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In the mammalian brain, dopamine is a critical neuromodulator whose
actions underlie learning, decision-making, and behavioral control.
Degeneration of dopamine neurons causes Parkinson’s disease,
whereas dysregulation of dopamine signaling is believed to con-
tribute to psychiatric conditions such as schizophrenia, addiction,
and depression. Experiments in animal models suggest the
hypothesis that dopamine release in human striatum encodes re-
ward prediction errors (RPEs) (the difference between actual and
expected outcomes) during ongoing decision-making. Blood oxygen
level-dependent (BOLD) imaging experiments in humans support the
idea that RPEs are tracked in the striatum; however, BOLD measure-
ments cannot be used to infer the action of any one specific neuro-
transmitter. Wemonitored dopamine levels with subsecond temporal
resolution in humans (n = 17) with Parkinson’s disease while they
executed a sequential decision-making task. Participants placed bets
and experienced monetary gains or losses. Dopamine fluctuations in
the striatum fail to encode RPEs, as anticipated by a large body of
work in model organisms. Instead, subsecond dopamine fluctuations
encode an integration of RPEs with counterfactual prediction errors,
the latter defined by how much better or worse the experienced
outcome could have been. How dopamine fluctuations combine the
actual and counterfactual is unknown. One possibility is that this pro-
cess is the normal behavior of reward processing dopamine neurons,
which previously had not been tested by experiments in animal mod-
els. Alternatively, this superposition of error terms may result from an
additional yet-to-be-identified subclass of dopamine neurons.

dopamine | reward prediction error | counterfactual prediction error |
decision-making | human fast-scan cyclic voltammetry

Dopamine is an essential neuromodulator whose presence is
required for normal learning, decision-making, and behavioral

control (1, 2) and whose absence or dysfunction is associated with a
variety of disease states including Parkinson’s disease, schizophre-
nia, addiction, and depression (3–7). Experiments in animal models
support the hypothesis that changes in dopamine release at target
neural structures encode reward prediction errors (RPEs) (the
difference between actual and expected outcomes) important for
learning and value-based decision-making (1, 8–12). In support of
this claim, direct recordings of spike activity in mesencephalic do-
paminergic neurons in nonhuman primates demonstrate that these
neurons encode prediction errors in future reward delivery (8–10,
13, 14) and they may also encode other computations relevant for
reward-guided actions (1, 15–17). However, action potential pro-
duction in brainstem dopaminergic neurons can only be part of the
story because activity in parent axons must be converted to changes
in neurotransmitter release at synaptic terminals to have any impact
on downstream neural systems (1, 18). There have been no direct
measurements of dopamine release in human striatum that tests
these ideas directly. In a large cohort of human subjects (n = 17),
we tested the hypothesis that subsecond fluctuations in dopamine

delivery to the human striatum encode RPEs generated during a
sequential choice task.
Our measurements of dopamine release are made in patients

undergoing deep brain stimulating (DBS)-electrode implanta-
tion for the treatment of Parkinson’s disease. This patient pop-
ulation provides a unique and important window of opportunity to
investigate dopamine’s role in human brain function. Parkinson’s
disease symptoms are treated with dopamine replacement ther-
apies, and yet we know nothing about how rapid (subsecond)
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There is an abundance of circumstantial evidence (primarily work
in nonhuman animal models) suggesting that dopamine tran-
sients serve as experience-dependent learning signals. This report
establishes, to our knowledge, the first direct demonstration that
subsecond fluctuations in dopamine concentration in the human
striatum combine two distinct prediction error signals: (i) an
experience-dependent reward prediction error term and (ii ) a
counterfactual prediction error term. These data are surprising
because there is no prior evidence that fluctuations in dopamine
should superpose actual and counterfactual information in
humans. The observed compositional encoding of “actual”
and “possible” is consistent with how one should “feel” and may
be one example of how the human brain translates computations
over experience to embodied states of subjective feeling.
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dopamine concentration changes contribute to their symptoms or
changes in their decision-making abilities. The opportunity to
measure dopamine release with subsecond temporal resolution in
the brains of humans with Parkinson’s disease is an opportunity to
learn about fundamental processes in human brain function as well
as an opportunity to assess dopamine signaling in a patient pop-
ulation whose primary treatment is focused on replacing function
lost as dopamine neurons degenerate.
Participants (n = 17) in these experiments performed a simple,

yet engaging, sequential investment game (Fig. 1 and refs. 19–21)
while dopamine measurements with subsecond temporal resolution
were made in the striatum (n = 14 in the caudate and n = 3 in the
putamen). Participants were offered participation after they were
deemed candidates for deep brain-stimulating electrode implan-
tation (22, 23). The research protocol was explained to the
participants verbally, and they were provided a written consent form,
as required by dual-institutional review board (IRB)-approved pro-
tocols at Wake Forest University Health Sciences and Virginia Tech
Carilion Research Institute. Patients thus indicated that they un-
derstood the research protocol and provided written informed con-
sent to proceed with the research procedure.
The sequential investment game (Fig. 1 and refs. 19–21) consists

of 120 investment decisions. On each trial (t), this game requires
participants to use button boxes to adjust and submit an investment
[bet (bt), where bet sizes could range from 0% to 100% of the
participants portfolio, in 10% increments], after which, participants
experience a gain or loss (participant return) equal to the bet size
times the fractional change in the market price [market return (r) at
time t: rt =   Δptpt

, where p is the market price and the participant
return (i.e., gain or loss) at time t is equal to btrt]. Previous work
used this task and functional magnetic resonance imaging to dem-
onstrate that RPEs and CPEs over gains are tracked by blood ox-
ygenation level-dependent (BOLD) responses in the striatum (19,
20). These reports also demonstrated at the behavioral level that
humans use counterfactual information over choices that “might
have been made” and RPE information over choices that were
actually made to make their next choice (19, 20).

Results
Cross-Validated Penalized Linear Regression Approach Reliably Estimates
Low Dopamine Concentrations. During the execution of the se-
quential investment game, an adaptation of fast-scan cyclic
voltammetry (FSCV) was used to track subsecond dopamine
fluctuations in the striatum. Standard approaches [see SI Methods,
Principal Components Regression to Estimate Dopamine Concen-
tration and Figs. S1–S3 and Table S1, which follow recommenda-
tions in ref. 24] for estimating dopamine concentration from FSCV
measurements produced unreliable predictions for low dopa-
mine concentrations in vitro (Fig. 2A). Furthermore, and also

under controlled in vitro conditions, we observed that these
methods produced predictions of dopamine concentration fluctu-
ations that confused changes in pH for changes in dopamine (Fig.
2B). Thus, we sought to develop a novel approach that uses in vitro
calibration data to fit a cross-validated penalized linear re-
gression model for estimating dopamine concentrations from
non–background-subtracted voltammograms [see SI Methods
for details on our elastic net (EN)-based approach]. The new
approach was sufficiently sensitive and stable to permit dopamine
measurements at low levels expected in patients diagnosed with
Parkinson’s disease (Fig. 2 C–E and Fig. S4). Fig. 2C shows our
approach stably and accurately estimating dopamine levels in
out-of-sample test cases from the same electrode and flow cell
conditions used in Fig. 2 A and B. Fig. 2D shows that the cross-
validated EN-based approach used to accurately track changes
in dopamine concentration in Fig. 2C does not confuse changes
in pH for dopamine fluctuations. Fig. S5 shows our approach
achieving signal-to-noise ratios (SNRs) ranging from 2/1 to 5,000/1
for tonic dopamine concentrations ranging from 500 nM to
10 μM, respectively. For the results below, we use our EN-based
approach to estimate dopamine levels from non–background-
subtracted voltammograms measured in the striatum of humans
undergoing DBS-electrode implantation surgery.

Dopamine Transients Fail to Simply Encode RPEs. Dopamine mea-
surements were made in 17 participants; each participant made 20
investment decisions per market in a total of six markets (120
decisions total per subject; one subject did not complete one
market). At each decision within a market, an RPE was computed
as the difference between the outcome (gain or loss as defined
above) and the expected value of the outcome for that market (i.e.,
the average participant return up to that trial in that market); this
difference is normalized to the variability of the preceding out-
comes to facilitate comparison across markets and across partici-
pants (see Eq. 2 in Materials and Methods for equation and
description of terms). The distribution of RPEs (Fig. 3A) is peaked
around 0 but evenly distributed for positive and negative values. We
divide these events into positive and negative RPEs and report the
mean dopamine responses to positive (green; n = 17, n = 1,022) and
negative (red; n = 17, n = 991) RPEs in Fig. 3B. The measured
dopamine fluctuations in human striatum fail to distinguish
RPEs categorized by sign [Fig. 3B; two-way ANOVA: F(1,7) =
1.67, P = 0.1965]. This null result holds even at lower sample sizes
(n ≅ 200 per category, randomly sampled). Prior work strongly
supports the hypothesis that dopamine fluctuations in striatum
should track RPEs (1, 8, 10, 11, 13, 14). Our results contradict this
expectation; however, the task we use was designed to also assess
the impact of counterfactual feedback (e.g., difference between ac-
tual outcomes and what might have happened; Eq. 3). In this game,

Fig. 1. Investment game. (A) Participants played a
sequential-choice game during surgery using button
boxes (Left) and a visual display (Right). For each
patient, bet size adjustments (e.g., increase bet or de-
crease bet) and the decision to submit one’s answer
were performed with button boxes. (B) Investment
game (19, 21): participants view a graphical depiction
of the market price history (red trace), their current
portfolio value (bottom left box), and their most recent
outcome (bottom right box) to decide and submit
investment decisions (bets) using a slider bar in 10%
increments (bottom center). Bet sizes were limited to
0–100% (in 10% increments) of the participant’s port-
folio—no shorting of the market was allowed. During
an experiment, a participant played 6 markets with 20
decisions made per market. (C) Timeline of events
during a single round of the investment game.
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counterfactual prediction errors (CPEs) (Eq. 3) are parameterized
by the distribution of participants’ bets. Instances where there is no
CPE occur when the participants’ bet is equal to one (i.e., “all in”).
In these specific instances, we observe (Fig. 3B, Inset) that dopamine
transients to positive (n = 173) and negative (n = 164) RPEs indeed
separate. Together, these results suggest that counterfactual in-
formation (as bet sizes decrease from 1) disrupts the expected
standard response of dopamine release to positive and negative
RPEs. We test this hypothesis below (Results, Dopamine Transients
Integrate RPEs and CPEs) by examining the dopamine response to
equivalent magnitude RPEs for different bet sizes.

Dopamine Transients Integrate RPEs and CPEs. Behaviorally, CPEs
in this task have been shown to combine with RPEs to influence
participants’ next decision (19, 20). Given the impact of bet size (and
thus potentially counterfactual information) on the encoding of RPEs
by dopamine fluctuations (Fig. 3B), we tested a novel hypothesis:
subsecond dopamine transients encode a combination of RPEs and
CPEs. To test our hypothesis, we follow the model of CPEs pre-
sented by Lohrenz et al. (19) and assume that dopamine encodes a
linear combination of two separate computations: RPEs (Eq. 2) and
CPEs (Eq. 3): dopamine  transient∝ fRPEg− fCPEg, or

dopamine  transient∝ fRPEg− frtð1− btÞg. [1]

Here, bt is the subject’s fractional bet at choice trial t and rt
expresses the relative fractional change in the market price
(rt =   Δptpt

). The difference in what the participant earned and what
the participant could have earned is the CPE (second term on
the right in Eq. 1). The guiding intuition for the form of Eq. 1 is
twofold: (i) that what might have been should adjust overall
valuation estimates and encode this adjusted amount in a com-
posite dopamine signal and (ii) that the RPE and CPE terms are
computed in two separate pathways before being integrated at
the level of dopamine release. Thus, the valuation error encoded
by dopamine release is consistent with the intuition that “better-
than-expected” outcomes (positive RPEs) that might have been
better should be reduced in value and “worse-than-expected”
outcomes (negative RPEs) that might have been worse should
be increased in value. In this form, positive CPE terms (which
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Fig. 2. Performance of EN-based dopamine estimation algorithm. (A and
B) Performance of PC regression-based approach on out-of-sample test
cases. (C–E ) Performance of EN-based approach on out-of-sample test
cases. For A and B, light blue lines indicate dopamine concentration
of prepared out-of-sample calibration solutions, green points indicate
PC regression-based predictions accepted by Q-value analysis, and red
points indicate PC regression-based predictions rejected by Q-value
analysis. The inset scale bar indicates measurement period of 50 s. (A) PC
regression-based prediction of changes in dopamine concentration under
stable pH (pH 7.4). The prepared dopamine concentration (light blue; 200,
400, 800, and 1,600 nM) compared with the PC regression-based predic-
tions for dopamine concentration (red and green). (B) PC regression-
based predictions of dopamine concentration when pH is changed,
but dopamine concentration is held constant (0 dopamine in solution).
The dotted light blue line indicates actual concentration of dopamine
is equal to 0. Insets indicate pH levels (pH range: 7.19, 7.4, 7.6). (C ) EN-
based predictions of changes in dopamine concentration under stable
pH (pH = 7.4). The prepared dopamine concentration (light blue, 200,
400, 800, and 1,600 nM) compared with the EN-based predictions for
dopamine concentration (dark blue). The inset scale bar indicates mea-
surement period of 50 s. (D) EN-based predictions of changes in dopa-
mine concentration when pH is changed, but dopamine concentration is
held constant (0 dopamine in solution). The dotted light blue line indi-
cates that actual concentration of dopamine is equal to 0. Insets indicate
pH levels (pH range: 6.79, 7.02, 7.8). (E ) Dopamine concentration pre-
dictions from the EN-based procedure gives accurate predictions of do-
pamine concentration (blue squares). Horizontal axis: concentration
of prepared dopamine; vertical axis: predicted dopamine concentration.
Plotted are mean predicted values for five measurements at each con-
centration ± SEM (note: SEM bars are plotted but are consumed by
the marker).
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RPEs [FRPE-sign(1,7) = 1.67, P = 0.1965]. Note, this null result holds even at lower
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Fig. 4. Horizontal axis: time (ms) from outcome reveal (blue arrow head); vertical
axis: mean change in the dopamine response. Before averaging, dopamine
traces are normalized to the SD (σ) of the fluctuations measured within patient.
Error bars: SEM. Inset shows dopamine response to a subset of positive (green)
and negative (red) RPE events (i.e., when the participants’ bet all in).
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occur for missed opportunities on positive-going markets) diminish
the value of the RPE event, and negative CPE terms (which occur
for avoided losses on negative-going markets) increase the value of
the RPE event.
This model (Eq. 1) makes three testable predictions all of which

derive from a dependence on the bet size bt. We test these pre-
dictions for events that have the same magnitude of RPEs (positive
and negative) but grouped for different size bets. According to the
model in Eq. 1, we predict (and observe) the following.
Prediction 1: Impact of bet size equal to 1 (i.e., no CPE). When the bet
(bt) is set near 1 (all in), the CPE is 0, so positive RPEs will be
encoded as positive-going dopamine transients and negative
RPEs will be encoded as negative-going dopamine transients
[similar to experiments in rodents and nonhuman primates (8,
11, 25) and exactly what is observed in Fig. 3A, Inset, and for the
“higher bets” graph in Fig. 4].
Prediction 2: Impact of decreasing bet size on dopamine transient polarity for
positive RPEs.As the bet size decreases, the CPE grows in magnitude;
thus, dopamine transients to positive RPEs will diminish (as is ob-
served with the green traces in the “medium bets” graph in Fig. 4)
and eventually will be encoded as a negative-going transients as the
CPE term dominates (as is observed for green traces in the “lower
bets” graph in Fig. 4).
Prediction 3: Impact of decreasing bet size on dopamine transient polarity
for negative RPEs. Again, as the bet size decreases the CPE grows
in magnitude; thus, dopamine transients to negative RPEs will
diminish (as is observed for red traces in the medium bets graph
in Fig. 4) and eventually be encoded as a positive-going tran-
sients as the CPE term dominates (as is observed for red traces in
the lower bets graph in Fig. 4).
Fig. 4 demonstrates that striatal dopamine measurements in hu-

mans follow predicted responses of the simple model expressed in
Eq. 1. The three separate predictions are pertinent because in non-
human primates dopamine neurons show asymmetrical modulation
of their activity as a function of the RPE polarity (8, 10, 13, 15–17),

and the integration of a CPE term has not previously been shown in
experiments measuring changes in dopamine neuron firing rate. One
possible interpretation here is that there is a separate class of mid-
brain dopamine neurons carrying the counterfactual information and
these have yet to be recorded from in prior experiments. This hy-
pothesis is particularly important because these subjects are patients
with Parkinson’s disease, suggesting a class of dopamine neuron
possibly preserved in the disease. Alternatively, these results suggest a
previously untested mode of operation of reward processing dopa-
mine neurons. Along these lines, different error terms for evaluating
behavioral outcomes may be integrated before dopamine release.
Both of these possibilities suggest two separate pathways for com-
puting actual and counterfactual outcomes over past decisions.
Where these computations may take place is unknown. Further
work is needed to distinguish these and other possibilities.

Discussion
We tested the hypothesis that fast fluctuations in dopamine
concentration encode RPEs over monetary gains and losses
using FSCV (to measure dopamine release) in 17 participants
while they played a sequential investment game. The data show
that a simple encoding of RPEs by dopamine release is not the
case (Fig. 3B). Instead, our data are consistent with the idea that
dopamine fluctuations integrate a RPE term with a CPE term
(Fig. 3B, Inset, and Fig. 4). A model (Eq. 1) that subtracts a CPE
term from the RPE term is consistent with our data (Figs. 3 and
4) and is consistent with how counterfactual experience should
modulate actual experience but in computational terms. This
model makes the surprising prediction that counterfactual out-
comes can suppress and even invert dopamine responses to positive
and negative RPEs.
Notably, our model and the dopamine responses it explains also

capture qualitative aspects about how one should “feel” (e.g., good
or bad) given one’s action, the resulting outcome, and the overall
context of that outcome. For example, a better-than-expected out-
come should feel good (i.e., rewarding); however, if the exact same
outcome occurs when an alternative action could have resulted in an
even better outcome, then the positive feelings associated with the
better-than-expected experience should be diminished and in ex-
treme cases such an experience should feel bad (i.e., aversive). This is
consistent with feelings of “regret” and the negative feelings asso-
ciated with missed opportunities. Likewise, a worse-than-expected
outcome should feel bad (i.e., aversive), but, if that outcome is ex-
perienced when the outcome could have been much worse, then the
overall experience should be driven toward the positive. These
analogous feelings of “relief” are typically positive and rewarding for
actions that avoid counterfactually large losses or severe punishment.
Our model, and the impact of combining actual and counterfactual
information to evaluate decision-making, has connections to regret-
based theories of decision-making under uncertainty (26, 27). An
interesting point here is that this combination of information in a
single physical signal (the dopamine response) could be one way that
the human brain translates computations about actual and simulated
experience to embodied states of feeling.
These data are collected in humans undergoing DBS-electrode

implantation for the treatment of Parkinson’s disease. In many re-
spects, decision-making in patients with Parkinson’s disease remains
largely intact: they make their own financial decisions, they are free
to choose to consent in clinical and research procedures, and they
make many other life critical decisions. However, prior work suggests
that pharmacological agents, DBS therapies, and the Parkinson’s
disease state have been associated with changes in patient behav-
iors associated with impulse control, adaptive decision-making, and
goal-directed behaviors (28–30). The impact of significant dopamine
neuron loss, which characterizes this disease, is important to con-
sider. For example, it is unclear what aspects of the dynamics in the
dopamine response we report are attributable to the normal state
of dopamine neuron function in humans, to reduced dopaminergic
signaling caused by Parkinson’s disease pathology, or perhaps
downstream adaptive mechanisms resulting from patients’ history of
pharmacotherapy. Thus, it is unclear whether the integration of
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are the same are considered. Horizontal axis: time (ms) from outcome reveal
(blue arrowhead); vertical axis: mean change in normalized dopamine response.
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these two error terms is representative of typical dopamine release in
a non-Parkinsonian brain. For example (and speculatively), exoge-
nously increased levels of dopamine via l-3,4-dihydroxyphenylalanine
(L-DOPA) therapy could cause serotonergic terminals to inappro-
priately load dopamine through cellular reuptake mechanisms or
directly convert L-DOPA into dopamine in terminals that normal
release serotonin (31, 32); thus, signals normally encoded by sero-
tonin release might then be misencoded by dopamine release.
Although an integration of these terms is consistent with how a
decision-making agent might account for these opponent feedback
signals, it is not a priori necessary that dopamine release encodes this
specific computation. Further experiments are required to determine
whether dopamine release encodes the integration of actual and
CPE terms in humans without Parkinson’s disease or model systems
where the dopaminergic system is intact.
These present results are unanticipated by current models and

data collected in nonhuman model organisms including nonhuman
primate dopamine neuron recordings and dopamine release mea-
surements in rodents. Work in nonhuman primates has demon-
strated that neural activity (somatic spikes) in the anterior cingulate
cortex (33), orbital frontal cortex and dorsolateral prefrontal cortex
(34), and in rodent striatum (35) are able to track counterfactual
information. These studies indicate that activity of single neurons in
rodents and nonhuman primates are able to track counterfactual
information reflected through changes in spike frequencies but do
not demonstrate a mechanism by which these signals are integrated
to represent modulations in value estimates of outcomes. Our re-
sults demonstrate that experience-dependent RPEs and simulated
CPEs are combined at the level of extracellular dopamine fluctu-
ations in the striatum within hundreds of milliseconds following the
revelation of a decision–outcome.
In humans, it has been shown that lesions to the orbital frontal

cortex impair counterfactual information processing as read out
through decision-making behavior and subjective reports about
feelings of regret and relief (36). Also, BOLD imaging experiments
in humans support the idea that counterfactual information is
represented by brain responses in the orbital frontal cortex (37) and
striatum (19, 20, 38). However, BOLD imaging is unable to provide
specific information about the neurotransmitters involved (39), nor
do BOLD imaging experiments provide specific information about
how the brain encodes this information at the level of neurotrans-
mitter release, modulations in local field potentials, or somatic
spike activity (39, 40). One report has demonstrated neural activity
in human substantia nigra that was consistent with dopamine neu-
ron activity (41). In that report, dopamine neuron spike rates were
demonstrated to track RPEs as in the animal model literature;
however, no association between dopamine neuron activity and
counterfactual signaling could be made, nor could a direct link be
made between dopamine neuron activity in the substantia nigra and
dopamine release in downstream targets.
Our results show dopamine fluctuations combine evaluative

information about actual outcomes (RPE) and feedback about
outcomes that would have occurred had the agent performed a
different action (CPE). These computations are related to tem-
poral difference learning and related Q-learning methods
(42, 43), both of with are constrained by experience-dependent
learning signals, meaning that these approaches only update
state–action value estimates on those states and actions actually
experienced. This means that an agent must sample all state–
action pairs to gain a full representation of the state–space. A
more efficient approach would be to update representations
independent of immediate state–action experiences as alterna-
tive forms of information become available. Thus, the ability to
incorporate counterfactual information should speed up the
process of learning because the agent could then update value
estimates on multiple states in parallel. This kind of learning
from fictive experiences could occur with counterfactual in-
formation coming from a variety of sources including other
agents (social learning) or more complete information becoming
available after certain actions have been made. For example, in
the current task, the CPE signal is the difference between the

best (or worst) possible outcome and the actual outcome (Eq. 3).
This kind of counterfactual information has been shown to be an
important signal for driving human choice behavior (19) and is
similar to the supervised actor critic framework proposed in ref.
44 and discussed in ref. 45. Together with experience based
learning, counterfactual learning signals like this one serve to
speed up learning about the optimal strategy in complex and
information rich environments.
How RPEs and CPEs are physically combined and contribute

to the composite dopamine signal is not known. One possibility is
that there are separate sets of dopaminergic neurons with activity
modulations that specialize in either the prediction errors or CPEs.
Such heterogeneity in dopamine neuron response profiles has been
demonstrated (16, 46). This possibility has simply not been tested.
Other possibilities are that such signal-dependent coding is multi-
plexed in a common set of mesostriatal dopamine neurons or that
direct modulation of dopamine release and clearance in the ter-
minal regions of the striatum provide direct control over the dy-
namics of error tracking by dopamine transients. Further work is
required to separate these and other possibilities.

Methods
For more detail on all procedures, materials, and analyses presented below,
refer to the SI Methods.

Informed Consent and Participant Recruitment. Participants (n = 17) gave in-
formed written consent and verbal assent to the dual IRB-approved research
protocol. IRB committees atWake Forest University Health Sciences (IRB00017138)
and Virginia Tech (IRB 11-078) approved all procedures involving human experi-
mentation. Once written and informed consent was obtained from the patient,
the details of the computer task (i.e., the sequential-choice game) were described,
and participants practiced a version of the game to gain familiarity with the game
controls and game play.

Investment Game. The investment game (Fig. 1 and refs. 19–21) requires par-
ticipants to make decisions about howmuch of their portfolio they will invest in
a “stock market” given three pieces of information: (i) the history of themarket
price, (ii) the participant’s current portfolio value, and (iii) the most recent
fractional change in the participant’s portfolio value. The participant begins the
game endowed with 100 points and plays six markets with 20 decisions in each
market. The participants’ final portfolio value (after all 120 decisions have been
made) determines the participants’ compensation. Fig. S6 shows the distribu-
tion of market returns (Fig. S6A), bets (Fig. S6B), participant returns (Fig. S6C),
RPEs (Fig. S6D), and CPEs (Fig. S6E).

RPE Calculation. The term btrt corresponds to participant outcomes (gains or
losses) depending on the sign of rt. Positive rt results in a gain if participants’
bet size was greater than 0; likewise, negative rt results in a loss for bets
greater than 0. RPEs are calculated as the difference between the actual
participant return on that trial and the expected return on that trial. This
term is then normalized by the variability in returns experienced up to that
trial and within each market:

btrt − EðbtrtÞ
σbt rt

, [2]

where EðbtrtÞ is the expected value of btrt, which is calculated as the mean
of participant outcomes from the first trial of the game to trial t − 1, and σbt rt
is the SD over those same events.

CPE Calculation. Participant outcomes (btrt) are a fraction of the maximum
possible outcome on any given trial. The “maximum possible” is revealed as
the market return (i.e., price change) is revealed—had the participant bet all
in or bt, then the gain or loss (dependent on the sign of rt) would have been
the largest that it could have been on that trial. The difference between this
value and the value of the participant’s actual return (btrt) is the CPE − the
difference between what could have been and what actually happened:

rtð1−btÞ. [3]

FSCV Carbon-Fiber Microsensors.We performed FSCV on extended carbon-fiber
microsensors in the striatum (n = 14 caudate and n = 3 putamen) of patients
(n = 17 total) with Parkinson’s disease. The extended carbon-fiber microsensor is
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constructed to match the dimensions of the tungsten microelectrodes used for
functional mapping during DBS-electrode implantation surgery following ref.
21. Fig. S7 shows the component parts and assembly of the extended carbon-
fiber microsensor used in these experiments.

FSCV Protocol. Our FSCV protocol follows previous work in rodents (21, 47, 48).
An electrochemical conditioning protocol (see Fig. S8A for depiction of applied
waveform) is first applied consisting of a 60-Hz application of the measure-
ment waveform for approximately 10 min to allow equilibration. Following
this conditioning procedure, a 10-Hz application of the same triangular
waveform is applied for the duration of the experiment (Fig. S8B). Examples of
the resulting voltammograms (for each patient) and their derivatives, which
were used for analysis, are shown in Figs. S9 and S10, respectively.

Estimation of Dopamine Concentration.We estimate dopamine concentration,
as measured by FSCV using linear regression models trained using in vitro
data and the EN algorithm (refer to SI Methods for more information). The
EN algorithm is an automatic shrinkage and regularization approach to
fitting-regression models (49). We use the glmnet package developed for
use in Matlab (50) to train and test cross-validated models against prepared
solutions of known dopamine concentrations. Solutions of dopamine are

prepared in PBS (pH 7.4). Powdered dopamine hydrochloride (Sigma-Aldrich)
is dissolved in a 0.1 N solution of HCl to a concentration of 100 mM. Aliquots
of this solution are diluted to 10 mM in 1× PBS and further diluted (in 1× PBS)
to the desired concentration for in vitro calibration of the carbon-fiber
microsensors.
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SI Methods
Participant Recruitment. All patients enrolled in this study were first
diagnosed with Parkinson’s disease and deemed good candidates for
DBS treatment. Once the patients agreed to the clinical procedure,
they were deemed candidates for the research protocol and given
the option to participate. Before obtaining written informed con-
sent, the research study and how it would alter the participants’
clinical procedure were explained in detail to the patients—namely,
the procedure would involve an additional research-exclusive probe
(the carbon-fiber microelectrode) and that extra time (maximum
thirty minutes) would be necessary to complete the experiment. The
procedures to be used in the research study were verbally described
and provided to patients in a written consent document.
During the surgical procedure to implant deep brain stimulating

electrodes to treat Parkinson’s disease, we measured dopamine
release in caudate and putamen in patients where the DBS target
was the subthalamic nucleus and internal segment of globus pal-
lidus, respectively. During surgery and the research protocol, all
medications used to treat symptoms of Parkinson’s disease were
withheld from the patients. No adverse or unanticipated events
occurred during or as a result of these procedures.

Investment Game. The investment game (Fig. 1 and refs. 19–21)
requires participants to make decisions about how much of their
portfolio they will invest in a stock market given three pieces of
information: (i) the history of the market price, (ii) the partici-
pant’s current portfolio value, and (iii) the most recent fractional
change in the participant’s portfolio value. The participant begins
the game endowed with 100 points and plays six markets with 20
decisions in each market (n = 120 decisions per participant). For
each decision, the participant chooses how much to invest at the
market’s current price. Once the decision is lodged, the screen
updates revealing the change in the market price and the change in
the participant’s portfolio. The final portfolio value determines
participants’ compensation. Each of the markets chosen is drawn
from an actual historical market where large groups of humans
actually decided the price levels. These participants had no prior
knowledge of these markets, nor did the participants’ have pro-
fessional expertise in market trading.
Participants viewed the game screen via a workstation monitor

present in the operating room suite. These monitors hang from the
ceiling from an adjustable arm that allow the monitor to be posi-
tioned within about two to three feet from the patients’ face, so that
patients can view the screen in a comfortable viewing position.
The participants lodge their decisions using two handheld button

boxes (Fig. 1A) that interface with the behavioral software via
universal serial bus (USB) connections. Each button box contains
two buttons. The hand contralateral to the electrochemical re-
cording site was chosen as the hand to adjust the “bet size” slider
bar. The hand ipsilateral to the recording site was chosen to lodge
the decision to submit one’s final bet size decision. To adjust the bet
size, the participant would press one button to raise the bet and the
other button to lower the bet. The button box that signals the
submit decision also contained two buttons, and either button could
be used to submit one’s decision. Each of the button boxes are fitted
with an additional sensor (internally) that tracks button presses and
transmits this information as a voltage drop to the integrated mobile
electrochemistry station.
One patient did not complete the full task within the allotted

time; this patient lodged 100 out of 120 possible decisions. Addi-
tionally, a computer malfunction in the middle of one experiment
resulted in the loss of dopamine data for seven consecutive decisions

in one patient. The remaining data (n = 17; n = 2,013 decisions and
outcome) were used in the present analyses.

Calculation of RPE and CPE. In this game, participants invest a
percentage (0–100% in 10% increments indicated by their bet
size, bt) of their portfolio. Investment returns are calculated as
market price changes (market returns: rt =   Δptpt

) multiplied by the
investment size; thus, participant returns (or outcomes) are btrt
and correspond to monetary gains or losses depending on the
sign of the price change.
RPEs are thus calculated per decision outcome as

btrt −EðbtrtÞ
σbtrt

,

where EðbtrtÞ is the expected value of btrt, which is calculated as
the mean of participant outcomes from the first trial of each
market to trial t− 1, and σbtrt is the SD over those same events.
For the first outcome of each market, the RPE is simply that
outcome (assuming no expectations at that point of the market);
the second outcome is that outcome minus the first outcome
(without normalization); the third outcome (and beyond) uses
the equation above.
CPEs are calculated per decision outcome as

rt − btrt.

The first term (rt) reflects what could have been had the partic-
ipant bet all in or bt = 1. For positive market price changes, rt is
the maximum possible gain; for a negative market price changes,
rt is the maximum possible loss. Depending on the size of the
participants’ actual investment (bt), the CPE as calculated here
reflects the maximum difference between what could have been
and what actually happened.

Description of Probe Placement for Clinical and Research Protocol.
Per standard clinical procedure, a Cosman–Roberts–Wells (CRW)
stereotactic frame is placed on the patient’s head and a volumetric
computed tomography (CT) scan of the head with frame is obtained.
The CT scan and the patient’s preoperative MRI image sets are
fused. The image sets are in turn fused with the Cranial Vault da-
tasets and atlas (51), using a nonrigid coregistration algorithm on the
Waypoint Navigator workstation. Once the images and atlases are
fused, the target and trajectory for the DBS electrode is determined.
During surgery, the DBS electrode is targeted to the patients’

subthalamic nucleus or the internal segment of the globus pallidus
per clinical indications; the implanted electrodes’ trajectory (for
DBS treatment) thus typically passes through the caudate or pu-
tamen, respectively. Microelectrode recordings to determine the
optimal DBS-electrode placement are made before placement of
the DBS electrode. During this period of the surgery, we place our
carbon-fiber microsensor in the caudate or putamen using one of
the five possible microelectrode recording trajectories (five-hole
“Ben-gun” array is used). Only one carbon-fiber microsensor is
placed. The microsensor recording site is superior (in depth posi-
tion) to the beginning of the microelectrode recording depth for any
given trajectory and is thus in a location where (i) microelectrodes
are deemed safe to pass through during planning stages and (ii) in a
position that will not otherwise be used to collect clinical data.
Once the carbon-fiber microsensor is positioned, a 400 V/s

triangular voltammetry protocol is applied (Fig. S8A) at 60 Hz for
10 min to allow the microsensor to equilibrate. During this time,
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the patient is reminded of the game instructions, provided the
handheld button boxes, and reinstructed about the operation of
the handheld devices and game play. Game play begins after the
10-min precycling protocol is complete and the 10-Hz recording
protocol is initiated (Fig. S8B).

Extended Carbon-Fiber Microsensor Dimensions and Construction.
Current technologies that detect dopamine release in humans
(microdialysis or positron emission tomography) provide rela-
tively good spatial resolution but poor temporal resolution (mi-
nutes to hours). The advent of FSCV in animal models (47, 48, 52)
and humans (21) provides an increase in temporal resolution for
dopamine measurements by roughly three orders of magnitude.
We preformed FSCV on extended carbon-fiber microsensors in

the striatum of patients with Parkinson’s disease. The extended
carbon-fiber microsensor is constructed to match the dimensions of
the tungsten microelectrodes used for functional mapping during
DBS-electrode implantation surgery. Fig. S7 shows the component
parts and assembly of the extended carbon-fiber microsensor used
in these experiments. Pacific BioLabs conducted a successful
Ethylene Oxide Sterilization Exposure and Sterility Audit to ensure
that the ethylene oxide treatment used before surgery renders the
extended carbon-fiber microsensors completely sterile.
The carbon-fiber microsensors are manufactured in-house. A

short segment of carbon fiber (1.2-cm long) is cut froma carbon-fiber
spool (7-μm diameter; reference no. LS330423; Goodfellow) and
threaded into a 1-cm-long piece of biocompatible polyimide-coated
fused-silica capillary [1-cm length; inner diameter (ID), 20 μm;
outer diameter (OD), 90 μm; Polymicro Technologies]. Once
threaded, a small droplet of two-part epoxy is placed on one end of
the carbon-fiber/fused-silica assembly, and the carbon fiber is pulled
from the other end such that the epoxy is pulled into the fused-silica
tubing and the working tip of the carbon fiber is secure. After the
two-part epoxy cures, the carbon-fiber tip is trimmed to 120 μm ±
20 μm under a dissecting microscope. The other end of the carbon
fiber is trimmed to a length of 1 mm. This working tip assembly is
then threaded into a previously prepared assembly: A platinum-
iridium wire (76.2-μm diameter; 29-cm length) is threaded into a
28-cm-long biocompatible polyimide-coated fused-silica capillary
(2- to 8-cm length; ID, 100 μm; OD, 238 μm; laser cut; Polymicro
Technologies). A 5-mm gap between the end of the capillary and
the platinum-iridium wire is created so that approximately one-half
of the working tip assembly can be inserted and held secure. Before
inserting the working tip a small amount of conductive silver paint
(GC Electronics) is fed into the large silica tube via capillary action.
Once all excess silver paint is removed from the exterior of the large
capillary, the working tip assembly is inserted and allowed to air dry
∼24 h before securing the assembly with two-part epoxy. All as-
sembly steps are carried out by hand under a dissection microscope
(Fisher Scientific Stereomaster). At the nonworking end of the
platinum-iridium wire assembly, we solder a gold-plated connector
pin (Newark), followed by application of a short length of medical-
grade shrink tubing (HS-714; SPC Technology). This assembly is
inserted into an FHC guide tube [GT(AR2)], which matches the
specifications of the tungsten microelectrodes used for functional
mapping during the DBS-electrode implantation procedure. The
FHC guide tube contains a stainless steel ground contact near the
working end of the microsensor assembly (where it protrudes) and a
gold plated connector pin preassembled. Finally a droplet of two-
part epoxy is placed at near the top of the microsensor assembly
such that the working tip protrudes 1cm from the guide tube. To
ensure that the electrical contacts are secure and stable, each mi-
crosensor is connected to the integrated electrochemical recording
station (see Integrated Mobile Electrochemical Recording Station for
a description), and the sensor is placed in a 1× PBS solution. A
triangle waveform is applied, and the capacitive currents are as-
sessed. Microsensors that did not show a current response of at
least 200 nA were discarded; otherwise, microsensors were sub-

merged in 10% (vol/vol) isopropanol solution for 24 h, allowed to
air dry, and subsequently submitted for ethylene-oxide sterilization
in preparation for use in surgery.

FSCV Protocol.Our FSCV protocol follows previous work in rodents
(21, 47, 48). Before experiment measurements, carbon-fiber mi-
crosensors require a conditioning procedure consisting of a 60-Hz
application of themeasurement waveform for approximately 10min
to allow equilibration of the recording surface and themeasurement
solution (Fig. S8A: hold at −0.6 V for 6.67 ms, ramp up to +1.4 V at
400 V/s, ramp down to −0.6 V at −400 V/s, and repeat). Following
this conditioning procedure, a 10-Hz application of the same tri-
angular waveform is applied for the duration of the experiment
(Fig. S8B: hold at −0.6 V for 90 ms, ramp up to +1.4 V at 400 V/s,
ramp down to −0.6V at −400 V/s, and repeat). This protocol
(applied in vitro and with our microsensors) produces voltammo-
grams characteristic of the oxidation and reduction of dopamine on
the carbon-fiber surface (Fig. S8C). Example voltammograms from
each patient using this protocol are shown in Fig. S9.

Integrated Mobile Electrochemical Recording Station. The mobile
electrochemical recording station consists of a head stage (CV-7B/
EC; Axon Instruments), an amplifier (700B; Axon Instruments
Multiclamp), an analog-to-digital (A/D) converter (Digidata 1440A;
Axon Instruments), and a laptop (MacBookPro; Apple). The entire
station is contained in a portable rack (SKB component rack with
caster kit; www.skbcases.com) that allows maneuverability in the
operating room. This recording station was used in the operating
room and for all in vitro experiments.
An electrochemistry-ready head stage (CV-7B/EC; Axon In-

struments) was connected to the carbon-fiber microsensor working
and ground pin connectors using a shielded trio of cables (two-feet
long); the third cable attached to the guide cannula via a small
alligator clip and served as an additional ground during electro-
chemical recordings. This cable and the carbon-fiber microsensors
were submitted to the hospital for ethylene-oxide sterilization at
least 48 h before surgery. The head stage was connected to a signal
amplifier (Multiclamp 700B; Axon Instruments), which in turn was
connected to an A/D converter (Digidata 1440A; Axon Instru-
ments). The A/D converter was connected viaUSB to a laptop and
controlled via software (pClamp10; Axon Instruments). The
Digidata 1440A can record multiple streams of data with high
temporal resolution; thus, we used the Digidata 1440A as the
main hub for data collection. Additional data channels included
(i) the button boxes (four buttons) used by the subject to play the
game, (ii) a photodiode placed over the monitor used for game
presentation, and (iii) an independent signal generator (Tek-
tronix AFG320 Arbitrary Function Generator), which provided
an analog square waveform (voltage step 0 to 5V, at 1Hz, with
1% duty cycle). This signal was split and sent to both the Be-
havioral recording system and Digidata 1440A and was used to
temporally align the Digidata 1440A data stream with the Be-
havioral recording system. The entire system was powered via a
power strip with surge protection and an isolation transformer
(medical grade; IS500HG Isolation Transformer; Tripp Lite).

Behavioral Recording System. In the operating room, a second laptop
(MacBookPro; Apple) was used to control and record the behav-
ioral data stream. The visual display of this laptop was split and
shared with a hanging monitor in the operating room; this monitor
could be positioned to be within comfortable viewing distance for
the patient while in the stereotactic head frame. Custom writ-
ten software (NEMO; labs.vtc.vt.edu/hnl/nemo) controlled the se-
quential investment game (19–21). NEMO handled the visual
presentation of the game as well as maintaining a log of behavioral
events. The sequential investment game script was modified such
that a white box was briefly presented in the lower left hand side of
the screen for every screen change. This area of the screen was
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covered with a photodiode and electric tape, which allowed the
Digidata 1440A A/D converter to record screen changes with
millisecond resolution. Additionally, a signal generator delivered a
square wave pulse to NEMO (via a connection in the button box)
and the Digidata 1440A A/D converter in parallel. NEMO re-
ceived this input as a keystroke, which was logged in the behavioral
data file; simultaneously, the Digidata 1440A A/D converter re-
corded the induced voltage fluctuations. These signals were used
offline to reconstruct temporally aligned data streams between the
sequential investment game behavioral variables and the physio-
logical data steam recorded by the Digidata 1440A A/D converter.

Training Data Used to Fit EN-Penalized Linear Regression. To create
the training data matrix (XDA-training), we performed FSCV mea-
surements in vitro. The carbon-fiber microsensor and reference
electrode is positioned in a glass capillary column containing PBS
(1× PBS; pH 7.4) without dopamine. The glass capillary column
allows complete fluid replacement with only 250-μL injections.
Solutions of dopamine are prepared in PBS (pH 7.4). Powdered
dopamine hydrochloride (Sigma-Aldrich) is dissolved in a 0.1 N
solution of HCl to a concentration of 100 mM. Aliquots of this
solution are diluted to 10 mM in 1× PBS and further diluted (in 1×
PBS) to the desired concentration. Increasing concentrations of
dopamine were injected into the flow cell while continuous (10 Hz)
FSCV sampling occurred.
The data files consist of 2 min of sweeps (1,200 sweeps) col-

lected at 10 Hz. During the 2-min-collection window, we replace
the buffered solution with step increases in dopamine concen-
tration within the first 10–20 s of the beginning of the file. The
solution remains until the beginning of the next file. Data in
the first 5–10 s are omitted from the training dataset, so that
movement artifacts from replacing the solutions are ignored.
Training datasets were collected on a number of probes. Re-

sponses (voltammograms) are known to vary from probe to probe
because of variations in probe construction. Considerable care is
taken to minimize these variations. To improve a given model’s
performance at predicting test samples, we sought to match the
overall voltammogram shape between the probes used to collect
human data and those used to generate the training datasets. We
create several training datasets from multiple electrodes; the
electrodes used to create these training datasets are chosen by their
voltammogram response, and the training datasets are grouped for
further model training. This process is motivated by two factors:
(i) the observation that an electrode with a voltammogram that is
more similar in shape to another electrode tends to give much
more accurate cross-probe predictions than two electrodes whose
voltammograms are very different; and (ii) the observation in
in vitro tests that by training a model on multiple probes, we greatly
improve the generalizability of the resulting model.
Segments (400 sweeps; i.e., 40 s of data) of the 2-min data file

are selected for inclusion into the training dataset (XDA-training).
We select data that is collected after the injection of the new
concentration is complete and before the data collection window
is complete. Also, we determined training data subsets for vari-
ous suspected ranges by subsampling the full range of collected
data to generate subsets of training data that are approximately
normally distributed, ∼N (μ, σ2), with a given mean μ and
variance σ2 that span the suspected in vivo range of possible
dopamine concentrations. Thus, we train multiple models for
prediction—each model is characterized by two parameters (the
mean and variance of a Gaussian that is used to subsample the
training data), which also characterize the target concentration
range for that model. This step is motivated by five observations
from in vitro tests: (i) models trained on small concentration
ranges (i.e., low variance) perform better on out-of-sample tests
than models trained on larger concentration ranges (i.e., high
variance); (ii) a model trained targeting a low concentration but
used to make predictions of test samples prepared at a high

concentration tend to over shoot, and, vice versa, models trained
targeting a high concentration but used to make predictions
targeting a high concentration tend to under shoot; (iii) models
characterized by different means and variances but that are
similar and overlapping tend to give very similar predictions and
are very close to the mean values that characterizes those
models. For example, in vitro, we find that a model “X” trained
to target the concentration range characterized by a Gaussian
with mean μ = 400 nM and variance σ2 = 100 nM will per-
form similarly compared with a model “Y” characterized by a
Gaussian with mean μ = 500 nM and variance σ2 = 100 nM, but a
model “Z” characterized by a Gaussian with mean μ = 5,000 nM
and variance σ2 = 100 nM will undershoot considerably when the
actual concentration is around 400–500 nM; (iv) prediction er-
rors in in vitro test cases increase as the predicted value is further
from the model’s characteristic mean value, so when a model
makes a prediction that is more than 2 SDs from the charac-
teristic mean (μ) with variance (σ2), we observe that those pre-
dictions have the greatest prediction error; (v) we do not actually
know the concentration range in vivo, so a set of models with
similar variance but mean values that span a wide range are
generated, so that we may discover an appropriate model given
the behavior of our approach in vitro.
The derivative of each probe’s response (non–background-

subtracted voltammogram) in 1× PBS was entered into a clustering
procedure that included representative responses (the derivative of
one voltammogram from the midpoint of the experiment) for each
probe used to collect human data. Clustering was performed using
Matlab’s cluster.m function. The linkage function for generating
hierarchical cluster trees using the method specified by the variable
“ward,” which minimized the inner-squared distance of the de-
rivative of the voltammogram response with other members of the
group resulting in hierarchical clusters with groups that minimize
the variance of voltammogram shape within groups versus across
groups (53). Training data from those probes that were grouped
with probes used to collect human data were used to train dopa-
mine concentration predictive models for those corresponding
human measurements. Thus, multiple probes’ in vitro data
(n greater than or equal to two probes) entered as training data
for our approach.
The derivative of each 1,000-data point voltammogram (cyclic

voltammogram: 10-ms sweep, 100-kHz sampling rate, during
triangle waveform; x*1  to  p=1000) is labeled with the concentration
of dopamine in nanomolar (nM) units; this vector of dopamine
concentration labels (~y) is used to determine the coefficients β

*
to

fit the linear regression model~y=   β̂0 + x*1β̂1 + x*2β̂2 +  ⋯  + x*pβ̂p
via the EN algorithm described in EN-Based Procedure to Predict
Dopamine Concentration and as in ref. 49. Training data for
different pH levels on two unique probes are also collected in the
same manner where 1× PBS at a range of pH levels (pH 6.7–7.8)
is injected and measured; these data are labeled as “0 nM do-
pamine” and are included in~y and XDA−training to allow variations
in electrochemical current nonspecific to dopamine to be ac-
counted for in the EN procedure. All nonzero dopamine con-
centrations were measured in 1× PBS, pH 7.4.
Before fitting the linear regressionmodel, the data in XDA−training is

transformed in the following way: each row in XDA−training is the
electrochemical current “I”measured at time samples “t” (collected
at 100 kHz over a 10-ms window), so the approximate derivative,
∼dI/dt, for each subsweep (a row in XDA−training) can be estimated
(this was performed using the diff.m function in Matlab). The
resulting matrix XDA−training,  dI=dt is reduced by one column
(XDA−training,  dI=dt has dimensions: [Nsamples by 999 columns]) and is
used to train the linear regression model using the EN.
A 10× concentrated solution of phosphate buffered saline (PBS)

was prepared [PBS: NaCl (137 mM), KCl (2.7 mM), Na2HPO4
(10 mM), KH2PO4 (1.8 mM)]. Before use, a 900-mL sample was
adjusted to the desired pH using HCl or NaOH. Once the
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desired pH was attained, milli-Q H20 was added to 1-L total
volume. Powdered dopamine hydrochloride (Sigma-Aldrich) was
dissolved in a 0.1 N solution of HCl to a concentration of 100
mM. Aliquots of this solution were frozen in a −20 °C freezer
and thawed just before use. Aliquots were diluted to 10 mM in
1× PBS and further diluted (in 1× PBS) to the desired concen-
tration for in vitro calibration of the carbon-fiber microsensors.

EN-Based Procedure to Predict Dopamine Concentration. We use the
EN to perform regularization and variable selection while de-
termining a good fit for a linear regression model

ŷ= β̂0 + x1β̂1 + x2β̂2 +⋯+ xpβ̂p

that will predict the concentration of dopamine (ŷ) given a FSCV
measurement ( x*).
For our purposes, ŷ is the predicted concentration of dopa-

mine; the vector of parameters, x1 . . .   xp   ð x
*Þ, is the derivative

(dI/dt) of a single cyclic voltammogram sweep (P = 999 values
after calculating dI/dt for 1,000 data points in the cyclic vol-
tammogram vector). The vector of betas, β

*
, are weights assigned

to each value of xp. The EN procedure for linear regression
models minimizes the residual sum of squares with an additional
penalty term, PαðβÞ:

min
ðβ0, βÞ∈Rp+1

1
2N

XN

i=1

!
yi − β0 − xTi β

"2
+ λPαðβÞ.

The EN penalty PαðβÞ,

PαðβÞ= ð1− αÞ 1
2
kβk2ℓ2 + αkβkℓ1

=
Xp

j=1

h
ð1− αÞβ2j + αjβjj

i
,

is a mixture of the “ridge regression penalty” [ℓ2 − norm :   12β
2
ℓ2

(54)] and “lasso penalty” [ℓ1 − norm :   βℓ1 (55)] parameterized
by α, which takes a value between 0 and 1. To determine a
best-fit linear regression model, we collect cyclic voltammetry
measurements (sweeps, x*) for known concentrations of dopa-
mine in vitro. Each sweep consists of 1,000 data points (mea-
surements of current at 100kHz) collected during the application
of a 10-ms triangular voltage waveform (hold at −0.6V for 90 ms,
ramp up to +1.4 V at 400 V/s, ramp down to −0.6 V at −400 V/s,
and repeat; Fig. S8). We have found that taking the derivative of
the measured current leads to improved prediction performance.
Thus, the derivative of the non–background-subtracted cyclic
voltammogram is input into the linear regression model deter-
mined by EN regularization.
To perform the EN procedure, we use the toolbox provided by

Qian et al. for Matlab (50). The range of λ (a penalty weight) is
determined for each α (a mixing term) by the cvglmnet.m func-
tion. The best α is determined via grid search (α for a range of λ);
we searched α values between from 0 to 1 in 0.1 increments. We
performed 10-fold cross validation within each training data
subset and determined λ that minimizes the average mean
squared error over 10 iterations for each α tested. We chose the
(α, λ) pair that minimized the mean-squared error over the 10
iterations.

Model Selection Per Patient. For each patient, dopamine concen-
tration predictions were generated using each of the possible
models, where each model indexed by m (m = 1, 2, 3, . . . M; M is
the full set of possible models) has been trained on a different
concentration range (concentration range characterized by the

normal distribution with parameters μμ and σ2μ as described in
Training Data Used to Fit EN-Penalized Linear Regression) and
multiple probes (per the probe clustering step above). A difference
measure (dm) for each model was calculated between the pre-
diction vector generated from each model (pm,t) and the mean
concentration at which the model was trained (μm) as

dm =
XT

t=1

!
pm,t − μm

"2,

where t indexes each measurement within the experimental win-
dow and T is the total number of measurements within the ex-
periment. Thus, we calculate dm for each concentration-range
specific model. The model yielding the smallest dm is selected,
and the dopamine predictions resulting from this model are used
as our best estimate of dopamine concentration in vivo. This step
is motivated by three observations: (i) models that make predic-
tions out of the range of training dataset used to generate that
model make the biggest errors; (ii) as the actual dopamine con-
centration approaches the mean of a corresponding model (with
characteristic μ), we see that the predictions error of the model
significantly improves; and (iii) in vitro, we get the best perfor-
mance from those models whose prediction minimize the differ-
ence between μ and the predicted concentration.
For the 17 participants analyzed in this report, our procedure

yielded specific models that are consistent with known features in
the voltammogram such as the oxidation and reduction peaks for
dopamine (orange and green shading in Figs. S9 and S10). Our
approach works on the derivative of the voltammogram signal
(no background subtraction required); thus, the “peaks” are
identified by the corresponding “upsweep” and “downsweep”
components of each of the oxidation and reduction peaks: see
red and blue circles around the oxidation (orange shaded areas
in Figs. S9 and S10) and reduction (green shaded areas in Figs.
S9 and S10) peaks in Figs. S9 and S10. Parts of the voltammo-
gram in Figs. S9 and S10 that contain a red or blue circle are
automatically selected by the EN procedure; other elements
(that are not marked by red or blue circles) are ignored.

SNR. To assess the sensitivity of each concentration range-based
model, the SNR for each models’ predictions is calculated over a
range of dopamine concentrations.
The SNR is calculated for a given concentration range; this

calculation is performed for each concentration-range specific
model compared against a test dataset collected in vitro with
known dopamine concentration values. Thus, the SNR for a
given concentration SNRc, is calculated as the square of the
RMS amplitude ratio of signal c to noise «

*:

SNRc =

0

B@ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X!
«
*2"

r

1

CA

2

,

where c is the known (i.e., prepared) concentration of dopa-
mine, and «

* is the deviation of the predicted concentration (ŷ)
from the actual concentration (c) for n samples measured at
that concentration

*«= ŷ− c.

Two-Way Repeated-Measures ANOVA. Two-way repeated-measures
ANOVA was performed comparing the dopamine time series
following an outcome for positive versus negative RPEs. For each
dopamine time series plot shown (Figs. 3B and 4B), the two
factors entered into the repeated-measures ANOVA were (i) the
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RPE category (positive or negative) and (ii) time. The time
points included in the analysis were 0 (time of outcome reveal),
100, 200, 300, 400, 500, 600, and 700 ms. Post hoc two-sample
t tests were performed comparing the dopamine measurement
at each time point across RPE-sign category and Bonferroni
corrected for multiple comparisons where indicated. All statistical
analyses were performed using Matlab. The functions anovan.m
and multcompare.m were used to perform the repeated-measures
ANOVA and post hoc two-sample t tests with multiple compari-
sons correction, respectively.

Principal Components Regression to Estimate Dopamine Concentration.
Principal components regression (PC-regression) was performed
following recommended procedures described in ref. 24. A training
dataset consisting of six background-subtracted voltammograms for
six different dopamine concentrations (Fig. S1A, Left) measured in
a flow cell and six voltammograms for six different pH levels (Fig.
S1A, Right) were entered into a principal components analysis,
which resulted in 11 principal components (Fig. S1B, red and blue
traces). Malinowski’s F test (56) was used to determine the number
of principal components to retain (Fig. S1B, red traces, and Table
S1). Using the retained principal components, we reconstruct the
training dataset (Fig. S1C) and observe that qualitative aspects
indicative of the voltammograms for dopamine and pH changes
are retained. Loading of these 12 measurements onto the seven
retained principal components are used to fit a linear regression
between the prepared concentrations and the predicted concen-
tration (Fig. S2A). Cook’s distance was then calculated for each

training data point (Fig. S2B), which shows that none of the 12
training data measurements should be considered outliers. Next,
we perform predictions on out-of-sample test data (data collected
during the same flow cell session as the training data) to determine
the out-of-sample prediction accuracy of the resulting linear re-
gression model (Fig. S3). Test data include changes in dopamine
concentration (Fig. S3 A–C) and changes in pH (Fig. S3 D–F). For
each prediction on the test dataset, prediction error (the difference
between the actual concentration and the test concentration; Fig.
S3 B and E) and Q values (following ref. 57) are calculated and
compared with Qα (Fig. S3 C and F).

Comparison of PC-Regression Approach to EN-Based Approach in
Vitro. Comparison of the PC-regression and EN-based ap-
proaches are shown in Figs. S3 and S4. The predictions shown
are from the same electrode under the same flow cell conditions
for both models. The main difference being the method for
training a predictive linear regression model [PC-regression as
outlined in ref. 24 (Fig. S3) or the EN-based approach outlined
above (Fig. S4)]. The PC regression-based approach requires
background subtraction; thus, predictions shown are for the
change in dopamine or pH from the reference voltammograms
(for the dopamine concentration measurements, the change was
relative to voltammograms measured in 0 dopamine).
Our observation that changes in pH in vitro caused aberrant

predictions in dopamine fluctuations when dopamine levels were
held constant led us to rely on the EN-based approach for our
analysis of human voltammetry data.
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Fig. S1. Principal components analysis of in vitro training data. (A) Background-subtracted voltammograms for six measurements of dopamine (Left) and six
changes in pH (Right) are entered into a principal components analysis. (B) Resulting 11 principal components. Red traces (principal components 1 through 7)
are retained for further analysis by the criteria set forth in refs. 24 and 56. (C) Representation of the training data in the reduced principal component space.
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Fig. S2. Cook’s distance analysis of training dataset. (A) Loadings of the 12 training data background-subtracted voltammograms on to the seven principal
components are used to fit a linear regression by ordinary least squares. (B) Cook’s distances are calculated for each training data measurement to test for
outliers in the training dataset.

Fig. S3. Performance of PC regression-based approach on out-of-sample test cases. (A–C) Changes in dopamine concentration under stable pH (pH 7.4). (D–F)
Changes in pH under stable dopamine concentration (dopamine concentration for D–F is 0). (A) Prepared dopamine concentration (light blue: 200, 400, 800,
and 1,600 nM) compared with the PC regression-based predictions for dopamine concentration (red and green). Green points: accepted by Q-value analysis; red
points: rejected by Q-value analysis. The inset scale bar indicates measurement period of 50 s. (B) Prediction error of PC regression-based predictions of do-
pamine concentration over the range of dopamine concentrations shown in A. (C) Q-value analysis determined a Q-value threshold of Qα = 209.6 (dotted line)
for significant variance explained by the retained principal components for the test dataset. (D) Predictions of dopamine concentration when pH is changed,
but dopamine concentration is held constant (0). Dotted light blue line indicates actual concentration of dopamine is equal to 0. Insets indicate pH levels
(pH range: 7.19, 7.4, 7.6). (E) Prediction error of PC regression-based predictions of dopamine concentration over the range of pH fluctuations shown in D.
(F) Q-value analysis determined a threshold of Qα = 209.6 (dotted line) for significant variance explained by the retained principal components for the test
dataset.
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Fig. S4. Performance of EN-based approach on out-of-sample test cases. (A and B) Changes in dopamine concentration under stable pH (pH 7.4). (C and D)
Changes in pH under stable dopamine concentration (dopamine concentration for C and D is 0). (A) Prepared dopamine concentration (light blue: 200, 400,
800, and 1,600 nM) compared with the EN-based predictions for dopamine concentration (dark blue). The inset scale bar indicates measurement period of 50 s.
(B) Prediction error of EN-based predictions of dopamine concentration over the range of dopamine concentrations shown in A. (C) Predictions of dopamine
concentration when pH is changed but dopamine concentration is held constant (0). Dotted light blue line indicates actual concentration of dopamine is equal
to 0. Insets indicate pH levels (pH range: 6.79, 7.02, 7.8). (D) Prediction error of EN-based predictions of dopamine concentration over the range of pH fluc-
tuations shown in C.

Fig. S5. SNR of EN-based dopamine estimation as a function of dopamine concentration. Horizontal axis: concentration of prepared dopamine; vertical axis:
SNR. Colored points indicate the value of the characteristic parameter (mean concentration of the training data) for each model generated (see inset legend
for values).
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Fig. S6. Distribution of decision-making variables in the investment game. (A–E) Histograms showing the distribution of events for each variable: market
returns (rt =   Δpt

pt
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Fig. S7. Diagram of extended carbon-fiber microsensor. From top to bottom, drawings of component parts and assembly steps for constructing the extended carbon-fiber microsensor. (A) 7-μm-diameter carbon fiber is threaded
through a 1-cm-long (20-μm ID, 90-μmOD) fused-silica capillary with biocompatible polyimide coating and then held in place and sealed on one end with two-part epoxy. (B) Platinum-iridium wire (0.003 in diameter) is threaded through
a 28-cm-long (100-μm ID, 238-μm OD) fused-silica capillary with biocompatible polyimide coating. (C) The recoding tip assembled in A is inserted 5 mm into the larger fused-silica capillary assembled in B. An electrical contact is made
between the carbon fiber and the platinum-iridium wire using silver paint. A gold-plated connecting pin is soldered to the other end of the platinum-iridium wire. (D, Upper) The assembly in C is threaded into a guide tube purchased
from FHC, which contains the reference electrode and connecting pin. (D, Lower) Colored drawing showing guide tube in gray and carbon-fiber biocompatible capillary assembly in orange. (E) The extended carbon-fiber microsensor is
retracted (Lower) when not in use and during implantation, but when extended (Upper), the carbon-fiber working end extends 1 cm beyond the reference electrode tip contained on the end of the FHC guide tube. Two-part epoxy is
used as a “stopper” to ensure that the probe extends the desired depth when deployed.
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Fig. S8. FSCV protocols. (A) Triangular voltammetry protocol used for conditioning the carbon-fiber microsensor. (B) Triangular voltammetry protocol used for
FSCV measurements of dopamine in vitro and in vivo. (C) In vitro-collected voltammogram for dopamine at increasing concentrations: triangular voltage
waveform applied during FSCV measurements (Top), non–background-subtracted (Middle) and background-subtracted (Bottom) FSCV data collected in vitro
for increasing concentrations of dopamine. Horizontal axis: time (ms). Vertical axis: current (nA). Orange and green shading indicates expected range of
dopamine oxidation and dopamine-o-quinone reduction peaks, respectively.
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Fig. S9. Examples of non–background-subtracted cyclic voltammograms from each participant and overlay of EN-determined linear regression weights used
for prediction. (A–Q) FSCV sweep from each patient showing EN-determined linear regression coefficients overlaid in red and blue. As in Figs. S8 and S10,
orange shading and arrowhead show expected range and peak of dopamine oxidation potential; green shading and arrowhead show expected range and
peak of dopamine-o-quinone reduction potential. Horizontal axis: time (ms); vertical axis: current (nA).
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Fig. S10. Examples showing derivative of cyclic voltammograms from each participant and overlay of EN determined linear regression weights used for
prediction. (A–Q) Derivative of FSCV sweep from each patient showing EN-determined linear regression coefficients overlaid in red and blue. As in Figs. S8 and
S9, orange shading and arrowhead show expected range and peak of dopamine oxidation potential; green shading and arrowhead show expected range and
peak of dopamine-o-quinone reduction potential. Horizontal axis: time (ms); vertical axis: current (nA).
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Table S1. Principal components 1 through 7 retained for PC-regression analysis by
Malinowski’s F-score threshold

Principal
component no.

% variance
explained df

Malinowski’s
F score P

PC 1 57.0219391 F(1,10) 71.5625781 7.20 × e−6

PC 2 39.61787313 F(1,9) 518.892365 2.87 × e−9

PC 3 2.861235738 F(1,8) 201.1369679 5.95 × e−7

PC 4 0.369182107 F(1,7) 77.1958539 4.99 × e−5

PC 5 0.089619474 F(1,6) 45.07042011 0.000530793
PC 6 0.01965172 F(1,5) 13.66101103 0.014056514
PC 7 0.013926391 F(1,4) 19.73411084 0.011313738
PC 8 0.003495778 F(1,3) 6.124811992 0.089679162
PC 9 0.001899128 F(1,2) 4.026631744 0.18260189
PC 10 0.000634205 F(1,1) 0.777518953 0.539945643
PC 11 0.000543236 NA NA NA

NA, not applicable.
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