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Abstract We sought to develop and evaluate a composite
memory score from the neuropsychological battery used in
the Alzheimer’s Disease (AD) Neuroimaging Initiative
(ADNI). We used modern psychometric approaches to ana-
lyze longitudinal Rey Auditory Verbal Learning Test

(RAVLT, 2 versions), AD Assessment Schedule - Cognition
(ADAS-Cog, 3 versions), Mini-Mental State Examination
(MMSE), and Logical Memory data to develop ADNI-
Mem, a composite memory score. We compared RAVLT
and ADAS-Cog versions, and compared ADNI-Mem to
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RAVLT recall sum scores, four ADAS-Cog-derived scores,
the MMSE, and the Clinical Dementia Rating Sum of Box-
es. We evaluated rates of decline in normal cognition, mild
cognitive impairment (MCI), and AD, ability to predict
conversion from MCI to AD, strength of association with
selected imaging parameters, and ability to differentiate
rates of decline between participants with and without AD
cerebrospinal fluid (CSF) signatures. The second version of
the RAVLTwas harder than the first. The ADAS-Cog versions
were of similar difficulty. ADNI-Mem was slightly better at
detecting change than total RAVLT recall scores. It was as good
as or better than all of the other scores at predicting conversion
from MCI to AD. It was associated with all our selected
imaging parameters for people with MCI and AD. Participants
withMCI with an ADCSF signature had somewhat more rapid
decline than did those without. This paper illustrates appropri-
ate methods for addressing the different versions of word lists,
and demonstrates the additional power to be gleaned with a
psychometrically sound composite memory score.

Keywords Memory . psychometrics . longitudinal
analysis . cognition . hippocampus

Background

Impairments in memory are a hallmark of Alzheimer’s disease
(AD) and are requisite for diagnoses of the disease (McKhann
et al. 1984). Assessment of memory was a crucial criterion
influencing the composition of the neuropsychological battery
used in the AD Neuroimaging Initiative (ADNI). The battery
includes a variety of indicators of memory, including the Rey
Auditory Verbal Learning Test (RAVLT) (Rey 1964), elements
from the AD Assessment Scale—Cognitive Subscale (ADAS-
Cog) (Mohs et al. 1997), the recall of three items from the
Mini-Mental State Examination (MMSE) (Folstein et al.
1975), and recall of elements from a story from Logical Mem-
ory I of the Wechsler Memory Test-Revised (Wechsler 1987).

There are at least two reasons a memory composite score
may be useful. First, summarizing all of the memory data
with a single score facilitates comparisons with other vari-
ables without needing to address challenges raised by test-
ing multiple hypotheses that would ensue if each of the
memory indicators was considered separately. These other
variables could be neuroimaging summaries, biomarkers,
clinical diagnoses, or measures of other cognitive domains.
Second, by including multiple indicators in a single score,
the impact of measurement error due to idiosyncratic single
items or subdomains is minimized.

Different word lists for the RAVLT and ADAS-Cog were
administered at different study visits. A particular challenge
that arose in these analyses was to address the two different
versions of the RAVLT word lists and the three different

versions of the ADAS-Cog word lists. It is important to
determine whether these different versions of the RAVLT
and ADAS-Cog have the same difficulty level before using
total scores in longitudinal analyses. The assumption that
different forms are equivalent is a strong assumption that
needs to be checked (Millsap 2011). One of our goals was to
compare the difficulties of the different versions of the
RAVLT and ADAS-Cog used in ADNI.

Our primary goal was to develop and evaluate the validity
of a psychometrically sophisticated memory composite score
from the ADNI neuropsychological battery. We compared our
composite memory score to a variety of other scores in a series
of analyses to address the validity and performance of our
composite score. First, we determined the ability of the com-
posite to detect change over time in each diagnostic group.
Second, we determined the ability to predict conversion from
mild cognitive impairment (MCI) to AD. Third, we evaluated
the strength of the relationship with MRI-derived parameters
found in previous studies to be related to memory, including
hippocampal volume, cortical thickness of the parahippocam-
pal region, fusiform gyrus, and entorhinal cortex (Yonelinas et
al. 2007; Walhovd et al. 2009; Fjell et al. 2008; Murphy et al.
2010; Van Petten et al. 2004). Finally, we compared rates of
decline among people with normal cognition and with MCI
who had a pattern of cerebrospinal fluid (CSF) biomarkers
consistent with early AD (an “AD signature”) to rates of
decline among people without the AD signature.

Methods

Participants and data source

Data used in this study were obtained from the ADNI
database (http://adni.loni.ucla.edu/). The ADNI was initiat-
ed in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies, and non-profit organiza-
tions. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and
neuropsychological assessments can be combined to measure
the progression of MCI and early AD. Determination of
sensitive and specific markers of very early AD progression
is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials. Michael W. Weiner, MD,
VA Medical Center and University of California-San Fran-
cisco is the Principal Investigator of this initiative. This $60
million, multiyear public-private partnership involves many
co-investigators from a broad range of academic institutions
and private corporations. More than 800 participants, aged
55 to 90, have been recruited from across more than 50 sites
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in the US and Canada. This includes approximately 200
patients diagnosed with early AD who were followed for up
to 2 years. Longitudinal imaging data, including structural 1.5
Tesla MRI scans, were collected on the full sample. Neuro-
psychological and clinical assessments were collected at base-
line, and at follow-up visits occurring at six- to twelve-month
intervals. Further information about ADNI can be found in
(Jack et al. 2010a) and at http://www.adni-info.org. The study
was conducted after Institutional Review Board approval at
each site. Written informed consent was obtained from all
study participants, or their authorized representatives.

Diagnosis of amnesticMCI required patient-reportedmem-
ory complaints, objective memory deficits, intact functional
activities, a Clinical Dementia Rating (CDR) Scale (Morris
1993) global score of 0.5, and a MMSE (Folstein et al. 1975)
score of 24 or more. Participants with AD met the National
Institute of Neurological and Communicative Diseases and
Stroke—Alzheimer’s Disease and Related Disorders Associ-
ation criteria for probable AD (McKhann et al. 1984).

Cognitive and clinical measures

Memory indicators

Considerations for compiling the ADNI neuropsychological
battery included the following: 1. Coverage of the domains
of interest (memory, executive functions, language, atten-
tion, and visuospatial abilities); 2. Adequate sampling of
cognitive domains of interest in subjects who are normal
or who have MCI or AD; 3. Can measure change over a 2–
3 year period; 4. Avoid ceiling or floor effects; 5. Were
efficient and met practical demands; 6. Were utilized in the
AD Clinical Study (ADCS) MCI trial and worked well in
that setting. Additionally, the tests are widely used in AD
Centers (ADCs) that are required to collect a Uniform Data
Set, to reduce the amount of testing needed for participants
enrolled in ADNI from ADCs.

The RAVLT uses a 15-item list of unrelated words.
This list is read to the participant, who is asked to recall
aloud as many of the words as they can. The number of
successfully recalled words is recorded. The list is then
repeated, and the participant again asked to recall as
many words as they can. This process is repeated for a
total of 5 learning trials, resulting in 5 scores. Then the
examiner reads a new list of 15 words to the participant
(an interference word list), and the participant is asked to
recall as many of these words as possible. The partici-
pant is then asked to recall the initial word list, and the
number of words recalled is recorded. After thirty
minutes of other testing, the participant is again asked
to recall as many words from the initial list as they can.
The two versions of the RAVLT include different ver-
sions of the initial and interference word lists.

The ADAS-Cog includes two different memory tasks.
First is a word list learning task similar to but distinct
from that of the RAVLT. The ADAS-Cog word list
includes 10 unrelated words (rather than 15) that are
printed on cards. The participant is asked to read them
aloud (while in the RAVLT they are read to the partici-
pant) and to remember them. There are three learning
trials (rather than five in the RAVLT). After five minutes
(rather than 30) of unrelated testing, the participant is
asked to recall as many words as possible from the list.

The second memory task included in the ADAS-Cog
is a word recognition task. In this task, the participant is
given 12 cards with words printed on them, and asked
to read them aloud and to remember them. Then the
target words along with 12 distractor words are shown
to the participant, who is asked to indicate whether the
word was one they were supposed to recall. Two scores
are recorded: the number of target words correctly iden-
tified as being part of the list (i.e., true positives), and
the number of distractor words correctly identified as
not being part of the list (i.e., true negatives).

The three different versions of the ADAS-Cog in-
clude different lists of the 10 words for the list learning
trial as well as different lists of the 12 words for the
recognition task.

For logical memory, a brief fact-laden passage is read
aloud once. The participant is asked to recall as many
of the passage’s 25 elements as they can, and the
number of elements correctly recalled is recorded. After
30–40 minutes of other cognitive testing, the participant
is again asked to recall the passage, and the number of
elements correctly recalled in this delay condition is
recorded.

In the MMSE, 3 words are read to the participant,
who is asked to repeat them. Distractor tasks are then
administered, after which the participant is asked to
spontaneously recall the three words. Scores of 1 point
are recorded for each item correctly recalled, and 0 for
each item not correctly recalled.

Comparitor measures

We compared our composite (described below) to a
variety of comparitors. The standard sum score for the
five learning trials of the RAVLT was a primary com-
parator. Others included four versions and scores for the
ADAS-Cog, including the original version (ADAS-Clas-
sic), the modified version of the ADAS-Cog that
includes delayed recall (ADAS-Modified), a Rasch score
developed for the original version of the ADAS-Cog
(ADAS-Rasch (Wouters et al. 2008)), and a score
obtained by recursive partitioning of the ADAS-Cog
(ADAS-Tree (Llano et al. 2011)). Other comparitors
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included the total MMSE score and the sum of boxes
from the CDR.

Dementia evaluation

Conversion from normal or MCI to AD was a primary
outcome for ADNI and so was tracked very closely.
Complete methods for identifying dementia cases can
be found in the ADNI protocol available at the ADNI
web site http://www.adni-info.org.

Selected MRI-based imaging parameters

All participants had an MRI evaluation at each study visit.
We identified four MRI parameters a priori as being associ-
ated with memory: hippocampal volume, thickness of the
parahippocampus, thickness of the entorhinal cortex, and
thickness of the fusiform gyrus. The neuroimaging methods
utilized by ADNI have been described in detail previously
(Jack et al., 2008) utilizing calibration techniques to main-
tain consistent protocols across scanners and sites. Raw
dicom data of T1-weighted MP-RAGE scans acquired from
1.5 Tesla scanners at baseline visits from all participants
were obtained via the ADNI database (http://www.loni.
ucla.edu/ADNI/). Images were processed through FreeSur-
fer version 4.0.3, a software program freely available at
http://surfer.nmr.mgh.harvard.edu/ to obtain measurements
of hippocampal volume and cortical thickness measure-
ments for parahippocampal, entorhinal, and fusiform gyrus
regions.

CSF

A subset of participants (n0415) had baseline lumbar
punctures for CSF, which was evaluated for assays of
amyloid β1-42 (Aβ), total tau, and phosphorylated
tau181p (ptau). De Meyer et al. used Aβ and ptau to
classify ADNI participants as having an “AD signature”
or not (De Meyer et al. 2010), and provided us with the
classes for these analyses.

Psychometric analyses of baseline data

Our initial modeling of memory focused on baseline data to
determine whether a single factor model would be appropri-
ate or whether a more complicated model would be
necessary.

We used Mplus statistical software for all models
(Muthén and Muthén 2006). Mplus facilitates very flexible
modeling but allows a maximum of 10 categories per cate-
gorical indicator. We re-coded memory indicators to have a
maximum of 10 categories. We developed a re-coding algo-
rithm based on preserving variability at the extremes of the

distribution at the expense of variability in the middle range
of the distribution. Specific re-coding we used is shown in
Table S1.

We compared a single factor model to a bi-factor
model that included additional terms to capture covari-
ance not due to the underlying factor defined by all of
the indicators (McDonald 1999; Reise et al. 2007). Our
initial task was then to identify one or more specific
candidate bi-factor models to compare with the single
factor model. We considered two approaches: one ac-
counting for theoretical considerations regarding memo-
ry subtypes assessed by each of the indicators, and the
other accounting for methods effects.

For the first approach, before we looked at data we
(P.K.C., A.C., and D.M.) assigned memory indicators from
the ADNI data set into categories based on the memory
subtype it assessed (“content” models). Specific subtypes
we considered were list learning and paragraph recall. For
the second approach, we considered whether the same stim-
ulus was being assessed several times (“methods” models).
For example, for the ADAS-Cog, there were three word list
learning trials and a recall trial of the same list of words,
while the recognition task was of a different list of words but
had both true and false positives. We thus modeled a sec-
ondary methods factor for the first four indicators which
would capture the facility people had with those specific
words beyond their overall memory ability, and a secondary
residual correlation between the true and false positives for
the recognition task, which captures additional covariation
between those indicators beyond their relationship with
overall memory.

We compared these candidate secondary domain
structures on the basis of published desirable thresholds
for the fit statistics (Reeve et al. 2007). We specifically
focused on the confirmatory fit index (CFI), where
values >0.95 are consistent with excellent fit; on the
Tucker-Lewis Index (TLI), where values >0.95 are con-
sistent with excellent fit; and on the root mean squared
error of approximation (RMSEA), where values <0.08
are consistent with adequate fit and values <0.05 are
consistent with excellent fit. Based on these analyses,
the bi-factor model with methods effects was far supe-
rior to the content bi-factor model, so we only consid-
ered the methods effects model in subsequent analyses.

Finally we compared the single factor and the meth-
ods bi-factor models. We noted the fit indices for these
two models, though fit statistics were not deciding cri-
teria. Much more important for our purposes was the
correlation between memory factor scores from the two
models, and the scatter plot showing the relationship
between these scores. We also compared the loadings
for each indicator on the overall memory factor, with
and without the secondary domain structure.
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Mplus code for all of these analyses is available on
request from the first author.

Psychometric analyses of longitudinal data

The task of modeling the longitudinal memory data was
complicated by the multiple forms of the ADAS-Cog word
lists and the RAVLTword list. Furthermore, Logical Memory
I was only assessed at annual visits. The only indicators
consistently present across visits were the three word recall
items from the MMSE. Technically these three dichotomous
indicators (i.e., correct / incorrect) could be used to anchor the
scales across time points (Steven P. Reise et al. 1993), but we
were concerned that this anchoring would be too sparse for
firm conclusions to be drawn. Because of the multiple ver-
sions of the RAVLT and the ADAS-Cog administered at
different ADNI study visits, we needed to use longitudinal
data to establish our final composite scores, since we could not
assume that the different versions were of the same difficulty.

Based on results from initial cross-sectional modeling
described above, we limited ourselves to single factor
models. We divided the data set into two parts: first, the
annual visits (baseline, month 12, and month 24), and
second, the other visits (month 6, 18, and 36). Logical
Memory I and II were assessed at each of the visits in
the first half of the data set, so those much richer
indicators were used as anchors alongside the three
dichotomous MMSE indicators. Furthermore, at each
of those visits, only the first version of the RAVLT
was assessed, so it could also act as an anchor. The
only thing that varied at those visits was thus the three
different versions of the ADAS-Cog. We fit a longitu-
dinal model using all available data for the annual visits
of the first half of the data set. We identified the scale
by specifying the variance of the general factor to be 1
at the baseline visit, when its mean was 0. We allowed
the mean and the variance of the general factor to vary
at other time points, and the general factors were freely
correlated with each other. We freely estimated the
loadings on the general factor, but constrained those
loadings from the same indicators to be the same across
time points. For example, for the first MMSE item, we
freely estimated the loading on the overall memory
factor at each time point, but constrained that loading
to be the same at baseline, month 12, and month 24.

We captured point estimates for the loadings and
thresholds for the three MMSE items, Logical Memory
I and II, and the three versions of the ADAS-Cog from
the first half of the data set. We then turned our atten-
tion to the second half of the data set that included data
from study visits at months 6, 18, and 36. The second
version of the RAVLT word list was used at each of
these study visits. We used the MMSE items, the

ADAS-Cog version 2 (month 6), version 1 (month
18), and version 3 (month 36), and Logical Memory
(month 36) as anchors to estimate item parameters for
the second version of the RAVLT. The longitudinal
modeling strategy was similar to that described for the
first half of the data. Because we were fixing item
loadings and thresholds for the anchor items, the scale
was still anchored to the mean of 0 and variance of 1 at
the baseline visit, we freely estimated the means and
variances at each of the study visits included in this
second half of the data. Script files for these analyses
are available on request.

We extracted factor scores for each participant at each
study visit (named ADNI-Mem in the ADNI data set). We
compared item parameters (factor loadings and category
thresholds) across the three different versions of the
ADAS-Cog and the two different versions of the RAVLT.

Mplus code for all of these analyses is available on
request from the first author.

Comparisons of scores

We performed several analyses to compare our memory
composite to other scores.

Rates of change We examined the sensitivity of each
measure to change over time in each of the three
diagnostic groups using z-statistics based on the coeffi-
cients and standard errors for time from mixed models
for the cognitive outcomes using random intercepts and
slopes and an unstructured covariance matrix, control-
ling for age, education, sex and presence of one or
more APOE ε4 alleles. We used the coefficients for
year and the adjusted residual standard deviation from
these models to determine sample sizes needed per
group to detect a 25 % reduction in the rate of decline
in 12 months for a two-arm trial, with 80 % power and
alpha 0 0.05, assuming a two-sided test.

Time to conversion for people with MCI We compared the
strength of association between cognition and risk of
developing dementia, using accelerated failure time
models of time to AD, with a Weibull distribution,
controlling for age, education, sex, and presence of
one or more APOE ε4 alleles. We performed two sets
of analyses. First, we evaluated baseline cognitive
scores. Second, we performed a lagged analysis to com-
pare the strength of association between cognitive vari-
ability at each visit and risk of developing dementia at
the subsequent study visit.

Strength of association with MRI parameters Wedetermined
the strength of association between cognitive scores and
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selected MRI values from baseline in each of the diagnostic
groups using linear regression models predicting the cognitive
outcome, adjusting for total intracranial volume, age, educa-
tion, sex, and presence of one or more APOE ε4 alleles.

Ability to differentiate trajectories of participants with CSF
AD signatures among people with normal cognition and
with MCI We used mixed effects models to determine the
ability of each cognitive measure to differentiate the cogni-
tive trajectories of participants with an AD profile of CSF
biomarkers compared to people without that profile. Our
rationale for limiting these analyses to participants with
normal cognition and with MCI was that people ultimately
destined to develop AD should have greater rates of decline
in cognition in general and memory in particular than people

not destined to develop AD, but that the AD CSF profile
might not have a relationship with subsequent trajectories of
cognition among people with established AD (Jack et al.
2010b). Analyses were conducted within each diagnostic
group with random intercepts and slopes and an unstruc-
tured covariance matrix, controlling for age, education, sex,
and presence of one or more APOE ε4 alleles.

Results

Characteristics of participants

Of the 819 ADNI participants eligible at baseline, 803
had complete data for our cognitive outcomes at one or

Table 1 Demographic, clinical,
CSF and MRI data by baseline
diagnosis (n0803 with complete
cognitive data)

Abbreviations: ADAS: Alz-
heimer’s Disease Assessment
Schedule; CDR-SB: Clinical
Dementia Rating Scale—Sum of
Boxes; CSF: Cerebrospinal flu-
id; mm: millimeter; MMSE:
Mini-Mental State Examination;
MRI: Magnetic resonance imag-
ing; RAVLT: Rey Auditory Ver-
bal Learning Test; SD: Standard
deviation

Normal
cognition

Mild cognitive
impairment (MCI)

Alzheimer’s disease
(AD)

Sample size, N

Baseline 225 394 184

6 months 215 371 171

12 months 202 351 149

18 months 0 316 0

24 months 193 289 115

36 months 164 209 0

Demographics

Female 48 % 35 % 49 %

Age (years), mean (SD) 76.0 (5.0) 74.9 (7.5) 75.5 (7.4)

Education (years), mean (SD) 16.0 (2.8) 15.7 (3.0) 14.7 (3.1)

Any APOE ε4 alleles 26 % 53 % 65 %

Baseline clinical data: mean (SD)

Memory

ADNI-Mem 1.0 (0.5) −0.1 (0.6) −0.8 (0.5)

RAVLT Trials 1–5 sum 43.3 (9.1) 30.8 (9.0) 23.3 (7.5)

Global Cognition

ADAS-Classic (70 pts) 6.2 (2.9) 11.5 (4.4) 18.5 (6.3)

ADAS-Total (85 pts) 9.4 (4.2) 18.6 (6.3) 28.8 (7.7)

ADAS-Rasch 4.8 (3.5) 11.8 (5.5) 19.5 (7.4)

ADAS-Tree 7.9 (3.5) 15.9 (5.1) 24.2 (5.6)

MMSE 29.1 (1.0) 27.0 (1.8) 23.4 (2.0)

Clinical Rating

CDR-SB 0.0 (0.1) 1.6 (0.9) 4.3 (1.7)

Baseline CSF data

CSF data, N 112 193 97

de Meyer AD cluster, % 35 % 73 % 90 %

Baseline MRI data: mean (SD)

Hippocampus volume, cm3 6.7 (0.8) 5.8 (1.0) 5.2 (1.0)

Entorhinal thickness, mm 3.5 (0.3) 3.1 (0.5) 2.7 (0.5)

Fusiform thickness, mm 2.6 (0.2) 2.5 (0.2) 2.3 (0.3)

Parahippocampal thickness, mm 2.6 (0.3) 2.4 (0.3) 2.3 (0.3)

Complete data for MRI, N 185 305 118
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more study visits. Of these, 225 had normal cognitive
functioning, 394 had mild cognitive impairment (MCI),
and 184 had AD. Demographic, clinical, CSF, and
imaging data for these individuals are shown in
Table 1.

Cross-sectional analyses of memory indicators

We compared candidate bi-factor models as described in the
Methods section. Our best-fitting candidate model had sec-
ondary domains for methods effects, and split the RAVLT
into a learning factor (including the interference list) and a
recall factor. The path diagram for the selected bi-factor
model is shown in Fig. 1. Loadings for the bi-factor model
are shown in Table 2. The first column of data shows
standardized loadings for the overall “Memory” factor.
The second column of data shows loadings for the relevant
subdomain. We shaded the rows to highlight membership of
particular memory indicators in particular subdomains. Two
pairs of items had residual correlations rather than underly-
ing factors; we show the residual correlation in one row of
the table and place one or two asterisks in the corresponding
row of the partner indicator. All of the standardized factor
loadings on the overall “Memory” factor were well over
0.30, McDonald’s threshold for salience (McDonald 1999),
suggesting that all of the items—including the three dichot-
omous MMSE words—are salient indicators of overall

memory. For each indicator, loadings on the overall “Mem-
ory” factor were higher than the loading on the method sub-
domain factor. Several of the loadings on the method sub-
domain factors were below the 0.30 threshold for salience.
There was a negative correlation between the true and false
positive indicators for the ADAS-Cog recognition task. The
factor loadings for these two items indicate that both true hits
and true misses are salient indicators of overall memory, and
that they have a negative residual correlation, meaning that
beyond their overall relationship with memory they have a
negative relationship with each other. We suspect this
reflects the effects of strategies for guessing. If a respondent
is not sure whether a candidate word was truly presented and
guesses, and has a strategy of guessing “present,” then the
number of true hits will be higher and the number of true
misses will be lower; conversely, if a respondent has a
strategy of guessing “absent,” then the number of true hits
will be higher and the number of true misses will be lower.
Taken together, these strategies for guessing result in a
negative residual correlation—the parts of these scores not
reflecting overall memory are negatively related to each
other.

We compared the bi-factor model described above to
the single factor model that assumed no residual rela-
tionships. The bi-factor model fit the data better than a
single factor model. For the bi-factor score, the CFI was
0.97, the TLI was 0.99, and the RMSEA was 0.086. For

RAVLT Trial 1

RAVLT Trial 2

RAVLT Trial 3

RAVLT Trial 4

RAVLT Trial 5

RAVLT List B

RAVLT Immediate Recall

RAVLT Delayed Recall

RAVLT Recognition

ADAS Trial 1

ADAS Trial 2

ADAS Trial 3

ADAS Recall

ADAS Recognition Present

ADAS Recognition Absent

MMSE Ball

MMSE Flag

MMSE Tree

Logical Memory Immediate

Logical Memory Delay

RAVLT Learning

RAVLT Recall

ADAS List

MMSE Words

ADAS Recognition

Logical Memory

Memory

Fig. 1 Bi-factor model path diagram for baseline data. RAVLT0Rey
Auditory Verbal Learning Test. ADAS0Alzheimer’s Disease Assess-
ment Schedule. MMSE0Mini-Mental State Examination. Covariation
across all the indicators is modeled with loadings on the primary
“Memory” factor shown to the right. Shared covariation beyond that
shared with all of the items is shown in secondary factors (for three or
more indicators) and residual correlations (for two indicators, shown as

two-headed curved arrows) to the left. For example, shared covariation
for the 6 word list learning trials for the RAVLT (five with list A, one
with list B) beyond that shared with all the other indicators is modeled
with the “RAVLT Learning” factor. We specified a unit variance for
each of the factors, and they were mutually uncorrelated with each
other
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the single factor model, the CFI was 0.89, the TLI was
0.97, and the RMSEA was 0.179.

Category thresholds are determined from the proportions of
people responding in each category, and threshold values for
all indicators are identical for the single and bi-factor models;

the only difference between the models was to be found in the
factor loadings. We show a comparison of the factor loadings
in Table 3. As expected, most loadings on the general factor
were somewhat attenuated in the bi-factor model compared to
the single factor model, since some of the covariation assumed

Table 2 Factor loadings for the primary and secondary factors for the bi-factor model from baseline

Loading on 

primary factor

Loading on 

secondary factor 

or residual 

correlation

Name of secondary 

domain

RAVLT trial 1 0.55 0.49 RAVLT Learning

RAVLT trial 2 0.75 0.48

RAVLT trial 3 0.84 0.35

RAVLT trial 4 0.89 0.27

RAVLT trial 5 0.91 0.20

RAVLT interference trial 0.58 0.23

RAVLT immediate recall 0.85 0.28 RAVLT Recall

RAVLT 30 minute delay 0.71 0.41

RAVLT recognition 0.88 0.24

ADAS trial 1 0.76 0.38 ADAS List

ADAS trial 2 0.81 0.47

ADAS trial 3 0.80 0.38

ADAS recall 0.88 0.17

ADAS recognition present 0.41 -0.33 ADAS Recognition

ADAS recognition absent 0.50 *

MMSE ball 0.60 0.48 MMSE Words

MMSE flag 0.67 0.52

MMSE tree 0.63 0.52

Logical Memory Immediate 0.78 0.24 Logical Memory

Logical Memory Delay 0.80 **
* and ** indicate residual correlations.

Abbreviations: ADAS: Alzheimer’s Disease Assessment Schedule; MMSE: Mini-Mental State Examination; RAVLT: Rey Auditory Verbal
Learning Test
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to be related to the general factor in the single factor model
was modeled in secondary domains and residual correlations
in the bi-factor model. The largest absolute difference was for
Trial 1 of the RAVLT, which had loadings of 0.62 in the single
factor model and 0.55 in the bi-factor model, a difference of
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Fig. 2 Difficulty levels for the elements of the two versions of the Rey
Auditory Verbal Learning Test. The five learning trials are indicated by
the numbers 1 through 5; the interference trial by the letter B, the first
recall trial by the number 6; delayed recall by “Recall”, and the recogni-
tion task by “Recognition”. Version A difficulty thresholds are denoted
with blue circles, while version B difficulty thresholds are denoted with
green diamonds. In this plot, the difficulty levels are plotted on the y axis
in z-statistic units; higher numbers indicate higher memory ability / higher
item difficulty. Considering the two versions of learning trial 1, version A
is easier for each threshold. At an overall memory ability level of −0.5, for
example, higher proportions of people will be above the first threshold for
version A, and lower proportions of people above that same threshold for
version B. At every threshold the green diamonds are higher than the blue
dots. For the second through 5th learning trials, this difference is dramatic
at the top end, as the top threshold on version A is only as difficult as the
2nd to highest threshold on version B

Table 3 Factor loadings on the
general (overall memory) factor
for the single factor and bi-factor
models

Abbreviations: ADAS: Alz-
heimer’s Disease Assessment
Schedule. MMSE: Mini-Mental
State Examination. RAVLT: Rey
Auditory Verbal Learning Test

Indicator Loading for
single factor
model

Loading for
bi-factor
model

Absolute
difference

Difference as
percent of single
factor loading

RAVLT trial 1 0.62 0.55 0.07 11 %

RAVLT trial 2 0.82 0.75 0.06 8 %

RAVLT trial 3 0.88 0.84 0.04 4 %

RAVLT trial 4 0.92 0.89 0.02 2 %

RAVLT trial 5 0.92 0.91 0.01 1 %

RAVLT interference trial 0.60 0.58 0.02 3 %

RAVLT immediate recall 0.87 0.85 0.01 2 %

RAVLT 30 minute delay 0.71 0.71 0.00 0 %

RAVLT recognition 0.90 0.88 0.01 2 %

ADAS trial 1 0.79 0.76 0.03 4 %

ADAS trial 2 0.86 0.81 0.05 6 %

ADAS trial 3 0.84 0.80 0.03 4 %

ADAS recall 0.87 0.88 −0.01 −1 %

ADAS recognition present 0.39 0.41 −0.03 −6 %

ADAS recognition absent 0.48 0.50 −0.03 −5 %

MMSE ball 0.60 0.60 0.01 1 %

MMSE flag 0.67 0.67 0.00 0 %

MMSE tree 0.63 0.63 0.01 1 %

Logical Memory Immediate 0.83 0.78 0.06 7 %

Logical Memory Delay 0.85 0.80 0.05 6 %
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Fig. 3 Difficulty levels for the elements of the three versions of the Alz-
heimer’s Disease Assessment Scale – Cognitive Subscale. Recog0Recogni-
tion. Version A threshold difficulty levels are depicted with blue circles,
Version B with green diamonds, and Version C with red triangles. In this
plot, the difficulty levels are plotted on the y axis in z-statistic units; higher
numbers indicate higher memory ability / higher item difficultyVersionA has
greater spread thanVersion B and to a lesser extent than version C,meaning it
will have slightly smaller ceiling and floor effects. Unlike the Rey, no version
appears to be consistently easier or harder than the other versions
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0.07, or 11 % of the single factor loading. None of the other
indicators had differences as large as 10%. As expected, when
ignoring the negative residual correlation between the recog-
nition tasks for the ADAS-Cog, the loadings on the primary
factor were somewhat smaller. Differences in loadings for
those two indicators were small between the single factor
and the bi-factor model, and loadings on the overall factor
were still over the 0.30 threshold for salience.

The overall correlation between single-factor and bi-
factor scores for memory at the baseline exam was 0.99.
The correlation for participants with AD was 0.98; for
participants with MCI it was 0.99; for participants with
normal cognition it was 0.98. A scatter plot did not suggest
any systematic differences from the diagonal (Figure S1).

These results suggested that a single-factor model was
appropriate for our purposes, as there was negligible differ-
ence between single-factor and bi-factor scores.

Version effects for the RAVLT and the ADAS-Cog

The loadings for each of the indicators from the two versions
of the RAVLT were very similar (Table S2); as a proportion,
they ranged from 5 % smaller to 3 % larger between the two
versions. The difficulty levels for the category thresholds,
however, displayed important differences between the two
versions, as shown in Fig. 2. The values for the thresholds

Table 4 Coefficients for time, in mixed models for cognition control-
ling for age, education, gender and presence of one or more APOE ε4
alleles. Bold font indicates p<0.05. Sample size needed per group to

detect a 25 % decrease over 12 months, with 80 % power and alpha 0
0.05, two-sided. ADAS and CDR-SB scores reversed so that higher
scores represent better cognition for all clinical measures

Clinical outcome Time Sample size per group*

NC MCI AD NC MCI AD

Memory

ADNI-Mem 3.02 −9.43 −11.59 28,512 2167 568

RAVLT Trials 1–5 sum −0.53 −8.67 −10.13 1,333,396 4292 804

Global Cognition

ADAS-Classic (70 pts) 3.20 −10.78 −12.25 37,971 1651 242

ADAS-Total (85 pts) 1.76 −12.20 −12.92 105,895 1200 206

ADAS-Rasch 3.10 −10.51 −11.28 41,295 1692 346

ADAS-Tree 0.73 −13.67 −14.05 573,996 981 214

MMSE −0.36 −11.27 −9.95 3,494782 1628 393

Clinical Rating

CDR-SB −4.06 −14.57 −13.64 4,315** 456 223

* Sample size calculations are based on the coefficient for year and the adjusted residual standard deviation from the full model. As such, they may
not directly correspond to the z-statistics.

** Note that the CDR-SB has very skewed data among participants with NC, so assumptions made by the mixed effects models probably do not
hold. Thus this value is likely inaccurate but included here for comparison purposes.

Abbreviations: AD: Alzheimer’s disease. ADAS: Alzheimer’s Disease Assessment Schedule. ADNI-Mem: Alzheimer’s Disease Neuroimaging
Initiative Memory Score. CDR-SB: Clinical Dementia Rating Scale—Sum of Boxes. MCI: Mild cognitive impairment. MMSE: Mini-Mental State
Examination. NC: Normal cognition. RAVLT: Rey Auditory Verbal Learning Test

Table 5 Time ratios (TR), with 95 % confidence intervals (CI), for
predicting conversion to dementia, controlling for age, education,
gender and presence of one or more APOE ε4 alleles. ADAS and
CDR-SB scores reversed so that higher scores represent better cogni-
tion for all clinical measures*

Clinical
predictor

Previous visit Time
Ratio (95 % CI)

Baseline Time
Ratio (95 % CI)

Memory

ADNI-Mem 1.50 (1.32, 1.70) 1.53 (1.34, 1.74)

RAVLT Trials 1–5 sum 1.40 (1.24, 1.57) 1.37 (1.22, 1.54)

Global cognition

ADAS-Classic (70 pts) 1.36 (1.23, 1.51) 1.42 (1.25, 1.61)

ADAS-Total (85 pts) 1.45 (1.29, 1.63) 1.50 (1.31, 1.71)

ADAS-Rasch 1.25 (1.14, 1.38) 1.37 (1.22, 1.55)

ADAS-Tree 1.48 (1.31, 1.67) 1.54 (1.35, 1.77)

MMSE 1.23 (1.13, 1.34) 1.36 (1.15, 1.61)

Clinical Rating

CDR-SB 1.49 (1.29, 1.71) 1.46 (1.24, 1.73)

* We used an accelerated hazard model with a Weibull distribution to
account for interval censoring in the data. Adjusted time ratios greater
than one indicate a longer time until progression to dementia.

Abbreviations: ADAS: Alzheimer’s Disease Assessment Schedule.
ADNI-Mem: Alzheimer’s Disease Neuroimaging Initiative Memory
Score. CDR-SB: Clinical Dementia Rating Scale—Sum of Boxes.
MMSE: Mini-Mental State Examination. RAVLT: Rey Auditory Ver-
bal Learning Test.
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between item categories are plotted on the Y axis. Version 1
thresholds are shown in blue circles, while version 2 thresh-
olds are shown in green diamonds. For all of the trials with the
exception of List B (the distractor list), the Version 2 list is
more difficult (has higher thresholds) than the Version 1 list.
As expected, recall is more difficult than recognition (see two
right-most sets of thresholds). These differences in difficulty
thresholds mean RAVLT total scores for any person with high
memory ability levels would be expected to differ by 5 or 6
points entirely as a function of which version of the test was
used. For people with lower memory ability levels, expected

differences in RAVLT total scores are smaller, but the
expected difference would still be 2 or 3 points entirely as a
function of which version of the test was used.

The ADAS-Cog versions were more similar to each other,
at least in terms of category thresholds (see Fig. 3). Version 1
had a greater spread of thresholds than Version 2 and to a
lesser extent than Version 3, which means that it should be
somewhat better able to differentiate among people at the
extremes of memory ability with fewer ceiling or floor scores.
The loadings for the learning trials and recall of the three
versions of the ADAS-Cog list learning task were very similar

Table 6 Coefficients for MRI
thickness measures from regres-
sion models for the cognitive
measure controlling for age, ed-
ucation, gender, presence of one
or more APOE ε4 alleles, and
intracranial volume. Bolded
coefficients indicate p-values
< 0.05. ADAS and CDR-SB
scores reversed so that higher
scores represent better cognition
for all clinical measures

Abbreviations: ADAS: Alz-
heimer’s Disease Assessment
Schedule. ADNI-Mem: Alz-
heimer’s Disease Neuroimaging
Initiative Memory Score. CDR-
SB: Clinical Dementia Rating
Scale—Sum of Boxes. MMSE:
Mini-Mental State Examination.
RAVLT: Rey Auditory Verbal
Learning Test

Clinical outcome Hippocampal
volume

Parahippocampal
thickness

Entorhinal
thickness

Fusiform
thickness

Normal Cognition

Memory

ADNI-Mem 0.27 0.55 −0.91 −1.98
RAVLT Trials 1–5 sum 0.65 0.58 −0.91 −2.02

Global Cognition

ADAS-Classic (70 pts) 1.03 1.30 0.27 −0.17

ADAS-Total (85 pts) 0.36 1.23 −0.12 −0.90

ADAS-Rasch 0.16 1.33 0.28 −0.52

ADAS-Tree −0.26 0.76 −0.39 −1.44

MMSE −0.16 1.30 0.28 0.10

Clinical Rating

CDR-SB −0.32 0.51 1.69 1.21

Mild Cognitive Impairment

Memory

ADNI-Mem 6.72 3.02 7.59 4.75

RAVLT Trials 1–5 sum 4.23 2.51 4.95 3.95

Global Cognition

ADAS-Classic (70 pts) 6.32 1.63 7.68 4.46

ADAS-Total (85 pts) 7.16 1.84 8.34 4.72

ADAS-Rasch 5.63 1.76 5.47 4.90

ADAS-Tree 7.79 2.10 8.21 4.59

MMSE 2.86 1.10 2.80 3.27

Clinical Rating

CDR-SB 2.91 2.84 3.38 2.80

Alzheimer’s Disease

Memory

ADNI-Mem 3.31 2.09 3.33 2.26

RAVLT Trials 1–5 sum 2.04 1.11 2.02 1.46

Global Cognition

ADAS-Classic (70 pts) 2.50 1.73 4.60 3.20

ADAS-Total (85 pts) 2.67 2.13 4.67 3.38

ADAS-Rasch 1.59 0.86 3.17 3.05

ADAS-Tree 3.28 2.48 4.52 3.13

MMSE 3.01 0.98 3.38 2.99

Clinical Rating

CDR-SB 2.76 1.35 1.74 0.97
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to each other, with differences ranging from 4 percent lower to
2 percent higher (Table S3). The recognition present and
recognition absent tasks had somewhat dissimilar loadings.
In no case were these strong indicators of overall memory
(standardized loadings ranged from 0.43 to 0.56, roughly half
the magnitude of loadings for the list learning indicators). The
largest overall difference in loading between versions was
0.13 for recognition correct between Version A and Version
C, which in terms of percentage was a 30 % difference in
loadings.

Comparison of the ADNI-Mem to other measures

Table 4 shows the standardized coefficients for change over
time for our ADNI-Mem composite score and for the com-
parison measures. The table highlights the two tests of
memory (ADNI-Mem and the RAVLT) in the top section,
and proceeds to address tests of global cognition (several
scores derived from the ADAS-Cog and the MMSE) and a
global clinical measure (the CDR sum of boxes). There is
not much change that occurs over the course of two years
for ADNI participants with normal cognition. This is
reflected in the small standardized coefficients for all of
the measures. Indeed, on average, ADNI-Mem and two of
the global ADAS-Cog scores indicate very modest improve-
ment in cognition over two years (positive coefficients).

Among people with MCI, ADNI-Mem performed some-
what better than the RAVLT sum score, and nearly as well
as the global ADAS-Cog scores or the clinical CDR sum of
boxes. Among people with AD, all of the scores are able to
detect robust changes over time, and ADNI-Mem performed
somewhat better than the RAVLT total score.

Table 5 shows results for the ability of the scores to
predict conversion to dementia. Results appeared similar
for all of the scores, though time ratios (the equivalent of
hazard ratios had we used Cox models) for ADNI-Mem
were either the best or second best among all of the meas-
ures assessed.

Table 6 shows results for the cross-sectional association
of each score with four neuroimaging parameters from MRI.
Findings among people with normal cognition are difficult
to understand, as there is a statistically significant inverse
relationship between fusiform thickness and our ADNI-
Mem composite score. This inverse relationship was also
present for the RAVLT total score. For people with MCI,
there were strong associations in the expected direction
between ADNI-Mem and all four neuroimaging markers,
suggesting that poorer memory performance was associated
with smaller hippocampal volumes and with thinner cortex
in the parahippocampal, fusiform, and entorhinal regions.
Further, in each case the strength of association for these
imaging findings was somewhat stronger than that for the
total RAVLT score, and comparable to that of the various
versions of the ADAS-Cog. Among people with AD, there
was again a strong association between ADNI-Mem and
each of the imaging parameters, and the strength of this
association was somewhat stronger in each case than that
for the RAVLT total score.

Table 7 shows results for the differences in intercept and
rates of decline associated with having an AD CSF signature
for people with normal cognition and MCI. Among people
with normal cognition, there was little difference in trajec-
tories associated with having the AD CSF signature, though
there were differences in trajectories for the modified
ADAS-Cog and the CDR sum of boxes in the hypothesized
direction (i.e., people with the AD CSF signature had faster
rates of decline). Among people with MCI, all of the meas-
ures considered suggested faster rates of decline among
people with the AD CSF signature. This difference was
largest for ADNI-Mem.

Discussion

In this paper we present methods we used to derive a
memory composite from the neuropsychological battery
administered in ADNI. We found a single factor model to
be quite acceptable for the memory indicators from this
battery. Our composite addresses an under-appreciated

Table 7 Z-scores for the slope and intercept of CSF-based AD signa-
ture group from mixed models for change in the cognitive outcomes,
controlling for age, education, sex and presence of one or more APOE
ε4 alleles. Bolded coefficients indicate p-values < 0.05. ADAS and
CDR-SB scores reversed so that higher scores represent better cogni-
tion for all clinical measures

Clinical outcome NC MCI

Intercept Slope Intercept Slope

Memory

ADNI-Mem 0.04 0.00 −3.20 −5.19
RAVLT Trials 1–5 sum −0.07 0.54 −2.84 −3.60
Global Cognition

ADAS-Classic (70 pts) −0.65 −1.96 −1.97 −4.39
ADAS-Total (85 pts) −0.46 −2.08 −3.09 −4.64
ADAS-Rasch −0.23 −1.71 −2.18 −4.40
ADAS-Tree −0.26 −1.68 −3.62 −4.74
MMSE 0.47 −0.53 −1.86 −4.48
Clinical Rating

CDR-SB 0.83 −2.55 −1.80 −5.14

Abbreviations: AD: Alzheimer’s disease. ADNI-Mem: Alzheimer’s
Disease Neuroimaging Initiative Memory Score. ADAS: Alzheimer’s
Disease Assessment Schedule. CDR-SB: Clinical Dementia Rating
Scale—Sum of Boxes. CSF: Cerebrospinal fluid. MCI: Mild cognitive
impairment. MMSE: Mini-Mental State Examination. NC: Normal
cognition. RAVLT: Rey Auditory Verbal Learning Test.
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challenge in these data, which is that the study administered
three different versions of the ADAS-Cog word lists and
two different versions of the RAVLT word lists. We found
that the ADAS-Cog item thresholds were similar across
versions, though the relative importance of the recognition
tasks varied somewhat. For the RAVLT, on the other hand,
we found an important difference in difficulty levels, as the
second version of RAVLT was systematically more difficult
than the first version. Failing to account for these differences
in difficulty levels could result in strange results if standard
sum scores are used. Our memory composite performed
well in comparison to other cognitive measures. It was able
to detect change over time well among people with MCI and
AD. It was a strong predictor of conversion from MCI to
AD. It was strongly associated with a priori specified neuro-
imaging parameters selected on the basis of their known
association with memory performance. It was able to detect
differences in changes over time for people with MCI who
had CSF biomarkers suggesting an AD signature.

These results suggest that the two RAVLTword lists used
in ADNI are not equivalent to each other (list 2 is system-
atically harder than list 1). If standard total scores are used,
this may result in artifactual saw-tooth patterns in plots of
performance over time, since people with no change in
actual memory performance would be expected to have
higher scores / lower scores / higher scores / lower scores
at alternating visits. Because of the design of the study,
participants with AD did not have an 18-month study visit,
so their four observations would have the pattern higher
scores / lower scores / higher scores / higher scores. The
scoring approach adopted for ADNI-Mem accounts for the
different difficulty levels of the two versions of the RAVLT.
We did not account for different versions of the RAVLT
when using changes in the RAVLT in analyses; we are not
familiar with traditional methods for doing so, and to our
knowledge different version effects have not been consid-
ered in publications that have analyzed ADNI RAVLT data.

The three versions of the ADAS-Cog were much more
similar to each other than were the two versions of the
RAVLT to each other. Nevertheless, there were differences
in the relative importance of the recognition tasks across the
different versions of the ADAS-Cog. Attention could be
paid to the relative importance of these recognition tasks
in the different versions of the ADAS-Cog, especially if the
scoring to be applied to these versions does not account for
this.

The ADNI-Mem composite score has several desirable
features. It appears to have good validity, as it performed as
well or better than the RAVLT in each of the analyses
performed. Unlike the standard sum scores used for the
RAVLT, however, ADNI-Mem accounts for the different
versions of the RAVLT and the ADAS-Cog. ADNI-Mem
also includes additional information from logical memory

and from the MMSE, incorporating all of the memory-
related information available from the neuropsychological
battery administered in ADNI. Basing inferences on a multi-
ple indicator composite rather than single measures conserves
statistical power by reducing the number of potential compar-
isons, and may reduce measurement error. It uses a sophisti-
cated modern psychometric approach that is based entirely on
inter-relationships among items rather than external criteria
such as those used in the recursive partitioning approach that
generated the ADAS-Tree scores. The modern psychometric
approach used to generate the ADNI-Mem scores has linear
scaling properties that are appropriate for tracking changes
over time (Crane et al. 2008; Mungas and Reed 2000).

The rationale for using the ADNI-Mem score in analyses
of ADNI data is thus multifaceted. From a theory perspec-
tive, it has many desirable properties. These include incor-
porating all memory indicators, thus maximizing
measurement precision of the memory level underlying
responses to memory items; it has linear scaling properties
that are especially important in longitudinal analyses; and it
accounts for version effects in the RAVLT and ADAS-Cog.
From a data-driven perspective, it also has desirable
properties: it appears to be at least as valid as its constituent
parts, and did well in predicting people who would progress
from MCI to AD and in detecting changes over time. We
have submitted our ADNI-Mem scores to the ADNI data
base and recommend their use by any researcher using the
ADNI data set who has substantive questions about memo-
ry. Specifically, the ADNI-Mem scores may be particularly
useful for imaging researchers who wish to compare image
processing and analysis techniques in terms of the strength
of associations between imaging and memory.

Limitations should be considered in interpreting our
results. We were limited by the battery of tests administered
by ADNI. We suspect—but cannot confirm—that similar
findings would have been obtained had other tests been
used. Although the ADNI battery is fairly rich in its assess-
ment of memory, the advantages of a composite score ap-
proach would presumably be even more apparent if even
more tests were available. We did not compare the ADNI
neuropsychological battery to any other battery of tests, and
cannot comment on whether it may be superior to other
batteries used clinically or in other research studies. The
ADNI data set includes rich neuroimaging results available
from study participants, making it an ideal setting for our
analyses comparing various scores to imaging findings. We
selected four specific measures a priori. Had we selected
different measures we could have found different findings.
Similarly, there are a variety of ways of estimating hippo-
campal volume. We relied on one particular technique. Only
a subset of the ADNI sample had CSF measures. Our find-
ings would have been more robust had our sample sizes for
the CSF analyses been larger.
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In conclusion, this paper outlines the methods for devel-
oping the ADNI-Mem composite measure of memory for
the ADNI study, and compares it to several other cognitive
tests. We also found that the two versions of the RAVLT are
of very different difficulty levels, a fact that is accounted for
in the composite ADNI-Mem scores. The ADNI-Mem
scores should be used when a single indicator of memory
performance is desired. We have supplied these scores so
that they are available in the ADNI data set.
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