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Pavlovian valuation systems in l
earning and decision making
Jeremy J Clark1, Nick G Hollon1,2,3 and Paul EM Phillips1,2,3
Environmental stimuli guide value-based decision making, but

can do so through cognitive representation of outcomes or

through general-incentive properties attributed to the cues

themselves. We assert that these differences are conferred

through the use of alternative associative structures differing in

computational intensity. Using this framework, we review

scientific evidence to discern the neural substrates of these

assumed separable processes. We suggest that the

contribution of the mesolimbic dopamine system to Pavlovian

valuation is restricted to an affective system that is only

updated through experiential feedback of stimulus–outcome

pairing, whereas the orbitofrontal cortex contributes to an

alternative system capable of inferential reasoning.

Finally we discuss the interactions and convergence of these

systems and their implications for decision making and its

pathology.
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Introduction
Whether making a simple choice for dinner from the menu

at your favorite restaurant or a complex decision such as

what college to attend, choosing among competing options

is a fundamental part of life. When faced with a decision,

you often receive a barrage of advice including ‘‘go with

your gut’’ while bearing in mind to ‘‘look before you leap’’

that might leave you wondering whether you should ‘‘fol-

low your heart’’ or ‘‘use your head.’’ These clichés denote

the intuitive separation of different types of valuation

processes that are used to inform everyday decision mak-

ing. Indeed, human behavior historically has been categor-

ized as being the result of cognitive, deliberative processes

or reflexive, affective, stimulus-driven processes. Such a

dichotomy in the explanation of behavior has a strong
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philosophical foundation, and its influence also can be

found in the interpretation of early work in experimental

psychology [1]. Choosing advantageously among compet-

ing options is a consequence of individual subjective

valuation that depends upon the learning processes

required for accurately estimating rewarding outcomes

based on predictive information [2]. To maintain full

flexibility, individuals may use multiple systems differing

in speed/accuracy tradeoffs that can be arbitrated to opti-

mize behavior under different situations [3]. Indeed, the

concept of multiple, parallel valuation systems has found a

modern home in several subfields of neuroscience, psy-

chology, and economics [2–6].

In the field of artificial intelligence and machine learning,

reinforcement learning algorithms with different compu-

tational demands are often used in tandem [7]. Specifi-

cally, algorithms that are broadly classified as ‘model-free’

have low computational requirements and have been

used in parallel with more computationally intensive

‘model-based’ algorithms. Derived partly from learning

rules in experimental psychology [8], model-free algor-

ithms such as temporal difference learning state that

learning only occurs when the experienced value or

current expectation of a particular motivational outcome

deviates from that previously expected based upon

environmental stimuli. Such stimuli are individually

assigned values that are stored (or ‘cached’) and updated

based upon reward-prediction errors, the degree to which

this value deviates from the experienced reward. This

comparison of a reward with its predictive stimulus must

take place within a common currency, and the use of

incentive value [9] for this currency permits predictive

stimuli to elicit innate behaviors that are normally elicited

by appetitive unconditioned stimuli [10]. Incentive value

accounts for the motivational properties (either acquired

or innate) of a stimulus but not its other discriminating

sensory features such as color or shape that make up its

‘identity’. Therefore, the core characteristics of a model-

free valuation process are the computation of a predic-

tion-error signal based upon experienced outcomes, the

use of this signal to update the cached value assigned to

the stimulus, and the ability of the stimulus to serve as an

incentive based upon its cached value. As such, the

computational requirements of this process are minimal.

By contrast, model-based algorithms maintain a flexible

model of the structure of the environment by storing

specific stimulus attributes and transitions between ‘states’

that bind these elements in time and space. The model is

accessed to make on-line inferences about associations

between stimuli that have never been paired together,

even when internal (goals) or external (environmental)
www.sciencedirect.com
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factors change [3]. The generation of a model signifi-

cantly increases the computational intensity of the pro-

cess. This framework has been applied to the study of

habitual and goal-directed instrumental behavior to learn

optimal actions [2,3,11]. Here we highlight recent work

expanding the application of a multiple-systems

perspective to Pavlovian valuation to generate accurate

predictive information.

Pavlovian valuation systems
Animals, including humans, adapt their behavior to the

environment by learning temporally contiguous and con-

tingent relationships between stimuli. Associations may

develop between arbitrary stimuli experienced through

stimulus–stimulus co-occurrence. Alternatively, neutral

cues that come into association with biologically relevant

outcomes (e.g. food, water, potential mates) can co-opt

innate consummatory and preparatory behavior through

classical (Pavlovian) conditioning. These stimuli have

potent influences over instrumental behavior and

decision making. For instance, an appetitive conditioned

stimulus (CS) can invigorate previously acquired instru-

mental behavior (Pavlovian-to-instrumental transfer),

reinforce the acquisition of novel behaviors (conditioned

reinforcement), or even drive behavior that is contrary to

the acquisition of optimal outcomes (e.g. omission insen-

sitivity [12]). Indeed, marketers have long taken

advantage of how powerful conditioned stimuli can be

in guiding valuation and decision making. Recall the song

of the ice cream truck blaring through your neighborhood

when you were a child. Did this evoke the image of an ice

cream cone or a general feeling of happiness that drove

you out the door? This distinction illustrates something

that psychologists have long debated: the content of a

Pavlovian association. Previous attempts to include moti-

vational concepts in this type of learning have proposed

two separable mechanisms [13,14]. One system, com-

prised of a direct link between a CS and conditioned

response, approximates to model-free valuation algor-

ithms; the desire to run out the door at the sound of

the ice cream truck is thought to reflect preparatory

behavior elicited by general incentive value. A second

associative structure in which the CS elicits an explicit

representation of the unconditioned stimulus (e.g. the

image of an ice cream cone) aligns with model-based

algorithms, as it is identity specific. The former associative

structure can invigorate appetitive behavior generally,

whereas the latter can bias actions selectively toward the

specific outcome represented. Accordingly, Pavlovian-to-

instrumental transfer (PIT) can be separated into a general

invigoration of instrumental behavior and a specific bias of

action selection toward the CS-associated reward

[14,15,16��]. The Pavlovian influence on action selection

requires a model-based representation because the effect is

specific to the identity of the outcome paired with the

Pavlovian stimulus. By contrast, simple model-free valua-

tion could be sufficient to support the invigoration process.
www.sciencedirect.com
Another example of alternative Pavlovian valuation sys-

tems comes from studies of conditioned approach beha-

vior when reward-predictive stimuli are spatially

displaced from the reward-delivery location, as animals

can adopt different conditioned responses [17]. During

CS presentation, some animals approach the CS itself

(‘sign tracking’) whereas others approach the location

where the reward will be delivered (‘goal tracking’;

Figure 1). These individual differences have been

observed across species including humans [18]; and,

importantly, both sign and goal tracking have been shown

to be Pavlovian conditioned responses rather than ‘super-

stitious’ instrumental behaviors [17]. Sign-tracking beha-

vior is consistent with a low-computational assessment of

the reward-predictive stimulus where general incentive

value is attributed to the stimulus, so it is treated similarly

to unconditioned appetitive stimuli (rewards). However,

the generation of goal-tracking responses requires more

information than is provided by a simple incentive-attri-

bution process, given that spatial information of reward

delivery is represented upon presentation of the stimulus.

A CS-evoked conditioned response that takes this form is

indicative of a representational process, as the animal is

approaching the location where food will be in the future.

Thus, the development of sign-tracking versus goal-

tracking conditioned responses signifies alternative

associative processes in the use of predictive information

[4,17].

Dopamine and model-free Pavlovian valuation
A role for dopamine in reward learning is suggested by

data obtained from multiple paradigms [19,20,21�].
Electrophysiological studies during appetitive processing

have shown transient increases in the firing rate of mid-

brain dopamine neurons that are time locked to unex-

pected, but not expected rewards, and to reward-

predictive stimuli [22]. These responses can exhibit

latencies so short that they do not permit significant

cortical processing [23], consistent with the minimal

computation characteristic of model-free valuation. The

similarity between these dopaminergic responses and the

reward-prediction errors used by model-free algorithms

was articulated by Montague and colleagues [24]. Sub-

sequently, the reward-prediction-error hypothesis of

dopamine function has been supported by experimental

evidence obtained in many scenarios examining appeti-

tive processing [25–27,28��], particularly in more medial

aspects of dopaminergic midbrain [29�] that project to

limbic forebrain structures. Consistent with the hypoth-

esis that the mesolimbic dopamine pathway transmits

reward-prediction-error signals, qualitatively similar sig-

nals have been extracted from blood-oxygen-level-de-

pendent (BOLD) hemodynamic response in the

human ventral striatum, following the presentation of

rewards or reward-predictive cues [30], signals that are

dependent upon dopamine signaling [31]. Importantly,

reward-prediction-error-like BOLD signals also have
Current Opinion in Neurobiology 2012, 22:1054–1061
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Figure 1
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Alternative Pavlovian valuation systems indicated by behavior and corresponding neurotransmission. When reward-predictive stimuli are spatially

displaced from the reward-delivery location, animals can adopt different conditioned responses (left panels). The initial delivery of a primary reward

elicits the appropriate unconditioned response such as approach and consumption. After repeated pairing, some animals approach the conditioned

stimulus during its presentation (‘sign tracking’ – top panel; left) whereas others approach the location where the reward will be delivered in the future

(‘goal tracking’ – bottom panel; left). The surface plots depict trial-by-trial fluctuations in dopamine concentration during the twenty-second window

around conditioned-stimulus (CS) and unconditioned-stimulus (US) presentation over five days of training (one session per day) in both sign-tracking

(top panel; right) and goal-tracking animals (bottom panel; right). Dopamine signaling in sign trackers is consistent with the reporting of a reward

prediction error, as US signaling decreases across trials when it becomes predicted, in parallel with the acquisition of approach behavior. However,

dopamine signaling in goal-tracking animals is not consistent with the reporting of a reward prediction error, as US signaling is maintained even when

approach behavior reaches asymptote. These data are a replication of those reported in reference [34��]. Importantly, the use of selectively bred

animals allowed for the demonstration that learning is dopamine dependent in animals where reward prediction errors are encoded but not in animals

that lack such encoding [34��]. These findings favor the reward-prediction-error hypothesis of dopamine function in model-free learning.
been observed in dopaminergic nuclei of the midbrain

[32]. These studies collectively demonstrate that dopa-

mine signaling resembles the critical teaching signal from

a model-free valuation algorithm.

If dopamine does act as a model-free teaching signal,

during the implementation of the valuation process dopa-

mine should encode a reward-prediction-error signal,

learning should be dopamine dependent, and predictive

stimuli should be attributed with incentive value. More-

over, these characteristics should not generalize to situ-

ations where learning is not compatible with a model-free

valuation process. As previously discussed, during a Pav-

lovian conditioned approach task, sign tracking is indica-

tive of a situation where the CS is attributed with

incentive value. During this behavior, dopamine release

in the nucleus accumbens does indeed resemble a

reward-prediction-error signal [33,34��] (Figure 1), and

learning is dependent upon dopamine [34��,35]. Remark-

ably, however, animals that adopt a goal-tracking
Current Opinion in Neurobiology 2012, 22:1054–1061
response do not exhibit incentive attribution to the CS

[36], do not encode reward-prediction-error signals by

mesolimbic dopamine [34��] (Figure 1), and do not

require dopamine for learning to occur [34��]. Thus, these

data support the notion that dopamine is used as a

teaching signal selectively when model-free valuation

is utilized. Additionally, dopamine is not necessary for

outcome-specific action selection bias during Pavlovian-

to-instrumental transfer, even though dopamine is

required for the invigoration component of this Pavlovian

influence on instrumental behavior [16��]. These studies

demonstrate that the role of dopamine in appetitive

Pavlovian conditioning is selective to a process that

resembles model-free valuation.

Orbitofrontal cortex and model-based
Pavlovian valuation
In contrast to the mesolimbic dopamine system, the

orbitofrontal cortex (OFC) plays a critical role when

animals must flexibly update and use expectations of
www.sciencedirect.com
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specific outcomes to guide their behavior [37]. Subpopu-

lations of OFC neurons in rodents and primates encode a

variety of task parameters related to the value and iden-

tity of outcomes, both actual and expected [38–45]. Many

researchers emphasize the correlates of subjective

expected value as a ‘common neural currency’ observed

in a subset of OFC neurons [42,44], and consistent find-

ings have been observed in human orbitofrontal and

ventromedial prefrontal BOLD signals [46,47]. Electro-

physiology studies typically find additional populations of

OFC neurons that encode other parameters such as

probability [44], delay [43], response requirement [44],

or specific sensory features of the outcome independent

of its value, that is, identity [38,42]. OFC perturbations

preferentially disrupt model-based inferences about

specific stimulus–outcome associations. OFC-lesioned

monkeys and rats are unimpaired in the acquisition of

simple Pavlovian associations for which model-free

cached values may be sufficient [48,49]. They also remain

capable of avoiding food that has been paired with illness

or fed to satiety. However, unlike intact controls, OFC-

lesioned animals continue responding to stimuli that

predict these devalued outcomes. These reinforcer deva-

luation studies demonstrate that the OFC contributes to

the animal’s ability to derive the updated expected value

of a cue by linking the previously learned CS-reward

association with the current incentive value of that out-

come without having yet directly experienced the pairing

of this cue with the devalued outcome.

Additional behavioral procedures designed to isolate and

probe the dissociable contributions of general affective

value versus representations of specific outcome expec-

tancies also have revealed that the OFC is critical for

learning from changes in outcome identity. After initial

acquisition, if a second cue is combined with a previously

conditioned stimulus but the new compound predicts the

exact same outcome, the second cue is said to be

‘blocked,’ and animals show minimal conditioned

responding to the second cue when tested in isolation

[50]. If, however, the compound stimulus yields more

reward than the original CS, animals learn to respond to

the new CS as well. Model-free learning algorithms are

perfectly capable of accounting for such ‘unblocking’

owing to increases in value, and accordingly, OFC lesions

do not disrupt this value-based learning [51��]. Model-

free algorithms, however, cannot explain why new learn-

ing sometimes occurs when the second CS instead signals

the presentation of a different outcome of equivalent

value. OFC lesions disrupt such learning from changes

in outcome identity [51��,52], interfere with the ability of

these cue-evoked outcome expectancies to serve as con-

ditioned reinforcers [52], and disrupt the cues’ ability to

selectively enhance responding for the specific outcomes

the cues predict [53]. These findings collectively support

the claim that the OFC is critical for representing specific

features of expected outcomes signaled by predictive
www.sciencedirect.com
stimuli within a complex associative structure that per-

mits inferences relating stimuli and states that have not

been experienced [54,55].

Interaction and convergence
We have focused on the potential roles of the mesolimbic

dopamine pathway and OFC in different types of Pav-

lovian valuation; however, these nodes are clearly part of

broader circuits subserving these processes. Empirical

evidence suggests that a circuit including the OFC,

basolateral amygdala (BLA), and possibly the hippo-

campus contributes to the generation of Pavlovian values

primarily through a model-based process, whereas a

circuit including the central nucleus of the amygdala

(CeA) and mesolimbic dopamine pathway [56] primarily

generates model-free Pavlovian values. Lesions of the

BLA disrupt sensitivity to devaluation and perturb

specific but not general PIT, whereas amygdala CeA

lesions disrupt general but not specific PIT and do not

affect devaluation [57–59]. Although sign and goal track-

ing have not been compared in lesion studies, exper-

iments examining sign tracking alone have demonstrated

that CeA but not BLA lesions disrupt its acquisition [60]

(but see [61]), and hippocampus lesions facilitate the

acquisition of sign-tracking behavior [62], suggesting

potential competition between these valuation systems.

Such competition for control of behavior implies an

arbitration process about which little is known at the

neurobiological level [3] and is undoubtedly a salient

topic of future investigation.

Even though these putative systems compete for the

control of behavior, they are not entirely independent.

In fact, the expected value correlates observed in the

OFC may convey predictive information critical for the

computation of reward-prediction errors (actual – expected
reward) by dopamine neurons [37,63]. Consistent with

this hypothesis, OFC stimulation predominately sup-

presses the activity of dopamine neurons in the ventral

tegmental area (VTA) [64,65��], perhaps through acti-

vation of GABAergic VTA neurons whose collaterals form

local inhibitory connections on dopamine neurons [66]

and whose activity also scales with expected reward value

[28��]. Following OFC lesions, dopamine neurons in the

VTA remain responsive to reward outcomes and predic-

tive cues, but do not show their typical reward-prediction-

error-like modulation during learning or differential

encoding of expected reward value [65��]. Modeling of

these data revealed that, contrary to earlier predictions

positing the OFC-derived input to provide expected

value information required for calculation of prediction

errors, the OFC may be critical for representing ‘state’

information that allows an animal to disambiguate overtly

similar situations and derive more accurate outcome

expectancies to guide action selection. This interpret-

ation is consistent with the long-recognized but much-

debated role of the OFC in reversal learning [37] and
Current Opinion in Neurobiology 2012, 22:1054–1061
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Figure 2
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Major neural loci of affective (cf. model-free) and cognitive (cf. model-

based) Pavlovian systems and their interactions.
related decision-making tasks with dynamically changing

reward contingencies [67,68�]. Recent work has also

demonstrated that the firing patterns of dopamine

neurons can be influenced by inferred states of the world

as animals learn the latent structure of a serial reversal

task in which an unexpected change in reward contin-

gencies could itself signal a state transition [69�]. Indeed,

theoretical work has provided computational accounts for

such state representation and its influence on Pavlovian

conditioning not generally captured by previous model-

free reinforcement learning algorithms [70,71].

These circuits access common effector systems to influ-

ence motor behavior, with the mesolimbic pathway and

OFC efferents converging in the ventral striatum

(Figure 2), a structure previously identified as a ‘lim-

bic-motor interface’ [72]. Indeed, there is evidence in

humans for components of both model-free and model-

based valuation being represented in this structure as

measured by BOLD response [73�]. In addition, lesions of

the ventral striatum disrupt learning from changes in

either outcome identity or value [51��], disrupt sign-

tracking behavior [74], and impair sensitivity to devalua-

tion [75]. Lesions of the ventral striatum also disrupt PIT,

with the core and shell regions of the nucleus accumbens

mediating general and specific PIT, respectively [76].

Implications and conclusions
We have reviewed evidence that Pavlovian processes can

be separated based upon computational intensity into at

least two systems, subserved by discrete but related

neural circuits. We have described an ‘affective’ learning

system that is embedded in a serial circuit between the
Current Opinion in Neurobiology 2012, 22:1054–1061
CeA, VTA, and the ventral striatum, and a ‘cognitive’

system embedded in a circuit linking OFC, BLA, and

ventral striatum (Figure 2). For lucidity, we have framed

these systems in the context of model-free and model-

based reinforcement-learning algorithms respectively,

although this designation may be an oversimplification.

Additionally, a ‘model-based’ process that mediates Pav-

lovian-like associations may also be amenable to

stimulus–stimulus associations where the unconditioned

stimulus is not biologically significant (e.g. latent learn-

ing) and so may, in fact, represent a non-Pavlovian

stimulus–stimulus associative learning process. Nonethe-

less, even if this system has more generalizable features, it

can support associations between biologically relevant

and arbitrary stimuli.

An important aspect of studying neural systems is the

insight it may provide into pathological conditions. Pavlo-

vian processes are integral to substance abuse and, in

particular, Pavlovian cues can elicit drug craving, reinstate-

ment of drug-seeking behavior, and relapse following drug

abstinence [77]. Abused substances universally increase

dopamine in the nucleus accumbens [78], which is con-

sidered to be antecedent to drug-related pathology [79].

Therefore, stimulus-driven behavior supported by model-

free, affective Pavlovian processes is likely to be selectively

upregulated by drugs [6] because of its dependence upon

dopamine neurotransmission [16��,34��]. Furthermore,

model-based Pavlovian processes are downregulated fol-

lowing drug-taking behavior [80], particularly in later

stages of substance abuse when reduced metabolism in

the OFC is observed [81]. Indeed, individuals who abuse

drugs more strongly exhibit stimulus-driven affective

behavior [82]. As mentioned above, there is little known

about the biological process of arbitration between sys-

tems. Nonetheless, cognitive training in deliberative

decision making, such as mindfulness, probably biases

individuals toward OFC-derived behaviors and away from

dopamine-dependent affective processes. Indeed, this

practice is used with some success in treating drug addic-

tion [83], presumably because it renders decision making

under a biological domain, dominated by the OFC, where

values assigned to predictive stimuli are not potentiated by

drugs themselves and behaviors are less sensitive to

stimulus-driven influences in general. Therefore, a more

comprehensive understanding of the interaction, arbitra-

tion, and convergence of these valuation processes will

probably provide answers to long-standing questions in the

field of addiction research and more generally to the

question of how individuals integrate affective and cogni-

tive processes in value-guided decisions.
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