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Trip, AntNet and CAF routing on 25 simulations with identical Poissonian tra�c
(� = 0:25) on the represented network.

In order to validate our algorithms and to compare them to already existing
approaches, we have designed a network simulator. For the moment, this simulator
has reduced functionalities but �ts well to our �rst needs. In particular, it makes
it possible to de�ne and play dynamic scenarii and to validate the behaviour of
our algorithms in numerous contexts. In this respect, it helped us to con�rm the
potentialities and the bene�ts of our model when dealing with network changes.

One of the main characteristic of the algorithms presented here is that they rely
on two or three parameters only. Moreover, it is our experience that the range of
e�cient values for these parameters is rather large. This contrasts with many other
optimisation heuristics.

The work in progress aims at two activities. The �rst one is to implement these
algorithms on a realistic network simulator (we are currently working with results
from the simulator. Another phase would be to implement the algorithms on a
real set of routers and to gather results. The second in progress activity aims at
investigating the approach in the context of Quality of Service. We believe that our
proposed algorithms are of the highest interest for o�ering di�erentiated services,
fault tolerant networks, and to deal with communication bursts in a timely manner.
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Figure 4: The average packet delay and the average number of waiting packets for
Q-Routing, Improved Round Trip, AntNet and CAF routing on 25 simulations with
identical random tra�c loads on the network represented at the center. Vertical
lines represent standard deviations.

react in a similar way to link failures. The transient after the network modi�cation
at iteration 300 is larger than the initial one. This is due to the presence of a large
number of packets saturating the queue bu�ers after the modi�cation.

Figure 7 shows the algorithm responses to the creation of hot spots. Between
iteration T1 and T2, the emission probability of a node s is instantly increased. This
results into an important tra�c addition to the random one described before. This
additional tra�c originates from s toward random destinations.

All the algorithms show oscillating responses to this hot spot with a larger
amplitude for the AntNet however which, on the other hand, has also a lower
frequency due to its intrinsic low pass �lter. CAF routing algorithm dynamically
adapts its response to the tra�c change with only a small transitory period. At the
hot spot completion, the algorithm responses return to their normal behaviours.

6 Conclusion

In this paper, we have presented a new scheme based on agents for routing in
communication networks. Our approach combines the bene�ts of the asynchronous
distance vector routing with the adaptive link state routing approach. Moreover, we
have addressed asymmetry in communication links with the CAF algorithm (Co-
operative Asymmetric Forward) which is also derived from the previous modules.
Our proposed algorithms are able to react and to deal with numerous changes in
the communication bandwidth and the network topology: e.g., link removals, band-
width reduction on a set of communication links. We believe that these properties
are of the highest interest and can contribute to Quality of Service for network
communications.
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packets anymore and packets must sometimes wait on the transmission link bu�ers.
To keep the average packet delay \reasonable" while crossing the network, adaptive
load balancing must be introduced. In the simulations presented here, the delay
associated with a transmission link { which is mainly due to the time spent in
bu�ers before transmission { is used as the metric. Other metrics should be tested
to further enhance the e�ciency of the presented algorithms (e.g. [13], [16]).

In the sequel, the total tra�c load (data plus routing tra�c) will be more or less
kept constant between simulations, close to the congestion level associated with the
given bandwidths. We try to minimise the routing tra�c and a routing overhead of
4%5 , 8%, 8% and 20 % has been respectively used for CAF, Round Trip, Q-routing
and AntNet routing. Each method keeps the same parameter set throughout the
simulations. For Q-routing, we use � = 4 and � = 0:5; for Round Trip Routing,
we use � = 4 and � = 0:1; for AntNet we set the (c; a; a0; �; h; t) parameters as
de�ned in Di Caro and Dorigo's paper [11]) to (2; 10; 9; 0:7; 0:04; 0:5); and for
CAF (�; �; �r) parameters we chose (4; 0:55; 0:6).

5.2.1 Load Balancing

Figure 4 studies the initial convergence in the case of a random tra�c load. It
compares the average packet delay and number of waiting packets for Q-routing,
AntNet system, Improved Round Trip and CAF routing algorithms. It clearly ex-
hibits a faster convergence for CAF routing and this with a lower routing overhead.
The initial peak is due to the delay and local saturation resulting from the random
values assigned to the routing table at the beginning.

Figure 5 similarly shows the waiting packets in the case of non uniform tra�c
load in which the packets are emitted from each node to a random destination
following a Poissonian distribution. At each Poissonian event (� = 0:25), a number
of packets (around 136 here) are emitted toward a single destination. In this case
also, CAF routing perform better than the other algorithms, but the advantage is
smaller than previously. We believe that this smaller advantage is probably more
due to the way the non uniform tra�c is generated in the current version of the
simulator: when the packets are created indeed, they enter the bu�ers before being
really emitted; the time spent in these initial bu�ers is also taken into account in
the statistics and depends more on the limited bandwidths than on the e�ciency of
the routing algorithm itself. Early results on implementing other tra�c types seem
to con�rm this hypothesis.

5.2.2 Dynamic Load Balancing

So far, only the intrinsic environment variations due to the limitations on transmis-
sion link bandwidths has been studied. We will now study the algorithm responses
to sudden modi�cations in the network by exchanging bandwidth on "close" links
and by creating hot spots on some nodes.

At the beginning of the simulation represented on Figure 6 the bandwidth asso-
ciated with link (0, 8) is much higher than the one associated with link (0, 11). At
iteration 300, the network exchanges the two bandwidths and the tra�c that origi-
nally went through link (0, 8) immediately saturates. Delays increase and new load
balance has to be found. AntNet responds with an important transient before re-
turning to normal. This transient decreases with round trip routing, Q-routing and
CAF routing. The peak of waiting packets after the bandwidth exchange around
iteration 300 is followed by a burst in the mean delay. The presented algorithms

5If the reverse distance vector cannot be directly updated by the data tra�c for e�ciency
reasons, an additional reverse routing tra�c can be used instead. In this case, the routing overhead
will double.
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Figure 3: The curves in b) show the sum of the average cost on 25 runs, for all
packets transiting in the symmetric network represented in a) over a sliding time
window of 10 iterations. The packet cost is here the number of hops it takes for a
packet to reach its destination. (Vertical lines represent standard deviations.) The
horizontal line is the optimal mean number of hops given by the Dijkstra algorithm.
The routing tables are initialised at random and the hop counter is only incremented
when the packets reach their destination. (This explains the slow values observed
at the beginning). The tra�c load is uniform: 35 data packets are fed into the
network per iteration, with random source and destination nodes, while 20 routing
packets per node are maintained in the network.

5 Experimental Results

This network simulator is used to compare the di�erent routing algorithms presented
in the previous sections. We �rst consider some static environments associated with
a random tra�c load pattern (each node sends packets to a random destination at
an uniform rate) and a Poissonian tra�c load. The dynamic of these algorithms
is then studied by restricting the bandwidths under the same random tra�c load.
This generates bu�ering delays on transmission links that sometimes lead to os-
cillating responses. Finally, we study the reaction of the algorithms to simulated
events like hot spots (a bursting node emits many packets during a given period of
time), bandwidth changes and link failures. In all the results presented here, the
simulation were initialised with a uniform probability and the data packets started
to be emitted from the very beginning.

5.1 Routing in Static Environments

We simulate static environments by considering symmetric networks with the num-
ber of hops as metric and with no restriction on the bandwidth. Simulations have
been performed on a simpli�ed network (Figure 3) which is su�cient to highlight
the faster convergence of forward routing against the round trip one. Furthermore,
they show the advantage of the improvement based on Bellman's principle presented
in Section 3.

5.2 Routing in Dynamic Environments

As soon as we add some bandwidth constraints, the network becomes asymmetric
due to the delay metric: the transmission links cannot handle all the incoming
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with the packet destination d on all the visited nodes n are updated as follows:

Dn
j;d(t) = (1� �)Dn

j;d(t� 1):

4 A Network Simulator

In order to compare these routing algorithms, a simpli�ed network simulator has
been designed. Dedicated to routing algorithm testing however, it does not im-
plement all the network OSI layers. For example, connections are supposed to be
perfect and packets are produced by simple random processes instead of simulated
sessions or clients. Practically, it is a synchronous discrete event simulator running
on a directed weighted graph representing the network. Every node is a router iden-
tical to the others. At each iteration, incoming packets are routed depending on
their type (routing or data packets), then pushed to the bu�er corresponding to the
chosen outgoing link. These bu�ers are supposed in�nite: packets are queued but
never discarded and there is no congestion control other than the routing algorithm
itself.

At each iteration, every link processes a given amount of waiting packets ac-
cording to its associated parameters: bandwidth and delay. The bandwidth is the
number of packets a link can take by unit of time, and the delay is the minimum
time that it takes for a packet to pass through the link. All the packets appear
similar to the link: this does not allow us to compare algorithms by considering the
amount of data carried by each routing packet, only their number is critical. Actu-
ally, it should be noticed that for all the algorithms presented here, routing packets
share basically the same structure and carry approximately the same amount of
information; they di�er only in their behaviours.

The network load is provided by Poissonian random processes. The basic tra�c
load is uniform: every node generates packet at a uniform rate with a random
destination. Other non-uniform tra�c patterns have been tested including the
existence of hot spots: a node emitting a large amount of packets over a given
period of time. And, in order to test the algorithm reactions in a dynamic context,
the simulator also includes events such as link breakdowns or sudden parameter
changes.

All the algorithms presented here use probabilistic routing, i.e. the routes are
selected, following a random scheme, proportionally to the routing table values that
give the probability of selecting a link for a given destination node. To improve the
exploration of new routes however, there is also a tiny probability (between 0.05 and
0.01) of choosing the next hop with a uniform probability amongst the neighbouring
nodes. Compared to deterministic routing, this method makes it possible to achieve
load balancing, as ows in the network are naturally split among the di�erent
available routes.

To evaluate the result of each simulation we use several measurements: through-
put, average delay on the network, number of waiting packets. The throughput is
the number of packets (or the amount of information) that went through the net-
work during one unit of time. The average delay experienced by all the packets
arrived during a given interval of time gives another view of the general status of
the network. The number of waiting packets, which is just the sum of the sizes of
all the queues bu�ering the links, shows congestions very e�ciently. In the case of
in�nite bu�er lengths, the average packet delay is highly correlated with the overall
throughput. Therefore, only the results associated with the delay metrics will be
presented here.

9



puts into practice Bellman's principle of optimal path decomposition. The routing
table probabilities pij;s of selecting link (i; j) are given by Equation (4).

3.2.2 CAF Routing

The Co-operative Asymmetric Forward routing (CAF routing) extends symmetric
forward routing steps to asymmetric networks for which the estimate of the distance
between two nodes in one direction cannot be used in the other direction. The basic
idea of this algorithm is to switch routing packets di�erently as if there were tracing
back their way from their destination to their source and to use the cost estimated
by tra�c moving in the opposite direction to update the routing tables.

Let Fk be a routing agent emitted by a node s with a destination node d. Since
the network is supposed to be asymmetric, the cost dks;n encountered by Fk arriving
on a node n through a link (j; n) cannot be considered as previously (Section 3.2.1)
as a valuable estimation of the distance toward s for other agents arriving on n

from another direction. It consequently cannot be used directly for updating the
distance vector element Dn

j;s anymore. The cost dkn;jused in the update of Dn
j;s is

now estimated by the tra�c moving in the opposite direction (i.e. from n to j).
Hence, the cost T j

n associated with the last packet arriving on j from n is stored on
j and, when a routing agent Fk leaves j to go to n it pushes the pair (j; T j

n) on a
stack Sk. The arrival of Fk on n entails the following update of Dn

j;S:

Dn
j;s(t) = (1� �)Dn

j;s(t) + �dkn;s

where dkn;s is here the sum of each arc distance stored on Sk and measured by
routing agents moving in the opposite direction. We also add, as in the previous
section, the improvement based on Bellman's principle.

To ensure a correct distance vector update in the asymmetric case however, the
data packets and the routing agents have to be routed di�erently. Data packets are
routed on a node n as previously following Equation (4) with new Dn de�nition.
For routing agents, the basic idea is to switch them di�erently as if they were
tracing back their way from d to s. As a consequence, in addition to maintaining
the routing table from distance vectors in one direction we must now also compute
the routing tables for reverse routing tra�c. Let Rn be a \reverse routing table"
whose elements Rn

j;s keep track on n of the link (j; n) usage by tra�c originating
from s; at the arrival of a data packet on n from s through (j; s), all the elements
of Rn associated with destination s are multiplied by �r (this implements the time
window negative exponential) and Rn

j;s is incremented by one. The routing agents
are then routed on n according to the following probabilities

rpnj;d(t) =

�
Rn
j;d(t)

��
P

l

�
Rn
l;d(t)

�� : (5)

Maintaining these reverse routing table probabilities allows the CAF agents origi-
nating from s to be routed along the path used by information packets coming in
the opposite direction, i.e. with a destination s.

Forward routing also requires a special treatment of detected loops to e�ciently
deal with dynamic changes in the network. In the case of a connection failure for
example, the information about the open connection cannot be forwarded to the
nodes on the other side, but it can at least be backpropagated on the previously vis-
ited nodes. Once a loop is detected4 in our approach, the distance vector associated

4A loop is detected by agent k on n when every outgoing link (n; j) leads to an already visited
node j, i.e. j is already on the agent internal stack Sk.
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inherent to distance vector algorithms they use a low pass �lter in maintaining a
list of estimates over a given moving time period of arithmetic mean values of the
distances and their associated variance for all node n in the network. These val-
ues are then periodically used to directly update the routing tables. Their AntNet
system has been shown to outperform OSPF and Bellman-Ford algorithms in their
simulations3 (see [11], [10] for more details and developments).

3.2 Forward Agent Routing

Backward routing is intrinsically slow since it requires the agent to reach its desti-
nation before any update to begin. This slow round trip reaction to changes in the
network might induce oscillations. Forward routing o�ers an alternative by remov-
ing the need of round trips. It was �rst introduced by Schoonderwoerd et al. [17] in
the case of virtual circuit based symmetric networks (e.g. identical costs associated
with both link directions). We extended it to packet-switching symmetric networks
and we added the optimisation based on Bellman's principle previously mentioned
[6]. Subramanian at al. made the connection between Schoonderwoerd et al. work
and reinforcement learning [18]. This paper extends this approach to asymmetric
networks (e.g. packet-switching networks in which asymmetric delays occur due to
di�erent queue lengths). If the network is symmetric, the cost measured by forward
agents on their path from the source to the current node can directly be used to
update the estimation of the distance toward the source from the current node. For
asymmetric networks, this cannot be done anymore. Subramanian et al. [18] avoid
the problem by de�ning agents that choose the next node to visit randomly (i.e.
with identical probability of choosing a neighbour node). But this random routing
scheme annihilates any desirable auto-catalytic e�ect previously mentioned. This
paper introduces a more e�cient asymmetric forward routing: CAF routing.

3.2.1 Symmetric Forward Routing

Schoonderwoerd et al. [17] introduced symmetric forward routing in the context of
virtual circuit-based networks in which bandwidth is allocated during transmission
on the links between the origin and the destination of the call. Bandwidth is a
limited resource and tra�c should be adequately balanced. The performance of the
network in this case is often measured by the proportion of calls which could be
placed on the network in a given period of time.

Routing agents travel in the network and count the number of hops from the
beginning of their journey. This routing metric is symmetric and the distance
estimation can be used by the agents coming in the opposite direction for deciding
of the route to be taken. Each time a routing agent arrives from the source s on
a node n, the distance measured from s to n can directly be used to update the
estimation of the distance toward s for other agents arriving on n from an other
direction.

Schoonderwoerd et al. method is adapted here to packet-switching networks
and their update scheme is slightly modi�ed. Each time a routing agent Fk arrives
on node n through link (j; n) from s, the estimated distance Dn

j;s to reach s through
link (n; j) { which is equivalent to (j; n) due to the symmetry property { is updated
as in (3) and becomes

Dn
j;s(t) = (1� �)Dn

j;s(t� 1) + �dkn;s

where dkn;s is the distance measured by Fk between s and n. We augment this
method with the e�cient improvement described previously (Section 3.1.1) which

3The implementation presented here correspond to the one found in the �rst given reference.
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time spent in queues plus transmission delay. The associated cost dkn;d between n

and d is the sum dkn;j1 + dkj1;j2 + ::: + dkjm;d of each cost between n and d on the
journey Jk. As soon as Fk reaches the destination d, a backpropagating agent Bk

is sent from d to s on the arcs of Jk. The arrival of Bk on a node n of Jk from a
node j updates the estimation of Dn

j;d(t) as follows:

Dn
j;d(t) = (1� �)Dn

j;d(t� 1) + �dkn;d (3)

where � is a learning parameter as de�ned previously in Section 2.4. On Figure 2,
taken as an example, when a forward agent Fk arrives on node n from source s it
pushes the pair (s; dks;n) on its stack. Arriving on destination d, the stack containsn
(s; dks;n); (n; d

k
n;s1

); (s1; d
k
s1;d

)
o
. When the associated backpropagating agent Bk

arrives on n from s1 it updates the D
n
s1;d

value as follows:

Dn
s1;d

(t) = (1� �)Dn
s1;d

(t� 1) + �(dkn;s1 + dks1;d):

In [6] we introduce a very e�cient improvement that updates all distances cor-
responding to intermediate nodes visited by the agent at once. We apply the well-
known Bellman's principle of decomposing an optimal path into optimal sub-paths.
Every intermediate node on Jk is treated like a destination and its associated dis-
tance is updated according to the relative distance between that visited node and
the current updating ones. This is as if the set of routing agents associated with the
source-destination pair s-d were duplicated on each node such that each new set is
associated with an intermediate node on Jk taken as a destination - this is the rea-
son why we called this approach "multiple round trip"-. On node n from Figure 2,
for example, the backpropagating agent Bk updates { in addition to updating Dn

s1;d

as previously described { the distance vector for the intermediate node s1:

Dn
s1;s1

(t) = (1� �)Dn
s1;s1

(t� 1) + �dkn;s1 :

The routing table on n; which gives the probability pnj;d of selecting each arc
(n; j) linked to n for a packet with destination d, is then periodically recalculated
at every time step t as follows1:

pnj;d(t) =

�
1

Dn
j;d

(t)

��
P

l

�
1

Dn
l;d

(t)

�� (4)

with � is a non-linearity parameter taken superior to 1 to favour short paths.
In order to deal with the dynamics of the networks (i.e. link breakdowns etc.)

that force forward agents to loop back to a previously visited node, a special treat-
ment has been added. Instead of simply destroying the agent, the valid distance
information gathered so far is backpropagated. Hence, when an agent with desti-
nation d arrives on n through arc (j; n) and detects a loop, it simply returns to the
previously visited node j and starts a standard backpropagation from there, as if it
would have reached its destinations j (and not d).

3.1.2 AntNet

Di Caro and Dorigo's AntNet system [9] uses similar forward agents with a di�erent
loop detection behaviour2 but with more complex backpropagating agents and a dif-
ferent routing table update procedure. Indeed, in order to minimise the oscillations

1Computing the routing table and updating the distance estimation could be combined for
e�ciency but we keep them separate here for clarity reason.

2Di Caro and Dorigo simply erases the loop from the agent memory and let them continue with
the risk of falling in the same loop again.
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Figure 2: The path followed by a packet/agent P from s0 to d with the associated
measured distances dks;n; d

k
n;s1

and dks1;d.

For routing and load-balancing, we consider two types of agents depending on
when the distance vector is updated. This update can either be performed by rout-
ing agents going from the source to the destination (forward routing) or by agents
retracing their way back to their source (round trip routing). We �rst present
two versions of round trip routing: an original approach derived from the online
asynchronous distance vector routing algorithm presented in Section 2.4. [14] and
the AntNet system that has been shown to outperform many aspects of the OSPF
and Bellman-Ford routing algorithms on a packet-switching network simulator by
Di Caro and Dorigo [11] and [10]. We propose an e�cient improvement based on
Bellman's principle that increases the transmission of information on the network
between agents [6]. The advantages of forward routing are then presented for sym-
metric and asymmetric networks. We review the Schoonderwoerd et al.'s approach
on forward routing [17] which has been developed in the context of virtual circuit
based symmetric networks and extend it to packet-switching symmetric networks.
Finally, we propose a very e�cient new forward routing method in the general con-
text of asymmetric packet-switching networks: CAF routing (Co-operative Asym-
metric Forward routing).

3.1 Round Trip Agent Routing

Round trip routing is based on two sets of homogeneous mobile agents, respectively
called the forward agents and the backpropagating agents. The forward agents share
the same queues as data packets and use the same routing tables. They keep
track of their journey and the associated costs between hops in an internal stack.
Forward agents also implement a mechanism to avoid loops in their routes. The
backpropagating agents retrace their way back to the source and update the distance
vector accordingly. These bactracking agents however have a higher priority over
data for a faster propagation of the accumulated information.

3.1.1 Multiple Round Trip Routing

We �rst implemented round trip routing as a Monte Carlo extension to the online
asynchronous distance algorithm presented in Section 2.4. Each node emits a set
of forward agents and, in the case of multiple round trip routing a backpropagating
agent is associated with each forward agent. For a greater intelligibility, we only
describe the steps of the algorithm for a single forward agent Fk originating from
any node s (source node) of N and going toward any node d (destination node) of
N . We �rst detail the updates of the distance vectors Dn and then, we look at the
probabilities pn of arc selection in the routing tables.

The forward agent Fk keeps track of its journey Jk from s to d and of the
associated cost dkn;d between any node n and d on Jk de�ned as, for example, the
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cost. Once again, let Di
n;d be what node i estimates it costs to deliver a packet

toward destination d by way of its neighbour node n. This estimates could then be
incrementally improved by direct feedback from the measured cost when the packet
reaches its destination.

Following reinforcement learning [15], the estimates can be updated locally be-
fore the packet reaches its destination. As described in [7] indeed, on sending a
packet to n, i immediately gets back n's estimate of the cost associated with the
remaining part of the trip, namely minj2N(n)fD

n
j;d(t�1)g where N(n) is the neigh-

bour node set of node n. At time t, i revises its estimate as follows:

Di
n;d(t) = (1� �)Di

n;d(t� 1) + �(di;n +minj2N(n)fD
n
j;d(t� 1)g) (2)

where � is the so called reinforcement \learning rate" of the gradient descent. In-
stead of synchronously updating all distance vectors as in (1) only Di

n;d is here
asynchronously updated online every time a packet uses arc (i; n) on its way to
destination d.

Choi and Yeung [8] further improve this algorithm by keeping track of congested
paths (which usually correspond to optimal paths) and by periodically probing them
for recovery.

3 Agent-Based Routing

The new family of algorithms presented here is an extension to these classical algo-
rithms: it combines the ideas of online asynchronous distance vector routing with
adaptive link state routing. As in online asynchronous distance vector routing, the
associated costs are directly measured from the network tra�c instead of being
estimated by each node according to on-site data (e.g. from the waiting bu�ers
length). Here, at regular interval, every network node emits a set of routing agents
- usually implemented as routing packets that share the same transmission line and
waiting queues with the data packets - which measure, for example, tra�c delays
and allow an online and asynchronous update of the routing tables. From link state
routing, these new methods retain the idea of keeping topological information about
the network. But instead of having an identical map of the network duplicated on
the nodes, the topological information is here distributed on the routing agents
themselves. Every routing agent memorises the sequence of switching nodes visited
during its journey. The data packets select their next hop, following a probabilistic
scheme function of the information stored in the routing table. Instead of broad-
casting the topological information from a node to the whole network, as in OSPF
for example, the routing agents incrementally update the distance vectors as they
move along the network nodes. The important point is that each update on a node
can immediately inuence the routing on this node which in turn further inuence
the agents arriving afterwards.

This process of information transmission creates an autocatalytic e�ect similar
to the so-called "stigmergy process" which explains the collective behaviour of some
social insects and which has inspired the approaches described here. Stigmergy is a
collective co-ordination process based on indirect communication between individ-
uals only (usually through chemical substances called pheromones laid down in the
environment). Dynamic structuring phenomena have been highlighted in some in-
sect societies indeed; in particular, some entomologists have shown that the shortest
path between an ant nest and a food source can emerge from pheromone trail lay-
ing and following behaviours between non directly communicating individuals [2].
Ants returning to the nest from a food source leave pheromone behind them, this
pheromone trail attracts other individuals which in turn reinforces the pheromone
trail. This auto-catalytic reaction makes the shortest path to rapidly emerge.
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Figure 1: The Bellman-Ford algorithm updates the distance vectors on node i by
combining the known distances di;n and the best estimate from the neighbour nodes
for the remaining part of the path.

by allowing non-deterministic routing along a small number of best routes. But all
of these algorithms fail to work properly with very dynamic networks.

2.2 Adaptive Distance Vector Routing

Dynamic distance vector routing periodically updates the distance vectors by ex-
changing information between neighbours. The Bellman-Ford distance vector rout-
ing algorithm [3], for example, was the original ARPANET routing algorithm and
was also used in INTERNET under the name RIP. It is based on the principle of
dynamic programming [4]: an optimal path is made of sub-optimal paths. Each
node i periodically updates its distance vector from the distance vector regularly
sent by its neighbours as follows:

�
Di

n;n(t) = di;n; 8i;
Di

n;d(t) = di;n +minj2N(n)fD
n
j;d(t� 1)g; 8i; 8n 6= d

(1)

where Di
n;d(t) is the cost estimated by i for delivering a packet from i to d by the

way of the neighbour n at time t as shown on Figure 1, and where di;n is the known
distance between i and its neighbour n.

Although this procedure converges to the correct answer, it may do so slowly.
In particular, this procedure is known to react promptly to good news (e.g. a new
transmission lines) but slowly to bad news (e.g. a link failure) [19] and it is also
prone to oscillations [5]. For these reasons, it is nowadays often replaced by link

state routing.

2.3 Adaptive Link State Routing

The link state algorithm essentially maintains a dynamic map of the complete net-
work. This dynamic map is replicated on each router and is used to estimate the
optimal distances between nodes (usually with Dijkstra's algorithm). Each node pe-
riodically broadcasts its routing information to all destinations with a distributed
ooding mechanism [19, 5] trying to minimise the number of re-transmissions. The
metric usually estimates the delays between a node and its neighbours based on the
queue lengths on transmitting and receiving nodes.

The OSPF protocol, which is increasingly being used in the Internet, uses such
a link state algorithm.

2.4 Online Asynchronous Distance Vector Routing

Recently, Boyan and Littman [7] propose an online and asynchronous version of
the Bellman-Ford distance vector algorithm based on reinforcement learning [4].
The routing policy tries to �nd the optimal adjacent node the current node should
send its packet to, in order to reach the destination with a minimal associated
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from routing packets sent in the network by the routers. These routing packets
mix with the regular information packets and keep track, for example, of the delays
encountered during their journey.

In the �rst part, we recall the basic principles of the classical routing algorithms.
The new class of distributed routing and load-balancing algorithms is detailed in
Section 3. We present a uni�ed overview of the literature related to this new family
of algorithms and we propose two new approaches. The network simulator used to
test these new protocols is described in Section 4 and comparative results are given
in Section 5.

2 Classical Routing Algorithms

Historically, the routing algorithms used in communication networks have evolved
from static routing in which \good routes" are computed o�-line to more dynamic
routing in which the routes are computed online to take the node congestion level
into account. Classical routing protocols were successively based, for example, on
Static Routing, Adaptive Distance Vector Routing in which the routing tables are
regularly updated and Adaptive Link State Routing which also maintains a map
of the network topology and load pattern on each of its nodes. This evolution
is associated with an increase in the number of routing packets transiting on the
network. However, these routing algorithms react rather slowly to changes in the
network load or topology and they are prone to oscillations. In addition, these
algorithms face a major increase in their required memory when several metrics are
taken into account for guaranteeing di�erent qualities of services.

Throughout this paper we consider that the topology of the telecommunication
network is modelled by a non directed weighted graph G = fN;Ag with a node set
N and an arc set A. At each node n of N , the following information is updated:

- Dn, the distance vector on n whose element Dn
(j;d) is the estimated distance of a

best route from a node n to a node d through the arc (n; j);

- pn(j;d), the probability of selecting the arc (n; j) for a packet with destination d.

2.1 Static Routing

Basic static routing in a communication network is equivalent to �nding the shortest
paths between the nodes of an associated graph in which each node represents a
router and in which each weighted arc corresponds to a communication line. The
metric used here can be the number of hops between two routers, the physical
distance, the transmission delay, etc. The classical Dijkstra algorithm [12] solves
the shortest path problem in polynomial time. It can be used to build the routing
tables required by the router to transmit entering packets toward their destination.
The routing tables are built from the so called distance vector, which assigns the
optimal distances to each destination for every outgoing lines on each nodes.

This method only takes the topology into account but the network load also
need to be considered when the lines only have a limited transmission capacity or
bandwidth. And while �nding the shortest path can be solved in polynomial time,
ow optimisation, i.e. maximising the number of packets transiting in the network
per second (throughput), when lines have such transmission limitations is known to
be a NP-complete problem [1] for which existing heuristics are still quite complex.

Flow-based routing, for example, uses transmission delays as metric. It computes
o�-line the mean line delay for di�erent ows under deterministic single path routing
and statically optimises the average delay [5]. The load can also be further balanced

2



ENST de Bretagne Technical Report RR-98001-IASC

Adaptive Agent-Driven Routing and Load

Balancing in Communication Networks

Martin Heusse, Dominique Snyers�, Sylvain Gu�erin and Pascale Kuntz

ENST de Bretagne, BP 832, Brest Cedex, France

Abstract

This paper presents an uni�ed overview of a new family of distributed al-
gorithms for routing and load balancing in dynamic communication networks.
These new algorithms are described as an extension to the classical routing
algorithms: they combine the ideas of online asynchronous distance vector
routing with adaptive link state routing. Estimates of the current tra�c con-
dition and link costs are measured by sending routing agents in the network
that mix with the regular information packets and keep track of the costs (e.g.
delay) encountered during their journey. The routing tables are then regularly
updated based on that information without any central control nor complete
knowledge of the network topology. Two new algorithms are proposed here.
The �rst one is based on round trip routing agents that update the routing
tables by backtracking their way after having reached the destination. The
second one relies on forward agents that update the routing tables directly as
they move toward their destination. An e�cient co-operative scheme is pro-
posed to deal with asymmetric connections. All these methods are compared
on a simulated network with various tra�c loads; the robustness of the new
algorithms to network changes is proved on various dynamic scenarii.

1 Introduction

This paper describes a new family of distributed algorithms for routing and load
balancing in dynamic communication networks. These are indeed critical operations
that directly inuence the throughput and average delays of information messages
and, hence have an impact on the overall performance of the network.

Nowadays, networks are characterised by a very fast evolution. Network topolo-
gies are not only continuously growing (see the Internet for instance), but the
networks usage is also changing: many devices become mobile and some sort of
guaranteed Quality of Service (QoS) is now often required. This results in an in-
creasingly dynamic network to which classical - usually more or less centralised -
routing methods are poorly adapted. This is the reason why new protocols should
be de�ned to e�ciently deal with the changing tra�c loads and topologies.

This paper examines the potential of a new family of distributed methods for
packet-switching networks in which the information is split into packets and tran-
sits in the network along potentially di�erent routes. The routing tables are here
regularly updated without central control nor complete knowledge of the network
topology. An estimate of the current load is measured from statistics gathered
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