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Abstract- Ant Colony Optimisation (ACO) is applied
to the problem of routing and wavelength-allocation in
a multi-wavelength all-optical virtual-wavelength-path
routed transport network. Three variants of our ACO
algorithm are proposed: local update (LU), global update/
distance (GU/D) and global update/occupancy (GU/O).
All three extend the usual practice that ants are attracted
by the pheromone trail of ants from their own colony:
in our work, the artificial ants are also repelled by the
pheromone of other colonies. Overall, the best ACO
variant, GU/O, provides results that approach those
of an earlier problem-specific heuristic on small- and
medium-sized networks.

1 Introduction

Multi-wavelength all-optical transport networks have at-
tracted considerable interest in recent years, because of their
potential, by using multiple wavelengths in both optical trans-
mission and optical switching, to provide the huge bandwidths
necessary if broadband services are to be widely adopted [1].
In addition, incorporating wavelength conversion in the nodes
(optical cross connects) allows the individual static traffic re-
quirements to be routed through a succession of wavelengths
as they traverse the network. Thus considerable flexibility is
provided for both restoration in the event of failures, as well
as in responding to the increasingly dynamic traffic require-
ments.

A variety of solution approaches have been adopted for
optical-path-layer design (i.e. routing, fibre choice and wave-
length allocation), including heuristics, evolutionary algo-
rithms and mathematical programming. For example, Sin-
clair [2, 3] has recently applied a genetic-algorithm/heuristic
hybrid approach to routing, fibre and wavelength allocation
in transport networks without wavelength conversion. Here,
we consider wavelength conversion, and adopt Ant Colony
Optimisation (ACO) as the solution approach. This method
draws its inspiration from the cooperative problem-solving
behaviour of natural ant colonies [4, 5, 6]. However, our ACO
algorithms extend the usual practice that ants are attracted
by the pheromone trail of ants from their own colony: in our
work, the artificial ants are also repelled by the pheromone of
other colonies. (Throughout this paper, ACO is used to refer
to the entire class of ant-inspired algorithms which have indi-
vidually been termed ‘ant system’, ‘ant colony system’, etc.)

2 Ant Colony Optimisation

2.1 Ants in nature

Individual ants are relatively simple insects that have a very
limited amount of memory, are almost blind and their indi-
vidual behaviour is apparently random [4, 7]. However, they
act together as a colony to perform complex tasks such as:
regulating nest temperature, forming bridges, searching ar-
eas for food, building and protecting their nest, finding the
shortest routes to food, and exploiting the richest available
food source [7]. To achieve these tasks, they use coopera-
tive behaviour, but without the execution of a joint plan. Ants
communicate indirectly through environmental stimuli; this
form of communication is termed stigmergy [7]. The stimuli
are based on two kinds of changes in the environment. With
sematectonic stigmergy, the stimuli are task-related, actions
such as digging a hole or building a ball of mud. These actions
change the environment, and other ants react by performing
the same or related actions: they remove more material from
the hole, or add more mud to the ball. This cooperation with
the task is not a consequence of intelligence, but simply a re-
sponse to stimuli [7]. In sign-based stigmergy, the ants de-
posit a volatile hormone (pheromone) to act as a stimulus to
other ants. The pheromone thus serves as a signalling system,
acting as a means of indirect communication, and leading to
cooperative behaviours such as trail following [7]. It is this
latter aspect of ant behaviour which is of most interest to us
here.

As has been noted, real ants are capable of finding shortest
or near-shortest paths between a food source and their colony
(nest) [4, 5, 6, 7]. For example, in Fig. 1, two ants at a food
source are faced with the choice of two alternative routes back
to the nest, one longer than the other (although this is un-
known to the ants). Faced with such a decision, and in the
absence of other stimuli, the ants appear to take a route at
random [7]. We will assume that one takes the upper longer
route, the other the lower shorter one. In the same way, two
ants at the nest are faced with a similar decision in trying to
reach the food source. Again, we will assume one takes the
longer, and the other the shorter, route. As the ants walk, they
deposit pheromone on the ground, leaving a trail. This is il-
lustrated in Fig. 2, which shows the moment when the two
ants on the shorter paths reach their respective destinations;
the other two ants are still en route. If, at this point in time, an
ant was to start out from the nest heading for the food source,
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Figure 1: Ant route choice between longer (upper) and shorter
(lower) paths (after [7])
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Figure 2: Initial ant pheromone trails (after [7])

it would detect twice as much pheromone on the lower route
compared to the upper. In the presence of pheromone, ants
appear to select routes with probability proportional to the
strength of the pheromone [4]. Consequently, the ant would
be twice as likely to take the lower shorter route. It too would
lay pheromone along the shorter path, thus further reinforcing
its attractiveness to other ants. Although pheromone gradu-
ally evaporates, a strong pheromone trail would still be laid
fairly rapidly on the lower shorter route, as more and more
ants added to it. However, the trail on the longer upper route
would soon disappear completely. The ants would then sim-
ply follow the shorter path until the food source is exhausted.

Ants, while trail following in this way, can have two prob-
lems [7]: the blocking problem and the shortcut problem. The
former occurs when a route that was found by the ants is no
longer available: it takes time for them to find a short alterna-
tive route. The latter corresponds to a new shorter route be-
coming available: such a route will not easily be found by the
ants, because their well-established current route will have a
high level of pheromone, and the probability of ants leaving
the trail to explore, and thus finding the new route, is vanish-
ingly small (while the food source remains).

2.2 Artificial ants

The foraging behaviour of real ants has been used by Dorigoet
al. [4, 8, 5] to define several variants of their general-purpose
heuristic algorithm, ACO. According to its developers, ACO
is versatile, in the sense that it can be easily used on similar
versions of the same problem; is robust, because it can be ap-
plied with minimal changes to different combinatorial optimi-
sation problems; and is a population-based approach, which

allows positive feedback to be used as the primary search
mechanism [5].

The ACO approach uses a set of agents which work as ar-
tificial ants in a cooperative way to build a solution to a prob-
lem by exchanging information via pheromone deposited on
the edges of a graph. This graph represents the environment
of the artificial ants. While moving, they build solutions and
modify the problem representation by adding collected infor-
mation to the graph [6].

Artificial ants are a particularly simple form of agent, in
that while they cannot carry out intelligent actions, they can
choose the path they follow. However, this action is not a
completely autonomous choice, because the ants choose paths
at random influenced by pheromone concentrations. Thus,
they are only making a stimulus response to their environ-
ment; the higher the concentration of pheromone, the higher
the probability that a particular path will be chosen; they are
reactive. Nevertheless, the changes in the environment are
produced by the interaction between ants; they are collabora-
tive. However, while artificial ants have memory, they cannot
learn, as although path reinforcement may seem like learning,
it is not a direct characteristic of the individual ants.

Now, while ACO is inspired by real ants, there are impor-
tant differences, as it is intended as an optimisation tool, not
a faithful simulation of ants in nature [5]. Artificial ants have
memory for storing actions they have performed or to record
places they have been; they are not completely ‘blind’, but
have ‘sight’ based on distance, pheromone levels, traffic flow,
congestion, etc.; and their environment operates on discrete
time.

For ACO to be successfully applied to a problem [8, 5], it
must be possible to represent it as a search on a graph by sim-
ple agents; a positive feedback mechanism must be identified,
equivalent to pheromone; a greedy heuristic must be incorpo-
rated to allow constructive definition of the solutions; and ap-
propriate constraints provided through the memories of the in-
dividual ants.

2.3 ACO applications

Since its first development, ACO has been applied to a vari-
ety of problem areas, only a few of which are mentioned here.
These include the travelling salesman problem (TSP) [4, 8, 5,
6]; static routing (load balancing) in circuit-switched telecom-
munications networks [7]; and dynamic routing in packet-
switched networks [9, 10].

Two of the earliest published accounts of ACO are by Col-
orni et al. [4, 8]. Their first paper [4] both introduces the ACO
approach, and describes three ACO algorithms for the TSP
(ant-density, ant-quantity and ant-cycle). The most success-
ful of these (ant-cycle) found a new optimal tour length for
a 30-city problem, as well as good tours for larger problems
(50 and 75 cities). Their second paper [8], investigates appro-
priate parameter settings, empirical computational complex-
ity, and result quality against TSP-specific heuristics, for their
earlier ant-cycle algorithm (see also x2.4 below).



A more comprehensive treatment of ACO for the TSP is
given by the same authors in [5] which, as well as restating
their earlier work [4, 8], compares ant-cycle against both tabu
search and simulated annealing. In addition, the application of
ACO to the asymmetric TSP, the quadratic assignment prob-
lem and job-shop scheduling is also described.

The ant-cycle algorithm is extended by Dorigo & Gam-
bardella in [6] to create an ACO algorithm, termed ant colony
system, for both TSP and asymmetric TSP. The ant colony
system incorporates explicit exploration into the route-choice
mechanism of the ants; focuses their search far more onto the
best tour found so far; and modifies pheromone evaporation
to include aspects of Q-learning. By further modifying their
algorithm to include problem-specific heuristics, some of the
best ever results are reported for large asymmetric TSP in-
stances.

Schoonderwoerd et al. [7] have applied ACO to the static
routing (load balancing) problem in circuit-switched telecom-
munications networks. Their ACO algorithm out-performs
both an earlier multi-agent approach [11], as well as an im-
proved variant of the multi-agent system of their own devis-
ing.

Finally, in [9, 10], Di Caro & Dorigo describe the applica-
tion of ACO to dynamic routing in packet-switched networks.
Experimental results demonstrate that their AntNet algorithm
provides best performance in average delay terms compared
to a suite of both Internet standard and state-of-the-art rout-
ing algorithms, particularly under difficult traffic conditions.
In addition, it demonstrates robust behaviour, always rapidly
reaching a good stable level of performance.

2.4 ACO for the TSP

As a further illustration of ACO, we provide a brief informal
description of Colorni et al.’s ant-cycle algorithm [4] for the
TSP.

In each algorithm cycle, one ant starts from every node
(city). Then, for each algorithm (time) step, ants choose prob-
abilistically which node to move to next, according to both the
pheromone and length of the links they are considering cross-
ing: they prefer more pheromone and shorter links. Each ant
is constrained to visit only those nodes it has not visited be-
fore (by a tabu list), until it has followed a complete tour. Af-
ter all the ants have completed their tours, pheromone is de-
posited, for each ant, on each link of the ant’s completed tour.
The pheromone deposited is greater on shorter tours (cf. real
ants); pheromone is then evaporated (a little) on all links. The
cycle is then repeated, with all ants starting from their original
nodes, for a given maximum number of cycles. The best tour
ever found is kept as the final result.

3 Multi-wavelength networks

Multi-wavelength all-optical transport networks are proposed
to form the highest layer of national and international net-
works, providing optically-transparent wavelength channels,
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Figure 3: Virtual-wavelength-path routing in a small example
network (after [12])

each capable of carrying 10 Gbit/s or more. Their optical-
path layer is formed by statically routing individual traffic
requirements (say as many 10 Gbit/s channels as are neces-
sary between each source-destination pair) using both multi-
wavelength links and optical cross connects. Each link poten-
tially consists of many fibres, and each fibre is capable of car-
rying a certain number of wavelengths. No electronic conver-
sion is used in the optical-path layer. Instead, the individual
channels are carried using either wavelength-path (WP) rout-
ing, where a single wavelength is used end-to-end, or virtual-
wavelength-path (VWP) routing, which employs as many dif-
ferent wavelengths as necessary along each path by using op-
tical wavelength conversion at the nodes. However, there are
serious technological limitations and cost implications in car-
rying more than a few wavelengths over national or even in-
ternational distances. Consequently, it is important to route
requirements through the network in a way that minimises
the network wavelength requirement (NWR). That is, the total
number of different wavelengths that are used in the network,
which is in turn equal to the maximum number needed on any
one link, or any one of the fibres comprising that link. (For
simplicity, we will only consider single-fibre links in the re-
mainder of the paper.)

3.1 Virtual-wavelength-path routing

In multi-wavelength networks, every requirement (channel)
using a link needs a distinct wavelength. However, in VWP
networks it is possible to change the wavelength used by a
requirement, through wavelength conversion, at any (and ev-
ery) node along the path. The lowest-numbered wavelength
that is free can thus be taken on each of the links used. This
is illustrated in Fig. 3, which shows a small 6-node, 7-link,
single-fibre VWP network. Consider laying the four VWP
paths shown across the network in numerical order. The first,
VWP1, can use wavelength �1 end-to-end. However, VWP2
has to employ�2 on one link to avoid clashing with VWP1. In



the same way, VWP3 has to be on �2 throughout, and VWP4
also needs to use �2 on one of its links.

Obtaining a low NWR thus amounts to distributing the re-
quirements evenly across the links, as the link with the great-
est number of wavelengths determines the NWR, while at the
same time keeping the path lengths short (in terms of both
distance and number of hops, i.e. number of links traversed).
This is because, on every link used by a path, a wavelength is
required, so paths that use more links than necessary will use
up extra wavelengths (potentially increasing NWR). How-
ever, following the shortest path will sometimes not be the
best choice, as a slightly longer path may be able to use a
lower wavelength number on some links (potentially decreas-
ing NWR).

3.2 Nagatsu’s VWP heuristic

An example of a conventional heuristic for routing and wave-
length allocation in VWP networks is that described by Na-
gatsu et al. [12]. This is a two-stage algorithm, which first es-
tablishes reasonable initial routes, and then improves these in
a second iterative re-routing stage. Wavelength assignment is
simply achieved by a greedy method, which assigns the low-
est available wavelength to each channel on a link.

The initial routing is achieved by first determining both the
minimum number of hops, and the number of channels re-
quired, between each node pair in each direction. Individual
channels are then routed in priority order, with the highest pri-
ority given to the node pair with the greatest product of min-
imum hop count and channels remaining to be routed. The
routing itself is achieved by maintaining a weight associated
with each network link; this is simply the number of channels
using it. A channel is actually routed by assigning it to the path
with the lowest sum of link weights; any affected weights are
then updated.

Once all the channels have been given an initial route, re-
routing can begin. For each iteration, two different attempts
are made to improve the NWR. Both involve identifying those
links which are carrying the highest number of channels, and
so have the maximum link wavelength requirement (LWR)
which is, of course, equal to the NWR. First, those paths
which use the largest number of maximum-LWR links are
identified as candidates, and an attempt is made to re-route
them using a minimum-link-weight path. If an improvement
in NWR is achieved, the new route is adopted, otherwise the
candidate reverts to its original route. If, after trying all candi-
dates paths, no improvement is achieved, the second attempt
is made. This time, any path which uses a maximum-LWR
link is a candidate, and they are all re-routed onto new paths
that contain the minimum number of maximum-LWR links
(excluding, in each case, those that were used by the original
paths).

Throughout, Nagatsu et al. impose an upper limit on path
length: no path is ever adopted which is more than, say, 2 hops
longer than the minimum-hop-count path between that node
pair. In addition, they impose a limit, say 50, on the number

of iterations of the second stage.

4 Applying ACO

The applicability of ACO for VWP routing and wavelength
allocation is obvious. The problem is inherently graph-based,
and the routing of wavelength channels clearly requires path-
following behaviour. However, there are still several impor-
tant factors in the algorithm design to consider.

For the TSP, only a single minimum-length tour is re-
quired, and a single ant is launched from each node in each cy-
cle [4]. Here, however, there are n(n� 1)=2 node pairs in an
n-node network, with several channels needing to be routed
between them in each direction. If the number of channels re-
quired from node i, to node j is cij , the total number of chan-
nels is:

C = n(n� 1)c =
X

8i;j

cij i 6= j (1)

where c is the average number of channels required per node
pair in each direction. Even if all the channels between a node
pair in one direction are grouped together and thus follow the
same route, an ant is required in every cycle for each such
group i.e. a total of n(n � 1) ants, with each ant using its
own (distinct) type of pheromone. As an alternative, allowing
the possibility that each wavelength channel may be indepen-
dently routed, an ant and pheromone type is needed for each
of the n(n� 1)c individual channels.

Some previous authors have explicitly introduced noise
into link choice to promote exploration [6, 7]. Thus, at a cer-
tain probability level, an ant chooses a random link, rather
than being guided by pheromone levels or other considera-
tions. Clearly, this is also a possibility for our algorithms.

In following a tour in the TSP, ants employ a tabu list to
avoid returning to nodes: they must visit each node (city) only
once [4]. However, here, ants are following a path from a par-
ticular source node to a particular destination. The paths must
not contain loops, and so each ant records the route it has tra-
versed. This route also serves as a tabu list of nodes the ant
must not revisit. However, as the ants are restricted to using
the actual network topology, rather than being able to move
freely between nodes as in the TSP, it is possible for an ant
to reach a ‘dead end’. For example, in Fig. 4 an ant is at-
tempting to move from source node 4 to destination node 0.
So far it has followed the indicated path, 4-1-3-2, as a result
of stochastic choices at each node along the way. However,
now the ant is unable to move, as it is not allowed to revisit
nodes 1 or 3. This problem is overcome in our algorithms by
allowing an ant to backtrack: it returns along its route until an
allowed choice presents itself. While backtracking, the ant re-
moves nodes from its memory of the route, as well as restoring
any modified pheromone on the links traversed. In addition,
to enable backtracking to be accomplished correctly, ants not
only maintain a record of their route, but also remember the
previous node visited. For example, the ant in Fig. 4 could
backtrack to node 3, modifying its stored route to 4-1-3. At
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Figure 4: Ant at a dead end (node 2) en route from node 4
(source) to node 0 (destination)

that point, both node 0 and node 2 might appear valid choices
(neither is on the route), but node 2 is the previous node; hence
the only valid choice is node 0.

Now, it still remains to be determined which routes are
actually used by the wavelength channels. At the end of
each algorithm cycle, each ant will have followed a partic-
ular route. However, the choices that resulted in this route
were made stochastically: the ant may not necessarily have
followed the maximum-probability path through the network.
Consequently, two distinct sets of routes are maintained by
our algorithm: a probabilistic set, which is simply the routes
taken by the ants in the last cycle, and a deterministic set,
which is the routes that would have resulted if each ant had fol-
lowed the maximum-probability path from its source to des-
tination. This is the path that would have resulted if at each
node along its route the ant had deterministically selected the
link currently assigned the highest probability (cf. [7]).

While the ants directly determine the routes used, the
wavelength allocation itself is carried out using a simple
greedy method (cf. [12]). For each route, in node-pair order,
the lowest available wavelength is used on each link traversed.
Consequently, the ants must select routes that will promote
low NWR. As was explained in x3.1, this requires that the se-
lected routes follow short paths, but at the same time, lead to
low and even loading on the network links. To achieve this,
the usual application of pheromone as an attractor has had to
be extended: the ants will generate shortest paths if they are
attracted by their own pheromone; but even loading if they
are repelled by other ants’ pheromone.

4.1 Basic algorithm

We have developed three major variants on our ACO algo-
rithm: local update (LU), global update/distance (GU/D), and
global update/occupancy (GU/O). However, they all follow
the same basic structure, as follows.

During each algorithm cycle, ants move from every source
to every destination, one link per algorithm (time) step. The
ants make their link choices stochastically, according to the
algorithm variant. Ants are destroyed when they reach their
destination although, as path lengths differ, this does not hap-
pen for all the ants in the same step. When all the ants have
died, a new cycle starts. Ants update their pheromone either
each step (local) or each cycle (global). In addition, all the

different pheromone types are evaporated (a little) each cycle.
Also, at the end of each cycle, both the probabilistic and the
deterministic routes are used as the basis for a wavelength al-
location. The best ever NWR found is stored, and forms the
final result of the algorithm.

4.2 Local Update

In order to complete our description of the LU variant of our
ACO algorithm, two further elements are required: the mech-
anism by which an ant chooses which link to take at each step,
and the pheromone-updating rule.

To promote shortest-path routes, an ant is attracted to a
link, of those attached to its current node and over which
it is allowed to move, according to the amount of its own
pheromone on the link. (Recall that an ant cannot move over
a link to a node which is either the node it has just come from,
or is already on its route.) Thus �kj , the weight of attraction
of link k for ant j, is obtained by normalising the amount of
the ant’s own pheromone type on the link, pkj , by the sum of
its pheromone over all the allowed links (from which it must
choose), i.e.:

�kj =
pkjP

i2Aj
(pij)

(2)

where Aj is the set of all links currently allowed to ant j.
In opposition to the attraction by an ant’s own pheromone,

ant j is also repelled by all the other pheromone types on
link k, given by:

Pkj =
X

h 6=j

pkh (3)

This is transformed into the weight of repulsion, �kj , of link k
for ant j by normalising over all the allowed links, i.e.:

�kj =
PkjP

i2Aj
(Pij)

(4)

Finally, we combine the two weights into the probability, kj ,
that ant j will take link k:

kj =
�kj=�

"
kjP

i2Aj
(�ij=�"ij)

(5)

where " is a constant. By dividing �kj by �kj , we ensure
that the probability kj increases with the weight of attraction
and decreases with the weight of repulsion. The use of " en-
ables us to vary the relative dependence of probability on the
two weights. Further, normalising over all the allowed links
makes kj a valid probability measure, as:

X

i2Aj

ij = 1 (6)

As an example of the operation of ant choice in local up-
date, consider the ant, type 0, in Fig. 5. It is faced with the
choice of three links, labelled 0, 1 and 2, all of which we as-
sume are allowable choices. The table in the lower right of the
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α20 = 1/6
β20 = 4/9
γ20 = 1/9

α10 = 3/6
β10 = 3/9
γ10 = 4/9

α00 = 2/6
β00 = 2/9
γ00 = 4/9

Figure 5: Example of ant link choice for the LU variant

figure records current pheromone levels, not only for ant 0, but
also for two other ants, 1 and 2, on all three links. The sum of
pheromone type 0 on all three links (the first column of the
table), is 6. Consequently, applying Eq. 2, gives the weights
of attraction for the three links as �00 = 2=6, �10 = 3=6
and �20 = 1=6 for the three links 0, 1 and 2, respectively.
In the same way, with the sum of other ants’ pheromone 18,
the weights of repulsion from Eq. 4 are 2/9, 3/9 and 4/9, re-
spectively. Finally, applying Eq. 5 with " = 1, we arrive at
probabilities for the three links of 4/9, 4/9 and 1/9, respec-
tively. Thus, although the greatest concentration of ant 0’s
own pheromone is on link 1, this is counterbalanced by a con-
centration of other ants’ pheromone, leading to a tie between
links 0 and 1. Link 2, with both a low level of pheromone
type 0, and high concentrations of other types, is reduced to
a poor third.

For the pheromone-updating rule, we adopt that used by
Colorni et al. [4, 8, 5] for their ant-density algorithm. Thus
on each algorithm step, every ant deposits a fixed quantity of
pheromoneQ of its own type on the link it used (local update).
Hence:

pt+1kj = ptkj +Q (7)

where ant j used link k in time step t. Pheromone evapora-
tion simply reduces the level of pheromone on all links by a
factor �, termed the evaporation coefficient, at the end of the
last step of each cycle T [4, 8, 5], i.e.:

pt+1kj = � � ptkj 8j;8k; t =
TX

i=1

si (8)

where si is the number of steps in cycle i.

4.3 Global Update/Distance

The second major variant of our ACO algorithm, GU/D, uses
the same link-choice mechanism as local update. However,
the pheromone-updatingrule (Eq. 7) is changed from local up-
dating by each ant on every step, to global update at the end
of each cycle. Our rule is similar to that employed by Col-
orni et al. [4, 8, 5] for their ant-cycle algorithm, although here,
rather than using TSP tour-length to bias the pheromone quan-
tities added, we use the length of the route followed by the ant.
Thus:

pt+1kj = ptkj +Q=LT
j 8j;8k 2 RT

j ; t =

TX

i=1

si (9)

where LT
j is the length of route RT

j followed by ant j in cy-
cle T . It should be noted that the path lengths, LT

j , were as-
sessed here in terms of distance, rather than hop count.

4.4 Global Update/Occupancy

The third and final major variant of our ACO algorithm, while
still using global update (Eq. 9), modified the link-choice
mechanism by introducing a different assessment for weight
of repulsion. Instead of other ants’ pheromone, this is based
on link utilisation, uk, which is assessed by counting the num-
ber of ants of any type crossing link k. However, uk is also
evaporated, just like pheromone, at the end of each cycle.
Thus:

ut+1k = utk +
X

j

xtkj (10)

where xtkj = 1 if ant j used link k in step t and 0 otherwise.
In addition:

ut+1k = � � utk 8k; t =

TX

i=1

si (11)

Furthermore, Eq. 4 for the weight of repulsion of link k for
ant j is replaced by:

�kj =
ukP

i2Aj
(ui)

(12)

It should be noted that, unlike in Eq. 4, the weight of repul-
sion for ant j now includes an indirect contribution from the
activities of ant j itself, as well as that of the other ants.

5 Experimental results

To assess the different variants of our ACO approach to rout-
ing and wavelength allocation for VWP transport networks,
we adopted three test networks. The first of these has 4 nodes
spread over a 100 km � 100 km area, an applied traffic of
150 Gbit/s, and requires a total of 20 wavelength channels



(10 Gbit/s each). The topology was hand-crafted, and con-
sists of just 5 links. The second network consists of the 9 cen-
tral nodes of the European Optical Network, with a topology
obtained by Sinclair using a bit-string genetic algorithm [13].
The traffic requirement is 515.4 Gbit/s, equivalent to 98 chan-
nels, and it has 17 links. The node locations and traffic de-
mand of the final network were generated using the approach
described by Griffith et al. [14], although further modified to
ensure reasonable node separations. It has 15 nodes, covers
a 1,000 km � 1,000 km area and carries an overall traffic
of 1,500 Gbit/s, requiring 268 channels. The network topol-
ogy, of 36 links, was obtained using the genetic-algorithm/
heuristic hybrid described by Sinclair [15].

As a benchmark for the ACO algorithms, we adopted
the well-regarded VWP routing and wavelength allocation
heuristic described by Nagatsu et al. [12] and summarised
in x3.2 above.

From initial trial runs, we found that using only one ant for
each node pair, in each direction, produced consistently bet-
ter results than requiring one for each individual wavelength
channel. Furthermore, while we used the recommendations of
earlier authors [5] and trial runs to establish suitable parameter
settings for our algorithm variants, we have yet to carry out an
exhaustive investigation. In addition, while we explored in-
troducing noise into our algorithms using a few trial runs, this
did not appear to be beneficial in final result quality.

For LU, we adopted � = 0:5, Q = 1, " = 2 and a maxi-
mum of 30 cycles; although this latter figure seems low, stag-
nation always appeared before this point, with all ants follow-
ing the same routes as during the previous cycle. The GU/D
parameters used were � = 0:5, Q = 5, " = 5, and again a
maximum of 30 cycles due to stagnation. Finally, for GU/O,
we took � = 0:9, Q = 0:5, " = 5, and were able to use 250
cycles without route stagnation. For all three variants, we ini-
tialised both the pheromone, for all links and all ants, and the
link utilisations (for GU/O), to 10.

We applied the three algorithm variants and Nagatsu et
al.’s heuristic to all three networks, in each case for ACO us-
ing five runs with different pseudo-random seeds. The best of
five runs, or the single run for Nagatsu, are recorded in each
case in Table 1.

There is a clear progression in solution quality as we move
from LU to GU/D to GU/O, with the latter algorithm able to
approach the solution quality of Nagatsu et al.’s well-regarded
and highly problem-specific heuristic. Nevertheless, there is
still some room for further improvement.

The progress of a typical ACO run is shown in Fig 6, for
GU/O (with an ant for each individual channel) on Network 3,
illustrating both the probabilistic and deterministic NWRs for
each cycle. In cycle 0, the very high value for determinis-
tic NWR (233) is an artifact of initialisation, as all links start
with equal pheromone values, and so there are no maximum-
probability routes to follow. After this point, the deterministic
NWR is consistently better than the probabilistic, as a conse-
quence of the ants laying down a good pattern of pheromone.

Net. Nodes Nagatsu LU GU/D GU/O

1 4 5 7 5 5
2 9 11 27 17 12
3 15 13 50 32 15

Table 1: NWR results for Nagatsu and the three ACO variants

Over the course of the run, both types of NWR gradually im-
prove, with the probabilistic converging on the determinis-
tic. This corresponds to the individual ants themselves more
closely following the deterministic allocation routes, as their
pheromone trails are progressively reinforced.

It should be noted that run times for our ACO approach
were quite long. For example, on Network 3, a run of 250 cy-
cles, with ants for individual channels, required about 2 hours
20 minutes on a Sun UltraSPARC 5 using Sun’s JIT Java 1.1.3
compiler. However, our focus in developing the implementa-
tion was on correctness, rather than program speed, and it is
anticipated that this figure could be significantly reduced. Ex-
ecution of the Nagatsu heuristic takes about 20 seconds on the
same platform.

6 Conclusions & further work

We have described the novel application of Ant Colony Op-
timisation (ACO) to routing and wavelength allocation in
multi-wavelength all-optical transport networks employing
wavelength converters. Three algorithm variants were pre-
sented, and these were compared experimentally against the
well-regarded wavelength-allocation heuristic of Nagatsu et
al. [12]. Our global update/occupancy (GU/O) algorithm ap-
proaches the solution quality of the Nagatsu heuristic, al-
though at much higher computational cost.

In further work, it will be possible to carry out more de-
tailed investigation of the appropriate parameter settings for
our algorithms. Adopting a hop-count-based, rather than
distance-based, global pheromone-updating rule may prove
beneficial, as NWR is more sensitive to path hop count than
path length. In addition, it is anticipated that incorporating
problem-specific heuristic elements into our ACO approach,
as has been done by Dorigo & Gambardella [6] for the TSP,
would improve both algorithm efficiency and solution qual-
ity. For example, rather than simply using ant numbers, as
in GU/O, the weight of repulsion could be derived directly
from the link wavelength requirement in the previous cycle(s).
Also, the second stage of Nagatsu et al.’s heuristic, say, could
be used to improve the final route choice. Moreover, the more
difficult area of wavelength-path routing (i.e. no wavelength
conversion) remains to be tackled with ACO.
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