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Topics that will be discussed

Basic ideas behind the notion of Swarm Intelligence

The role of Nature as source of examples and ideas to
design new algorithms and multi-agent systems

From observations to models and to algorithms

Self-organized collective behaviors

The role of space and communication to obtain
self-organization

Social communication and stigmergic communication

Main algorithmic frameworks based on the notion of Swarm
Intelligence: Collective Intelligence, Particle Swarm
Optimization, Ant Colony Optimization

Computational complexity, NP-hardness and the need of
(meta)heuristics

Some popular metaheuristics for combinatorial optimization
tasks
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Swarm Intelligence: what’s this?

Swarm Intelligence indicates a recent computational
and behavioral metaphor for solving distributed
problems that originally took its inspiration from the
biological examples provided by social insects (ants,
termites, bees, wasps) and by swarming, flocking,
herding behaviors in vertebrates.

Any attempt to design algorithms or distributed
problem-solving devices inspired by the collective
behavior of social insects and other animal societies.
[Bonabeau, Dorigo and Theraulaz, 1999]

. . . however, we don’t really need to “stick” on examples
from Nature, whose constraints and targets might differ
profoundly from those of our environments of interest . . .

3



Where does it come from?

Nest building in termite or honeybee societies

Foraging in ant colonies

Fish schooling

Bird flocking

. . .
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Nature’s examples of SI

Fish schooling ( c©CORO, CalTech)
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Nature’s examples of SI (2)

Birds flocking in V-formation ( c©CORO, Caltech)
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Nature’s examples of SI (3)

Termites’ nest ( c©Masson)
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Nature’s examples of SI (4)

Bees’ comb ( c©S. Camazine)
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Nature’s examples of SI (5)

Swarm of killer bees ( c©S. Camazine) Bees’ nest ( c©S. Camazine)
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Nature’s examples of SI (6)

Ant chain ( c©S. Camazine) Ant wall ( c©S. Camazine)
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Nature’s examples of SI (7)

Wasps’ nest ( c©G. Theraulaz)
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Nature’s examples of SI (8)

Bites of busy ant life:

Leaf-cutting, breeding, chaining

Food catering

12



What these behaviors have in common?

These are all intriguing, extremely fascinating behaviors
that in spite of the specific diversity seem to be related to
few invariant properties:

Control is fully distributed among a number of
individuals

Communications among the individuals happen in a
localized way

System-level behaviors appear to transcend the
behavioral repertoire of the single individual

The overall response of the system is quite robust and
adaptive with respect to changes in the environment
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I had a dream . . .

. . . I can generate complexity out of simplicity: I can put
all the previous ingredients in a pot, boil them down and
get good, robust, effective algorithms for my problems!

. . . it reminds me of alchemists . . .
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It’s just about design choices

There’s no magic!

Task complexity is a conserved variable

Problem + Constraints + Optimization Criteria:
How do I solve it?

Problems can be static, dynamic, online, offline,
stationary, time-varying, centralized, distributed

Algorithms can be monolithic, modular, distributed,
parallel, adaptive. . .

The final design choice is usually a rather obscure
match between designer’s expertise, problem’s
characteristics, constraints and targets
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A Swarm Intelligence design is. . . ?

Allocating computing resources to a number of
relatively simple units (swarm?)

No centralized control (not at all?)

Units interact in a relatively simple and localized way

. . . and I will get some useful global behavior

What this has to do with Spatial Intelligence?

The swarm lives distributed in some space

Communication is a key aspect to get nonlinear
behavior, and communication happens locally

BTW, what’s Intelligence? 16



A more general definition of SI?

Do we really need the explicit reference to
insect/animal societies?

Not really, however, let’s have first a closer look to
some of these societies and to some of the interesting
swarm behaviors that they can generate . . .
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Few facts about Social Insects

Social insects :
Ants
Termites
Some bees
Some wasps

1018 living insects (rough estimate)

2% of insect are social and most of them are eusocial

50% of all social insects are ants

Total weight ants ≈ Total weight humans
(one ant 1 ÷ 5 mg)

Ants are successfully around since 100 million years,
Home sapiens sapiens only since 50,000 years
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Ant colonies

Ant colony size: from as few as 30 to millions of
workers

Work division:

Reproduction −→ Queen
Defense −→ Specialized workers
Defense −→ Soldiers
Food collection −→ Specialized workers
Brood care −→ Specialized workers
Nest brooming −→ Specialized workers
Nest building −→ Specialized workers
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Some interesting collective behaviors

Nest building and maintaining

Division of labor and adaptive task allocation

Discovery of shortest paths between nest and food

Clustering and sorting (e.g., dead bodies, eggs)

Structure formation (e.g., deal with obstacles)

Recruitment for foraging (tandem, group, mass)

Cooperative transport (e.g., food)
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. . . and solitary ones: Ant navigation

Depends on the sensorial capabilities of ant species
as well as on the characteristics of the environment
and function within the colony. Can make use of:

Visual landmarks (use of memory and learning,
encounters with colony mates)

Chemical landmarks (pheromone)

Compass-based (e.g., Cataglyphis desert ant uses
light polarization)

Dead-reckoning, path integration (calculation of the
home vector)

Correlated random walk
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Let’s go back to swarm behaviors

The central question is: How do social insects and
other animals coordinate their actions in order to
achieve amazing system-level behaviors?

Structures resulting from individuals’ interactions
develops by a process of Self-organization

BTW, amazing does not mean efficient. . .
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Self-organization

Self-organization consists of set of dynamical mechanisms
whereby structure appears at the global level as the result of
interactions among lower-level components.
The rules specifying the interactions among the system’s
constituent units are executed on the basis of purely local
information, without reference to the global pattern, which is an
emergent property of the system rather than a property imposed
upon the system by an external ordering influence [Bonabeau et
al., 1997]
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Characteristics of self-organization

Basic ingredients:

Multiple interactions

Amplification of fluctuations and Randomness

Positive feedback (e.g., recruitment and reinforcement)

Negative feedback (e.g., limited number of available
foragers)

Signatures:

Creation of spatio-temporal structures (e.g., foraging trails,
nest architectures, social organization)

Multistability (e.g., ants exploit only one of two equivalent
food sources)

Existence of bifurcations when some parameters change
(e.g., termites move from a non-coordinated to a
coordinated phase only if their density is higher than a
threshold value) 24



Is this definition satisfactory?

There is no a unique and/or satisfactory definition of
self-organization. The one provided here is not really
a definition but rather a set of heuristic rules to design
or spot self-organizing processes

In more mathematical terms, I like the characterization
given by Shalizi [Shalizi, 2001] who relates
self-organization to the statistical complexity of the
causal states of the process.
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More on self-organization

The statistical complexity Cµ(S) of the causal states S

is defined as their entropy measure H[S] over the
distribution µ of the inputs

Cµ(S) is the average amount of bits that is retained
about the input in the state set (inputs’ partition)

For a process the statistical complexity increases when
self-organization is obtained: Cµ(St) < Cµ(St+T )
(additional mathematical conditions are also
considered)

Intuitively, when a number of units have reached
organized coordination, it is necessary to retain more
information about the inputs in order to make a
statistically correct prediction. In a coordinated phase
precise information about all the participating units
needs to be known in order to have a sufficient picture
of the system. That is, the entropy measure over the
new causal states increases. 26



How is self-organization achieved?

Communication is necessary:

Point-to-point: antennation, trophallaxis (food or
liquid exchange), mandibular contact, direct visual
contact, chemical contact, . . . unicast radio contact!

Broadcast-like: the signal propagates to some
limited extent throughout the environment and/or is
made available for a rather short time (e.g., use of
lateral line in fishes to detect water waves, generic
visual detection, actual radio broadcast

Indirect: two individuals interact indirectly when one
of them modifies the environment and the other
responds to the new environment at a later time. This
is called stigmergy (e.g., pheromone laying/following,
post-it, web)
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Ant algorithms, Particle swarms and . . .

Stigmergy has led to Ant Algorithms and in
particular to Ant Colony Optimization (ACO)

Broadcast-like communication is related to schooling
and flocking behaviors, that have inspired Particle
Swarm Optimization. In turn, neighbor broadcast is
at the basis of Cellular Automata, one of the early
examples of swarm computation

The use of all the three forms of communication
encompasses more general systems showing
collective organized behaviors (COIN, immune
system, cultural algorithms, neural system,
human organizations, mobile ad hoc networks,. . . )
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A (tentative) more general definition of SI
A swarm can be seen as a set of N � 1
communicating and distributed autonomous agents
(e.g., ants, communication devices, computer
processes) each engaged in one or more tasks, and
with no or little centralized control

If from the interactions among the constituents of the
swarm results a process of self-organization that
gives rise to interesting/useful behaviors at the system
level, we can say that we are observing a
phenomenon of Swarm Intelligence

Does Collective Intelligence sound better?

Do we need restriction on aspects like:
Nature-inspiration, short-range locality, agent
simplicity, awareness of global task, homogeneity. . . ?
−→ Parameters 29



Some “new” examples from biology

Immune system: high diversity, mobility, distributed,
dynamic, pipelined strategies, several communication
strategies, multi-objective, learning, memory . . .

Brains, slime molds, gene regulatory networks . . .
30



. . . and from “us”

Routing in the Internet: a system of distributed and
adaptive controllers search online for good
communication paths between computers

Routing in mobile ad hoc networks: each node is
host and router, no infrastructures or centralized
control, nodes might move and join and leave the
network at any time, one shared communication
medium, short range and noisy transmissions. Very
dynamic and spatial-aware problem (more on Friday)

Crowd control: rush hours in Tokyo’s Shinjuku
station, movies like ANTZ or Titanic

In human organizations or teams, participants
“usually” are aware of the global objectives. What’s
the impact of this fact? 31



Collective robotics

Collective robotics is attracting a lot of interest:
groups of robots play soccer (RoboCup), unload
cargo, cluster objects, self-assemble (Swarm-bots),
and will “soon” participate to war :-( . . .

Look at RoboCup (www.robocup.org) and Swarm-bots
(www.swarm-bots.org)!
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Which are the agents?

Related question: Which is the right level of
resolution to use when building a model of a
(biological) system or designing an algorithm inspired
by (biological) observations?

When the model is about functional relationship and
not concrete objects/beings the issue is even more
critical (e.g., ant colony [Fewell, 2003])

This is the main problem also when dealing with
multi-agent (mechanistic) simulations (but
phenomenological studies do not have better life,
however). What’s important and what can be leaved
out in the simulator? Unfortunately most of the
sensitivity studies reveal that “details” matters.
However, science is precisely the continual search for
and refinement of “good” models. . . 33



Back to the algorithmic frameworks. . .
Ant Colony Optimization (ACO) and Particle Swarm
Optimization (PSO) are the most popular instances of
frameworks based on the original notion of SI (CA?)

At the core of the design of ACO and PSO there is the
specific way the agents communicate in thespatial
environment. These two optimization frameworks focus
on two different ways of distributing, accessing and using
information in the environment

In ACO and PSO agents are rather simple, since they do
not learn at individual level

The agents in the Collective Intelligence (COIN) framework
are reinforcements learners, therefore they can be arbitrarily
complex. COIN’s design focuses on generic multi-agent
reinforcement learning. Focus on the role of distributing
and managing utility functions/values among the agents

On a complexity scale, from the simplest: PSO, ACO, COIN
34



Othe related frameworks/keywords

Just names and buzzwords here:

Distributed Artificial Intelligence, Computational
Economics, Multi-player Cooperative Game Theory,
Evolutionary Computation (Population-based), Artificial
Life, Statistical Physics, Markov Fields, Network Theory,
Neural Networks, Traffic Theory . . .

(see [Wolpert and Tumer, 2000] for a list of references and

comments)
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COIN

The Collective Intelligence framework [Wolpert and
Tumer, 2000] consists of:

A large multi-agent system,

where there is little to no centralized, personalized
communication and/or control,

there is a provided world utility function that rates the
possible histories of the full system,

each agent “runs” a reinforcement learning algorithm
(microlearning).
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COIN

Central issues in COIN: how to map the world utility
function into private utility functions for each of
the agents? How the private utility functions can be
designed so that each agent can realistically hope to
optimize its function, and at the same time the
collective behavior of the agents can optimize the
world utility?

The assignment of the rewards to the agents is a
critical aspect in multi-agent reinforcement learning
systems
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COIN

COIN focuses on an inverse problem: how to
configure local dynamical laws and the management of
the system-level utility in order to induce the desired
global behavior.
This is the ultimate dream of every engineer dealing
with complex systems

Fixing the agent characteristics and studying the
response to different world utilities and distribution of
them is also extremely useful: Economics!

COIN is a general mathematical framework. Not
straightforward to understand. It points out where the
problems are and provides formal tool to reason.
However, does not provides straight or automatic
design answers. It has been applied to routing and
game problems. Not really popular, but worth to give a
look at
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