the caudate and putamen—according to each patient’s pre-
planned surgical trajectory for the eventual placement of the
DBS electrode (which followed after our recordings had been
completed along the same guide tube). These regions have
been shown to activate in response to real and counterfactual
RPEs in previous fMRI studies of this task: caudate (Lohrenz
et al, 2007) and putamen (Chiu et al, 2008). However, we
could not access the ventral striatum with our probe, where
RPEs are pronounced (Pagnoni et al, 2002) and thus cannot
rule out a role for 5-HT in modulating this or other regions
such as the orbitofrontal cortex (Knutson and Cooper, 2005),
during this task. Furthermore, our extraction model only
accounted for dopamine, serotonin, and pH changes, but will
not account for systematic voltammetric changes induced by
other neuromodulators or metabolites. For example, ser-
otonnin’s metabolite, as 5-hydoxyindole acetic acid has been
observed at levels higher than serotonin in voltammetric
recordings in vivo in rodents and with similar oxidation and
reduction characteristics. Though we cannot directly rule out
the role of a metabolite, its systematic (and speeded)
fluctuation in concert with decision variables would still
suggest a role for the serotonergic system in reacting to
negative outcomes and pose important questions for future
experimental and theoretical study.
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