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Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms
is well correlated with reward-prediction errors from formal reinforcement learning models, which fea-
ture teaching signals in the form of discrepancies between actual and expected reward outcomes. Addi-
tionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons
show sustained cue-evoked responses that are correlated with the variance of reward and are maximal
to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopa-
mine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current
study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic vol-
tammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabi-
listic Pavlovian conditioning. The advantage of this technique is that we can sample from the same
animal and recording location throughout learning with single trial resolution. We report that dopamine
release in the nucleus accumbens core contains correlates of both expected value and variance. A quan-
titative analysis of these signals throughout learning, and during the ongoing updating process after
learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during
these phases. Peak CS-evoked responses are correlated with expected value and predominate during
early learning while a variance-correlated sustained CS signal develops during the post-asymptotic
updating phase.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The phasic firing of dopamine neurons in response to rewards
and reward-predictive cues during operant and Pavlovian condi-
tioning tasks conforms well to a teaching signal from formal mod-
els of reinforcement learning (Fiorillo, Tobler, & Schultz, 2003;
Rescorla & Wagner, 1972; Schultz, Dayan, & Montague, 1997;
Sutton, 1988; Waelti, Dickinson, & Schultz, 2001). Specifically,
the temporal difference algorithm is a computational model built
in time steps between predictive stimuli and reward presentation.
It responds to discrepancies between rewards received and what
was anticipated based on the predictive stimuli. These ‘‘reward-
prediction error’’ signals track back through the state space to
the predictive stimulus to represent changes in expectation
conferred by the stimulus (i.e. ‘‘back propagation’’) (Niv, Duff, &
Dayan, 2005). Indeed, when reward-predictive stimuli are pre-
sented unexpectedly, the phasic firing of dopamine neurons corre-
lates with the expected value (EV; magnitude � probability) of
future reward conferred by that stimulus. Subsequently, at the
time of expected reward delivery phasic dopamine activity corre-
lates with the discrepancy between the expected value and the
actual reward delivered (Bayer & Glimcher, 2005; Bayer, Lau, &
Glimcher, 2007; Fiorillo, 2011; Fiorillo et al., 2003; Nakahara,
Itoh, Kawagoe, Takikawa, & Hikosaka, 2004; Pan, Schmidt,
Wickens, & Hyland, 2005; Schultz et al., 1997; Tobler, Fiorillo, &
Schultz, 2005; Waelti et al., 2001). These signals are mirrored by
neural activity in the nucleus accumbens in the form of the BOLD
signal (Preuschoff, Bossaerts, & Quartz, 2006; Rutledge et al.,
2010) and phasic dopamine release (Clark, Collins, Sanford, &
Phillips, 2013; Flagel et al., 2011; Gan, Walton, & Phillips, 2010).

In addition to representing these signals dopamine neurons
may encode the uncertainty of reward associated with a partially
reinforced CS. Probabilistic cues evoke a sustained increase or
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ramping in the firing rate of dopamine neurons that correlates with
the variance of reward, with a maximum response to CSs that pre-
dict rewards with a probability of 0.5 (Fiorillo et al., 2003). A vari-
ance-correlated signal can also be found in the nucleus accumbens,
a downstream target of these neurons (Preuschoff et al., 2006).
However, it is unclear how a representation of reward variance is
acquired or how it is used. Attempts to reconcile the signal with
the TD model have resulted in controversy (Fiorillo, Tobler, &
Schultz, 2005; Niv et al., 2005). Niv et al. (2005) proposed that
the variance correlate could be replicated by a modified TD model
that represented positive and negative reward-prediction errors
asymmetrically, which may be a consequence of the low tonic fir-
ing rate of dopamine neurons (Bayer & Glimcher, 2005). The Niv
et al. (2005) model predicts that while the variance signal can be
observed in the responses of dopamine neurons to a probabilistic
CS, it is property of signal averaging. However, Schultz and col-
leagues (Fiorillo et al., 2005) subsequently provided evidence for
the presence of the variance correlate in the responses of dopamine
neurons on individual trials.

Studies using fast-scan cyclic voltammetry in the nucleus
accumbens core of rats during Pavlovian conditioning or operant
tasks in rats have demonstrated that EV and reward-prediction-
error correlates are present in the form of phasic dopamine release
(Clark et al., 2013; Flagel et al., 2011; Gan et al., 2010; Stuber et al.,
2008), but a correlate of variance or uncertainty in the form of pha-
sic dopamine release has not been described. Therefore, in the cur-
rent study, we recorded dopamine release in the nucleus
accumbens core of rats undergoing Pavlovian conditioning with
partial reinforcement which allowed for both the examination of
signaling on individual trials and a quantitative analysis of signal-
ing profiles across multiple stages of learning.
2. Materials and methods

2.1. Animals and surgery

The University of Washington institutional animal care and use
committee approved all animal procedures, which were conducted
during the animals’ light cycle. We anaesthetized male Sprague-
Dawley rats (mean ± rweight = 389 ± 30 g) with isoflurane and
chronically implanted them either unilaterally or bilaterally with
carbon fiber microelectrodes targeted to the nucleus accumbens
core (from Bregma: anterior 1.3 mm, medial 1.3 mm, ventral 6.8–
7.2 mm) and unilateral Ag/AgCl reference electrodes (Clark et al.,
2010). We connected electrodes to 6-pin data-mate connectors
(Harwin, Portsmouth, UK), which were cemented to the skull.
Implants were held in place with stainless steel screws in the skull
and dental cement. We singly housed rats after surgery for the
duration of the experiment. After recovery from surgery, rats were
food restricted to maintain them at 85–90% of their post-recovery
body weight throughout training.
2.2. Pavlovian training

We conducted Pavlovian training and voltammetry recording in
modified MED Associates (St. Albans, VT) behavioral chambers
(Flagel et al., 2011). Each chamber was equipped with a house
light, a fan, two retractable levers below cue lights and a food mag-
azine equipped with a cue light, an IR beam and a photo-sensor,
located between the levers. Behavioral chambers were equipped
with infrared sensitive cameras, and DVD recorders so that behav-
ior could be recorded and scored offline. We habituated rats to the
behavior chambers before the beginning of training. During habit-
uation, the magazine light, house light, and fan were turned on,
and approximately ten 45-mg dustless precision pellets (Bio-Serv,
Frenchtown, NJ) were placed in the feeder magazine. The rats
remained in behavior chambers until they consumed all of the pel-
lets. After habituation, the rats then underwent three sessions of
magazine training. During magazine training, the house light and
fan were on continuously and the unconditioned stimulus (US)
was delivered 20 times per session 90 ± 30 s apart. The US was
composed of the delivery of a single food pellet coincident with
the start of a 3-s illumination of the magazine light.

After magazine training, we conducted Pavlovian delay condi-
tioning. The conditioned stimulus (CS) was composed of a lever
extension and illumination of a cue light for 8 s. We assigned the
CS to the left or right side of the feeder in a counterbalanced man-
ner across rats. We assigned rats to 5 probability groups (0: n = 4,
0.25: n = 4, 0.50: n = 5, 0.75: n = 4, 1.00: n = 5). All rats received 24
rewarded trials per session, except one rat in the 0.5 group who
received 25 rewarded trials per session. On rewarded trials the
CS was immediately followed by the US. On reward omission trials,
the CS was presented but was not followed by the US. The number
of reward omission trials varied between groups and was deter-
mined by the probability of reinforcement (Probability: Reward
Omission Trials, 0.25: 72, 0.5: 24 (25 for one rat), 0.75: 8, 1.00:
0). Rats in the 0 probability group received 24 non-rewarded CS
presentations per session. They were also randomly presented
with the US 24 times throughout each session. During behavioral
sessions, we automatically recorded feeder-entry and lever-press
responses. We conducted no more than one behavioral session
per rat per day and we ran behavioral sessions once every
2–3 days. We continued Pavlovian conditioning up to ten sessions
for each rat.

2.3. Approach behavior

We scored CS approach trials from DVD recordings of Pavlovian
training sessions. We counted a trial as a CS approach trial if, dur-
ing the CS period, any part of the rat’s head or forelimb made con-
tact with the lever or occupied the space immediately above or
below the lever. We calculated approach probability as the number
of cue approach trials divided by the total number of trials. We
used this method to score approaches rather than lever presses
because we found that rats often made lever contacts that did
not register as lever pressing. Rats would bite, pull, or even push
up on the lever with their noses, and in other instances, rats
approached and fixated on the cue light immediately above the
lever but did not make lever contacts. We calculated a two-way
mixed-model ANOVA for effects of session (session 1 vs. session
6) and probability of reinforcement on CS approach probability.
We also conducted Bonferroni-corrected t-tests to compare each
group to the 0 probability group in sessions 1 and 6.

2.4. Voltammetry

We recorded phasic dopamine release using fast-scan cyclic
voltammetry at the implanted carbon-fiber electrodes. We began
voltammetry recordings no later than the third magazine training
session. We conducted recordings as described previously (Clark
et al., 2010; Gan et al., 2010). We plugged each rat into an amplifier
headstage (built in house), which was attached via an electrical
swivel (Crist Instrument Co., Bethesda, MD or Dragonfly Research
and Development, Inc., Ridgely, WV), allowing it to move freely
during recording sessions, to National Instruments data-acquisi-
tion cards. Signals were digitized and recorded on a PC running
Tar Heel (LabVIEW) software. Throughout fast-scan cyclic voltam-
metry recordings, electrodes were held at �0.4 V, and a triangular
voltage waveform was applied to the electrode every 100 ms. The
peak of the waveform was 1.3 V, and the scan rate was 400 V/s; the
total duration of the waveform was 8.5 ms. During the voltage
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sweep, current data from the electrodes was collected in either sin-
gle or dual-channel modes. In single-channel mode, 1000 points of
data were sampled during each 8.5 ms voltage scan, for a sample
rate of 117.6 kHz. In dual-channel mode, 500 points of data from
each channel were sampled during each scan, for a sample rate
of 58.8 kHz. To facilitate conditioning of the electrode surface
before recordings, we applied the waveform at 60 Hz for approxi-
mately one hour before switching to the normal 10 Hz collection
mode and waiting for another 30 min. To facilitate synchronization
of voltammetry and behavior, TTLs from the behavioral control
computer were recorded concurrently with voltammetry data.
We verified electrode function by examining the mean US-evoked
dopamine release from 20 unpredicted USs in the third magazine-
training session, and re-verified electrodes before each Pavlovian
session by presenting an unpredicted food pellet. We recorded cyc-
lic voltammograms (CVs) during unpredicted pellet presentation
and inspected background-subtracted CVs for their similarity to a
dopamine CV. If an unpredicted reward failed to produce a dopa-
mine-like CV, then the animal was rested for 2 days. After three
consecutive failures, we considered electrodes no longer usable
for data collection. Data were included from electrodes that
yielded voltammetry recordings in at least six Pavlovian sessions.
2.5. Data processing and analysis

We recorded dopamine release in the accumbens core from at
least 6 Pavlovian sessions with 24 (0: n = 5, 0.25: n = 4; 0.5 n = 6;
0.75 n = 4; 1: n = 5) electrodes implanted in 22 rats. We processed
all fast-scan cyclic voltammetry data using custom Matlab (The
Mathworks Natick, MA) software written by ASH or modified by
ASH from Keithley, Carelli & Wightman (2010). We low-pass fil-
tered fast-scan cyclic voltammetry at 2 kHz. We parsed voltamme-
try data into trials by cutting records to the onset of the CSs, as well
as the unpredicted rewards in the case of magazine training ses-
sions and Pavlovian sessions for the 0 probability group. In order
to remove the background current from the data, we subtracted
the average of 10 CVs recorded immediately before trial onset from
each trial’s CV data. We converted CV data to dopamine and pH
current using principal components regression (two principal com-
ponents) against a training set of electrically evoked dopamine and
pH responses. We conducted residual error analysis on each CV
and excluded CV data for which the error was great enough to
reject the null hypothesis (a = 0.05) that it was produced by ran-
dom noise (Jackson & Mudholkar, 1979). To calculate the change
in dopamine due to reward delivery or reward omission in the
Fig. 1. Rats in all groups approached the CS during the first session of training, but
by session 6, rats in the 0 probability group (n = 4) responded significantly less than
rats in the 0.25 (n = 4), 0.5 (n = 5), 0.75 (n = 4), and 1.0 (n = 5) groups. Bars show
mean plus standard error (***: P < 0.001 with respect to non-paired group,
Bonferroni corrected t-test).
non-zero probability groups, we subtracted the average dopamine
signal from the last ten scans during the CS. When showing dopa-
mine traces from individual trials, we smoothed data with a five-
point sliding average, however, we conducted all quantitative anal-
yses on unsmoothed data averaged over trials. We conducted
regression analyses to test the CS- and US-evoked dopamine
responses from each session for correlates of EV and variance.
For binary rewards, EV is equivalent to probability of reinforce-
ment (PR), and variance is equivalent to PR � PR2. Therefore, we
fit the data to first (Eq. (1)) and second order (Eq. (2)) polynomial
functions of PR, where D(t) is the dopamine signal recorded at time
t. The negative weight for B2 reflects the expected negative weight
on PR2 for a variance correlate.

DðtÞ ¼ B0ðtÞ þ B1ðtÞ � PR ð1Þ
DðtÞ ¼ B0ðtÞ þ B1ðtÞ � PR � B2ðtÞ � P2

R ð2Þ

We calculated the mean CS-evoked and US-evoked dopamine
response from each session for each electrode (n = 24). We then
calculated regressions of session mean responses at each time
point against first- and second-order polynomial models of dopa-
mine as a function of reward probability. We calculated F statistics
Fig. 2. Coronal sections of rat brain show locations for (n = 24) voltammetry
electrodes chronically implanted in nucleus accumbens core. Brain atlas sections
are from Paxinos and Watson (2005).



Fig. 3. (a–c) Example dopamine traces on individual trials recorded at individual electrodes in the 0, 0.5 and 1.0 groups are shown. For the 0.5 group, reward trials and reward
omission trials are shown separately, though they were randomly interleaved during training. Traces were smoothed with a 5-point running average. Gray points indicate
data that was excluded because residual error after principal components regression was large enough to reject the null hypothesis (P < 0.05) that error was due to random
noise. (d–f) Mean ± SEM of session-averaged traces for the 0 (n = 5), 0.5 (n = 6), and 1.0 (n = 5) groups are shown. Traces from reward and reward omission trials for each
session were averaged separately to illustrate differential responding at the time of the US. Colored boxes represent the analysis windows during CS presentation (red: early
CS, green: peak CS, blue: late CS). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Mean ± SEM of session-averaged traces for the 0.25 (n = 4), 0.75 (n = 4)
groups are shown. Traces from reward and reward omission trials for each session
were averaged separately to illustrate differential responding at the time of the US.
Colored boxes represent the analysis windows during CS presentation (red: early
CS, green: peak CS, blue: late CS). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

A.S. Hart et al. / Neurobiology of Learning and Memory 117 (2015) 84–92 87
and r2 for both models for (1,22 and 2,21 degrees of freedom) as
well as the F statistic (1,21 degrees of freedom) and the marginal
increase in r2 for the addition of the second-order term to the
first-order model. As an estimate of the relative performance of
the two models in explaining the variance of the data, we com-
pared the marginal increase in r2 for the second-order model with
r2 for the first-order model. We repeated this procedure for all time
points (�1 s to 8 s relative to CS-onset, 0.1 s interval) for six ses-
sions of acquisition. For US-evoked dopamine release, we used a
similar procedure but calculated regressions against the first-order
model only for time points relative to the US (�1 s to 6 s relative to
US-onset). For follow up analyses, we calculated the mean dopa-
mine oxidation current from the session averaged dopamine
responses for each electrode over four epochs from session two
and session six. Three epochs were defined by the CS: CS-onset
(0.4–1.4 s), CS-peak (1.5–2.5 s), CS-late (6.9–7.9 s), and one epoch
was defined by the reward: US-peak (1.5–2.5 s from US onset).
We also calculated the mean current from the US-peak epoch for
reward omission trials. We performed the same regression proce-
dures as above on the mean dopamine responses from each epoch.

We calculated history-based within-electrode contrasts for CS-
evoked responses from trials in three stages of Pavlovian training.
For subjects in the 0.25, 0.5, and 0.75 probability groups, we sorted
trials by the outcomes of the previous two trials. We then calculated
the average CS-evoked dopamine response from trials following two



Fig. 5. Regression weights for B1 (a) from the first-order model and B2 (b) from the
second-order model are shown for each time point (�1 s to 8 s from CS-onset, 0.1 s
interval) for sessions 1 through 6. (c–e) F-statistics for significant (P < 0.05) least
squares fits for the first- (c) and second-order (d) models, as well as for comparison
between the two models (e) are shown for the regressions in a and b. Gray indicates
that the F test was not significant for that time point. (f–h) r2 values are shown for
the first- (f) and second-order (g) models in a and b, as well as the net increase in r2

(h) for the second-order over the first-order model at each time point.

Fig. 6. (a and b) Group mean ± SEM for dopamine responses in early-CS (left), peak-CS (m
to reinforcement probability. Curves for first-order (blue) and second-order (red) model
produces the greater net increase in r2. All first-order fits in session 2 are significant. Seco
early-CS in session 6 borders on significance (see Table 1 for statistics). (For interpretati
version of this article.)
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rewarded trials and from trials following two omissions from early
training (sessions 1–3), late training (sessions 4–6), and asymptotic
(sessions 7–10) stages. We excluded responses from the first two
trials of each session. For asymptotic data, we used the subset of
electrodes that reached 10 Pavlovian sessions (0.25: n = 4, 0.5:
n = 4, 0.75: n = 4). We then calculated the mean dopamine oxidation
current in the CS-peak and CS-late epochs defined above, and for
contrasts, we subtracted the responses from trials following two
omissions from the responses from trials following two rewards.
We conducted six paired t-tests for within-electrodes contrasts for
each stage/epoch combination and corrected a-levels from t-tests
using the Holm–Bonferroni procedure. We performed all statistics
using Matlab, except 2-way ANOVAs, for which we used Prism 4.0
(Graphpad Software, San Diego, CA). a = 0.05 for all tests, except
where corrected for multiple comparisons.

2.6. Histology

After completing Pavlovian training and fast-scan cyclic voltam-
metry data collection, we anaesthetized rats with ketamine
(150 mg/kg) and performed electrolytic lesions through their elec-
trodes. We subsequently perfused the rats through the heart with
saline, followed by paraformaldehyde (PFA, 40 g/L in phosphate-
buffered saline). We then removed brains and stored them in
PFA in PBS at 4 �C. We later saturated brains in sucrose (300 g/L
in PBS) at 4 �C. We then froze them on dry ice and sectioned them
on a cryostat at 50 lm. We mounted sections containing the
nucleus accumbens core on slides and stained with cresyl violet.
We verified electrode placement using an adult rat brain atlas
(Paxinos & Watson, 2005).

3. Results

3.1. Behavior

We found that Pavlovian conditioning with any non-zero prob-
ability of reinforcement produced learned CS approach behavior.
iddle), and late-CS (right) epochs for sessions 2 (a) and 6 (b) are plotted with respect
s fits are shown for each epoch. The heavier curve in each plot is for the model that
nd order fits for peak-CS and late-CS in session 6 are significant. The first order fit for
on of the references to color in this figure legend, the reader is referred to the web



Table 1
Statistics are shown for follow-up regression analysis on mean CS-evoked dopamine release for early (0.4–1.4 s), peak (1.5–2.5 s), and late (6.9–7.9 s) epochs from sessions 2 and
6. B1 is the slope for the first-order model, and B2 is the weight for �PR

2 in the second order-model. F and P values that are significant at P < 0.05 are shown in bold. Net r2 is the
difference in r2 between the first- and second-order models. r2 and net r2 are colored to signify the term that accounts for the most variance (blue: B1, red: B2).
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Rats in the 0.25, 0.5, 0.75, and 1.0 probability groups increased
their likelihood of CS approach between the first and sixth sessions,
while rats in the non-paired group showed a downward trend in
approach probability (Fig. 1; 2-Way mixed-model ANOVA Session:
F1,17 = 26.90, P = 0.00007, Probability: F4,17 = 8.463, P = 0.0006,
Interaction: F4,17 = 5.388, P = 0.0055). Post-hoc analysis revealed
that rats in the 0.25, 0.5, 0.75, 1.0 probability groups approached
the lever more frequently than rats in the 0 probability group in
session 6 (t > 4.784, P < 0.001 for all comparisons), but not in ses-
sion 1 (t < 1.553, P > 0.05 for all comparisons).
Fig. 7. (a) Slopes (B1) and intercepts (B0) are shown for linear regressions at each
time points (�1 s to 6 s relative to US-onset, 0.1 s interval) for rewarded trials in
sessions 1 through 6. Significant (P < 0.05) F statistics (b) and r2 (c) values are shown
for linear regressions in a.
3.2. CS-evoked dopamine correlates of expected value and variance

CS- and US-evoked dopamine responses recorded in the nucleus
accumbens core (Fig. 2) were present in recordings from individual
electrodes on individual trials (Fig. 3a–c) as well as in average
responses over sessions (Fig. 3d–f, Fig. 4). The CS reliably evoked
dopamine release on individual trials over six sessions of training
for rats in all non-zero probability groups. Dopamine levels
remained elevated during the CS on individual trials for rats in
the 0.25, 0.5 (Fig. 3b), and 0.75 groups, and this sustained response
was present in average dopamine traces from later sessions in the
0.25 (Fig. 4a), 0.5 (Fig. 3e), and 0.75 (Fig. 4b) groups. Sustained
responses were also present in average dopamine traces from early
sessions in the 1.0 group (Fig. 3f). US-evoked responses were also
present, but they attenuated over training in all groups, and were
nearly eliminated over training in rats in the 1.0 probability group
(Fig. 3d–f, Fig. 4).

CS-evoked dopamine release contained correlates of both
probability and variance over training; however, the development
and time course differed between the two. Least squares fits of
dopamine release at each time-point by first- and second-order
polynomial functions of probability of reinforcement (PR)
revealed that the probability correlate emerged first, while the
variance correlate appeared later in training. Examination of
regression weights revealed that the first order fits were strongest
during the early part of the CS (Fig. 5a), the second order fits were
strongest during the late part of the CS (Fig. 5b), and that there
was blending of the two models at intermediate time points later
in training. Time points with significant first-order regressions
(nonzero slope at P < 0.05, F-test) tended to exist in the first 2 s
of the CS (Fig. 5c), while time points for which the second-order
model significantly improved the fit (P < 0.05, F-test) over the lin-
ear model tended to exist during 2–8 s after CS onset (Fig. 5e).
Exceptions to these trends existed in session 2, during which
the linear model was significant for all time points during the
CS, and session 3, during which the quadratic model significantly
improved the fit in the period one to two seconds after CS onset.
Comparison of marginal increase in explained variance for the
second-order term to the model with the explained variance of
the first-order model indicated that the linear model tended to
perform best during the first second after CS-onset, while the sec-
ond-order model tended to perform best during the last second of
the CS (Fig. 6). These trends strengthened over training. Follow up
analyses on mean CS-evoked dopamine release from early-, peak-,
and late-CS epochs from sessions two (Fig. 6a) and six (Fig. 6b)
highlight the transition from the first-order to the second-order
model from early to late learning and within the time series of
the CS-evoked response during the late learning phase. For all
three epochs tested, the linear model fit the dopamine response
in session two, and the quadratic model did not significantly
improve the fit. In session six, the quadratic model significantly
improved the fit and the second order term accounted for more
variance than the first order term for the peak-CS and late-CS
epochs but not the early-CS epoch (Fig. 6, see Table 1 for
statistics).



Table 2
Statistics are shown for follow-up regression analysis on mean CS-evoked dopamine release for early (0.4–1.4 s), peak (1.5–2.5 s), and late (6.9–7.9 s) epochs from sessions 1
through 6. B1 is the slope for the first-order model, and B2 is the weight for PR

2 in the second-order model. Statistics of linear models that are significant at P < 0.05 are shown in
bold. Statistics of quadratic models that significantly improve the fit over the linear model at P < 0.05 are also shown in bold.

Session Epoch Linear model Quadratic model Model comparison

B1 R2 F(1,22) P B2 R2 F(2,21) P F(1,21) P

1 0.4–1.4 s 0.2519 0.2064 5.7206 0.0257 �0.6297 0.3273 5.1086 0.0156 3.7750 0.0655
1.5–2.5 s 0.2829 0.2473 7.2285 0.0134 �0.4206 0.2985 4.4687 0.0242 1.5335 0.2292
6.9–7.9 s 0.1595 0.1114 2.7569 0.1110 �0.3631 0.1655 2.0821 0.1496 1.3620 0.2563

2 0.4–1.4 s 0.2376 0.3997 14.6496 0.0009 �0.1593 0.4166 7.4969 0.0035 0.6063 0.4449
1.5–2.5 s 0.3393 0.3732 13.0989 0.0015 0.2417 0.3910 6.7400 0.0055 0.6120 0.4428
6.9–7.9 s 0.2629 0.2650 7.9321 0.0101 �0.0069 0.2650 3.7861 0.0394 0.0005 0.9825

3 0.4–1.4 s 0.2538 0.2572 7.6181 0.0114 0.7597 0.4733 9.4340 0.0012 8.6136 0.0079
1.5–2.5 s 0.3315 0.1926 5.2482 0.0319 1.1642 0.4154 7.4597 0.0036 8.0011 0.0101
6.9–7.9 s 0.1193 0.0383 0.8751 0.3597 0.7456 0.1782 2.2775 0.1273 3.5774 0.0724

4 0.4–1.4 s 0.2832 0.3324 10.9516 0.0032 0.5298 0.4414 8.2962 0.0022 4.0984 0.0558
1.5–2.5 s 0.3496 0.2078 5.7719 0.0252 0.9419 0.3493 5.6355 0.0110 4.5641 0.0446
6.9–7.9 s 0.2419 0.1673 4.4216 0.0472 0.5345 0.2440 3.3883 0.0530 2.1282 0.1594

5 0.4–1.4 s 0.1868 0.2069 5.7409 0.0255 0.4055 0.2983 4.4646 0.0242 2.7355 0.1130
1.5–2.5 s 0.2637 0.1314 3.3267 0.0818 0.9150 0.2796 4.0749 0.0320 4.3209 0.0501
6.9–7.9 s 0.1806 0.0677 1.5974 0.2195 1.1463 0.3233 5.0172 0.0166 7.9336 0.0103

6 0.4–1.4 s 0.1481 0.1470 3.7920 0.0644 0.3733 0.2346 3.2188 0.0603 2.4037 0.1360
1.5–2.5 s 0.2086 0.1295 3.2732 0.0841 0.8767 0.3439 5.5039 0.0120 6.8623 0.0160
6.9–7.9 s 0.1414 0.0544 1.2644 0.2729 1.1003 0.3631 5.9849 0.0088 10.1779 0.0044

Fig. 8. Group mean ± SEM for dopamine responses in the peak-US epoch are shown
for reward and reward omission trials in sessions 2 (a) and session 6 (b). Linear
regressions are significant for responses from reward trials for both sessions, but
not for responses from omission trials.
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3.3. US-evoked dopamine correlates of probability

Linear regression analyses of the US-evoked dopamine at each
time point from sessions 1 through 6 showed that dopamine release
was negatively correlated with PR throughout learning, with the
stronger correlations later in training than early (Fig. 7 and Table 2).
Learning was characterized by a decrease in the intercepts (B0)
rather than a steepening of the slopes (B1) of the linear regressions.
Follow-up analysis on the mean dopamine release from the peak-
US epoch (1.5–2.5 s after US onset) from session 2 and session 6
showed consistent results (Fig. 8). Linear regressions were signifi-
cant for session 2 (B0 = 0.8225 ± 0.0910, B1 = �0.6058 ± 0.1486,
r2 = 0.4303, P = 0.0005) and session 6 (B0 = 0.5580 ± 0.0716,
B1 = �0.5217 ± 0.1169, r2 = 0.4753, P = 0.0002), and while the inter-
cept was greater in session 2 than in session 6 (t22 = 3.2534,
P = 0.0036), the slopes did not significantly differ (t22 = 0.6378,
P = 0.5302). Slopes of regression lines of the mean dopamine release
during the same epoch on reward omission trials against PR were
not significantly different from zero (Session 2: r2 = 0.1039,
P = 0.1784; Session 6: r2 = 0.0066, P = 0.7410).
3.4. History effect on CS-evoked dopamine responses

Within-electrode contrasts in CS-evoked dopamine responses
between trials that followed two rewards and trials that followed
two reward omissions showed that history effects reflected
changes in reward probability rather than reward variance for both
the peak-CS and late-CS time windows (Fig. 9). The peak-CS time
window had a significant contrast (Holm–Bonferroni corrected
paired t-test t13 = 3.5414, P = 0.0036) for early learning but not
for the late learning (Holm–Bonferroni corrected paired t-test
t13 = 2.3377, P = 0.036) or asymptotic stages (Holm–Bonferroni cor-
rected paired t-test t11 = 0.6358, P = 0.5379). In contrast, the late-
CS time window had significant contrasts for all three learning
stages (Holm–Bonferroni corrected paired t-test: early:
t13 = 3.0188, P = 0.0099, late: t13 = 2.7456, P = 0.0167, asymptotic:
t11 = 3.0810, P = 0.0105). These effects were present even though
data were combined between probability groups, for which runs
of rewarded and omission trials would produce distinct and
opposite effects on reward variance that would cancel out an over-
all effect.

4. Discussion

Here, we used fast-scan cyclic voltammetry to record dopamine
release in the nucleus accumbens core of rats during acquisition
and maintenance of probabilistic Pavlovian conditioning. We
report CS- and US-evoked phasic dopamine responses that confirm
and expand upon the dopamine neuron firing rates reported by
Fiorillo et al. (2003). We observed correlates of both EV and vari-
ance in phasic dopamine release that are dynamically modulated
during learning differentially in three distinct time epochs follow-
ing cue presentation: Early CS, Peak CS and Late (Sustained CS).

During this task there are at least two sources of uncertainty,
that due to incomplete association between the CS and outcome
during acquisition (learning uncertainty) and that due to probabi-
listic reward delivery that persists after the task has been acquired
(probabilistic uncertainty). In the initial stages of learning the early
and peak CS-evoked response reflect the developing estimate of EV.
Prior to and during this stage, expectation of reward delivery is



Fig. 9. (a–c) Scatter plots show the mean dopamine response over the peak-CS epoch from trials following two rewards vs. the mean response from trials following two
omissions from early learning (a), late learning (b), and asymptotic (c) stages for electrodes in uncertain probability groups. Points above the line indicate that the signal
following two rewards is greater than the signal following two omissions. (d) Bar graph shows Mean ± SE of the difference for within electrode contrasts for the responses in
a–c (early: n = 14, late: n = 14, asymptotic: n = 12). (f–g) Scatter plots and bar graph show the same data as a–d but for the late-CS epoch. (**: P < 0.01, *: P < 0.05 Paired t-test.
Holm–Bonferroni correction was applied to a levels).
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assumed to be low. Thus, in the p = 1 condition, surprise is maxi-
mal and decreases monotonically with decreasing probability. Dur-
ing this early period, uncertainty is determined by the degree to
which reward delivery is surprising and, therefore, matches the
reward rate. Indeed, CS-evoked dopamine release during all three
time epochs matches this pattern. However, after learning, expec-
tation of reward at p = 1 matches reward and uncertainty is zero.
This is not the case with probabilistic conditions. The early CS-
evoked response continued to match EV but the peak and sus-
tained response correlated better with the variance of reward.
Therefore, this profile of dopamine release is consistent with the
encoding of uncertainty by sustained dopamine activity through-
out acquisition and maintenance of the Pavlovian association. Peak
CS-evoked dopamine responses to the CS were strongly modulated
by both EV and variance, suggesting a blending of the signals.
These findings suggest that the discrete coding of EV and variance
observed in dopamine neuron firing rate in monkeys (Fiorillo et al.,
2003) could give rise to a composite signal in the form of accum-
bens dopamine release through the slower time constants for
uptake allowing diffusion associated with dopaminergic volume
transmission (Garris, Ciolkowski, Pastore, & Wightman, 1994).

In addition to correlates of EV and variance, we observed a neg-
ative correlate of PR in US-evoked dopamine release. This negative
correlation is consistent with dopamine’s hypothesized role as a
reward-prediction-error signal and matches observations in mon-
keys (Bayer & Glimcher, 2005; Bayer et al., 2007; Fiorillo et al.,
2003; Nakahara et al., 2004; Schultz et al., 1997). The presence of
significant correlations early in learning and a decrease in intercept
but not slope between sessions two and six suggest that reward
predictions are learned quickly, and that after extensive training
on the task, rewards that occur within the task are not as unpre-
dictable as when the animals are new to the task. The context of
the behavioral chamber and its set of cues, such as the house light
and fan noise, may modestly predict rewards within the behavioral
task, so that reward-prediction-error signals are attenuated across
all probabilities (Clark et al., 2013). We did not observe significant
correlations between PR and dopamine release on omission trials.
This finding is consistent with an imbalance in reward-prediction-
error encoding by dopamine neurons reported by Bayer and
Glimcher (2005).

This asymmetry of reward-prediction-error signals between the
positive and negative domains provides the basis for the hypothe-
sis that the origin of the sustained dopamine signal is the back-
propagation of reward-prediction errors in subsequent trials giving
a net-positive response even when averaging a balance between
positive and negative reward-prediction errors (Niv et al., 2005).
The pattern of signaling we observed does not falsify this hypoth-
esis since across training, putative back-propagating reward-pre-
diction errors should follow the neurochemical profile we
observed as they reflect the occurrence of surprising outcomes in
the reinforcement history.

While the encoding of uncertainty and the back-propagation of
reward-prediction-error signals are closely correlated, one way to
separate these phenomena is to examine history effects in the
probabilistic conditions after learning has taken place, specifically
by comparing dopamine release on trials that followed a string of
rewards with those that followed a string of omissions. Under all
probabilistic conditions (e.g. 0.25, 0.50, 0.75) sustained signals
due to back-propagating reward-prediction errors should be larger
for a history of a string of rewards than for a history of a string of
omissions, making a contrast between these the two positive
regardless of probability. Conversely, an objective variance signal
would be expected to show contrasts between a string of rewards
and a string of omissions that depend upon the probabilistic condi-
tion (i.e. opposite directions for the 0.25 and 0.75 groups). Indeed,
variance is greatest for the 0.50 condition, and a string of rewards
would move the local variance estimate toward this value under
the 0.25 condition but not under the 0.75 condition. Further, a
string of two omissions would move the local variance estimate
toward 0.50 under the 0.75 but not the 0.25 condition. This is
because when PR = 0.25, a run of two rewards would increase the
variance of reward while a run of two omissions would slightly
decrease the variance. These changes would result in a net contrast
between the two conditions with the signal being slightly larger
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after two rewards than after two omissions. When PR = 0.75, the
runs would have the opposite effects on variance, resulting in a
net contrasts between the two conditions with the signal slightly
larger after two omissions than after two rewards. When
PR = 0.5, runs of either two rewards or two omissions should both
slightly decrease reward variance, resulting in no net contrast
between the two conditions. We show that the late-CS response
is enhanced on trials following two rewards relative to trials fol-
lowing two omissions throughout all stages of the task. Impor-
tantly, this enhancement was present among members of all
three probabilistic groups. The finding of a positive mean contrast
with a larger signal after two rewards, therefore suggests that the
signal is not a representation of reward variance within the task.

While this analysis is consistent with the prediction of back-
propagating reward-prediction errors, other aspects of the current
results are not consistent with the model in the form proposed by
Niv et al. (2005). Specifically, in this model, the sustained response
should not be evident in individual trials and only emerges as a
function of signal averaging across trials. Nonetheless, the signal
is clearly present on individual trials in our data. It is conceivable
that the sustained signal takes its form because it is an average
of dopamine released at the terminals of multiple neurons. Averag-
ing the response of a single neuron across trials is often used as a
proxy for the sum of the response from multiple neurons on a sin-
gle trial. However, there is an important distinction between trial
averaging and neuron averaging because the latter is a signal avail-
able to downstream networks in real time whereas the former is
not (without long-term integration across trials). Therefore, in its
current form, the Niv et al. (2005) model suggests that the signal
is essentially an artifact of signal averaging across multiple trials
and would not be a useful biological signal accessible to down-
stream structures. In contrast, our data demonstrates that the per-
sistent uncertainty-like signal is encoded by extracellular
dopamine in the nucleus accumbens core.

As noted above, the sustained dopamine response does deviate
from an objective uncertainty signal during local changes in
reward variance within the task. However, it is interesting to spec-
ulate that the brain may use it as a proxy of uncertainty since it has
good correlation with the longer-term average variance of reward.
The use of such a proxy of a biologically important statistic of the
environment is somewhat akin to using a cached value as an
approximation of expected value. In both cases the information is
immediately available to the agent without the need for online
model-based calculations.
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