
Examples of Local Search (meta)heuristics

Simulated Annealing [Kirkpatrick, Gelatt, Vecchi, 1982]:
stochastic acceptance criterion

Steepest descent : search the entire neighborhood and stop
when there is no improvement

First improvement : accept the first generated solution that
improves the current one

K-opt local search [Lin, 1965; Johnson and McGeoch,
1997]: based on the k-change neighborhood that has
proved to be very successful for TSPs and similar problems.
M(s) prescribes that k edges are removed from the tour s
and then replaced with other k edges. The best results are
usually obtained for k = 2 and k = 3.

Iterated local search [Lourenco, Martin and Stüzle, 2002]:
iteratively, after hitting a local optimum the search is
restarted and the new starting point is derived from some
randomization of the current the local optimum

Genetic algorithms [Holland, 1975; Goldberg, 1989]: the
“current solution” is a point in Sn, n = population dimension 1



Simulated Annealing
procedure Simulated Annealing()

define neighborhood structure();
s← get initial solution(S);
sbest ← s;
T ← initial temperature();
while (¬ stopping criterion)

search neighborhood← true;
while (search neighborhood)

s′ ← sample solution from neighborhood(N (s));
if (f(s′) > f(s))

paccept ← exp

(

f(s)− f(s′)

T

)

;

else
paccept ← 1;

end if
if (random() < paccept)

s← s′;
search neighborhood← false;
else
search neighborhood← keep searching current neighborhood();

end if
if (s < sbest)

sbest ← s;
end if

end while
T ← update temperature(T );

end while
return sbest; 2



Simulated Annealing

Applied to both combinatorial and continuous
problems with mixed success

Proofs of asymptotic convergence available [Geman
and Geman, 1984, Lundy and Mees, 1986]

Temperature’s schedule is critical to obtain good
results in finite time; at the beginning temperature T is
expected to be high in order to favor exploration, but it
has to be gradually (e.g., logarithmically) and possibly
monotonically decreased over the iterations

3



Tabu Search
procedure Tabu Search()

define neighborhood structure();
s← get initial solution(S);
sbest ← s;
initialize tabu list();
while (¬ stopping criterion)
Nt(s)← neighbor solutions that do not violate tabu condition(N (s));
Na(s)← neighbor solutions that meet aspiration(N (s));
s′ ← get best solution(Nt(s) ∪Na(s));
update tabu list();
if (s < sbest)

sbest ← s;
end if

end while
return sbest;

Tabu criteria: recency, frequency, quality, influence
Tabu criteria are applied to either complete solutions or
solution components
Applied to several problems with good success

4



Rollout: a construction metaheuristic
procedure Rollout algorithm()

t← 0;
xt ← ∅;
while (xt /∈ S ∨ ¬stopping criterion))

ct ← arg minck∈C(xt) J
(

H(xt ⊕ ck)
)

;
xt+1 ← xt ⊕ ct;
t← t + 1;

end while
return xt;

The heuristic H takes a partial solution xk and completes it into a feasible solution

At each decision step t each feasible choice ct ∈ C(xt) is scored according to an
estimate of the cost associated to the feasible solution that would result from the
completion of the partial solution (xt ⊕ ct) by H

Instead of relying on systematic expansions of the partial solution (e.g., dynamic
programming), the heuristic H is used to obtain an approximate (and possibly
quick) evaluation of this cost. H can be any heuristic

A pool of heuristics can be used and the heuristic providing the best expected cost
can be used at each step

Under mild mathematical conditions the rollout metaheuristic guarantees to
improve the performance that could be obtained by using the base heuristic H
[Bertsekas, Tsitsiklis and Wu, 1997]

5



ACO, bio-inspired multi-agent metaheuristic

procedure ACO metaheuristic()
while (¬ stopping criterion)

schedule activities
ant agents construct solutions using pheromone();
pheromone updating();
daemon actions(); /∗ OPTIONAL ∗/

end schedule activities
end while

return best solution generated;

Ant agents construct solutions according to
stochastic decisional processes depending on
pheromone variables (stigmergic communication)

Philosophical assumption: memory and learning can
be useful to solve combinatorial optimization problems

6



ACO’s logical structure

Problem Representation

Manager
Pheromone

Decision Points

Pheromone

Schedule  Activities

Using Pheromone

Ant−like agents

of Solutions

Incremental Construction

Pheromone

Generation of Solutions

Combinatorial Problem

Daemon actions

Without the Use of

7



ACO in words (1)

According to some chosen schedule (e.g., groups of 10 ants
at-a-time), ant agents are repeatedly generated. The task of
each ant is to construct, in a relatively simple and
computationally light way, a solution for the problem at hand

Starting from an empty solution, each ant during its forward
journey constructs a possibly feasible solution by adding
step-by-step components to the partial solution

At each construction step an ant applies a stochastic
decision policy to decide the next action, that is, the new
solution component to include into the current partial
solution
The decision policy depends on two sets of variables, in
some sense local to the decision step, the pheromone
variables and the heuristic variables. Both these two sets
of variables encode the desirability of issuing a specific
decision to extend the current partial solution conditionally
to the fact of being in the current decision step

8



ACO in words (2)

Pheromone variables, as in the case of the ants, encode the
value of desirability of a local choice as collectively
learned from the so far generated solutions

Heuristic variables assign a value of desirability on the basis
of either a priori knowledge about the problem or as the
outcome of a process independent of the ants (e.g., the
computation of a lower bound estimate)
Pheromone variables which bias the probabilistic decisions
of the ants, are in turn repeatedly updated during algorithm
execution to reflect the incremental knowledge about the
characteristics of the solution set that has been acquired
through the same solution generation processes

After building a solution, metaphorically (or in practice) the
ant reports the solution to a sort of pheromone manager,
which authorizes or not the ant to update the pheromone
variables associated to the built solution according to its
evaluation

9



ACO in words (3)

In the positive case, the ant starts its backward journey,
retracing its solution and updating pheromone values,
usually of an amount proportional to the evaluated quality of
the solution. In this way, decisions associated to solutions
which are either of good quality or are chosen more often,
will likely have associated higher levels of pheromone, that
is, higher local desirability
The process is iterated over time and can happen in a
distributed or centralized way

10



Some facts about ACO

It has been applied with success to a number of classical
combinatorial problems: traveling salesman, quadratic
assignment, graph coloring, sequential ordering, set
covering, job scheduling, . . . and problems of adaptive
routing in different types of networks

Performance are very good (better or comparable to
state-of-the-art) in the case of routing problems and in the
case of several combinatorial problems (usually when a
local search daemon procedure is also used)

It is the most popular and effective framework inspired by an
ant behavior and making use of stigmergy

The workshop ANTS is held every two years and gathers
between 50 and 100 participants
(http://iridia.ulb.ac.be/ ants/ants2004/)

For more information and extensive discussions and review
of applications refer to [Dorigo and Di Caro, 1999; Dorigo, Di
Caro and Gambardella, 1999; Dorigo and Stutzle, 2004;
Dorigo, Di Caro and Sampels, 2002; Di Caro 2004]

11



Ant System, the first ACO for TSP, 1991

procedure AS-ant-agent life cycle()
i← 0;
xi ← get starting city();
ci ← xi;
J(xi)← 0;
H(0)← {x0, c0, J(x0)};
while (|xi| 6= N)

foreach cj ∈ Nxi
(ci) do

aij ← τα
ij · η

β
ij ;

end foreach
c← apply AS stochastic decision rule(Axi

(ci));
xi+1 ← (xi, c);
ci+1 ← c;
J(xi+1)← J(xi) + J (ci+1|ci);
H(i + 1)← {ci+1, xi+1, J(xi+1)};
i← i + 1;

end while
s← xi;
J(s)← J(xi) + J (c0|ci);
foreach ci, cj ∈ H, i = 0, 1, 2 . . . , N − 1, j = i + 1 do

τij ← τij + 1/J(s);
end foreach
removal from the system();

end procedure

12



Ant System (2)

Pheromone evaporation for exploration:

τij(t)← (1− ρ)τij(t), ∀i, j ∈ {1, . . . , N}, ρ ∈ (0, 1]

Ant decision rule:

pk
ij(t) =

aij
∑

cn∈Nxk (ci)
ak

in(t)
, aij = τα

ij · η
β
ij

However many other choices are possible . . . [Dorigo
and Di Caro, 1999; Dorigo and Stutzle, 2004; Di Caro
2004]

13



Cultural algorithms [Reynolds, 1994]

procedure Cultural Algorithm()
t← 0;
P(t)← initialize population();
B(t)← initialize belief space();
evaluate population(P(t));
while (¬ termination condition)

communicate(P(t),B(t));
B(t)← adjust belief space(B(t));
communicate(B(t),P(t));
P(t + 1)← select(P(t));
P(t + 1)← evolve(P(t + 1));
evaluate population(P(t + 1));
t← t + 1;

end while
return best solution generated;

14



Cultural algorithms (2)

Derived from cultural evolution process which support
the basic mechanisms for cultural change

Population-based: each individual has behavioral
traits that can be modified and exchanged by socially
motivated operators (micro-evolutionary level)

At the macro-evolutionary level, individuals
experiences (generated solutions) are evaluated and
then collected, merged, generalized, and specialized
in a shared belief space

The two levels interact through a communications
protocol

15



The End

Thanks for listening, I hope it was (it will be) useful. Good

luck for your studies and career!

16


	Examples of Local Search (meta)heuristics
	Simulated Annealing
	Simulated Annealing
	Tabu Search
	Rollout: a construction metaheuristic
	ACO, bio-inspired multi-agent metaheuristic
	ACO's logical structure
	ACO in words (1)
	ACO in words (2)
	ACO in words (3)
	Some facts about ACO
	Ant System, the first ACO for TSP, 1991
	Ant System (2)
	Cultural algorithms [Reynolds, 1994]
	Cultural algorithms (2)

