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Abstract—We consider the problem of minimum power multi- are located in the same sectorjasill receive the transmission
casting in wireless networks with sectored antennas. For omnidi- from ; implicitly. Though this might seem an apparent disad-
rectional wireless broadcast to a node, a transmission from node \antage, the higher gains associated with directional antennas
1 to node 5 will also reach all nodes which are closer ta than j. dt i_directi | ant I f d d
Depending on the network geometry, this strategy can be highly (as Opf?ose N omm- iHeC |0n.a. gn enna_s) . OW_ orTediice
power efficient. In ideal sectored antenna systems, however, this transmitter powers without sacrificing the signal-to-interference
phenomenon is sector specificj.e., only those nodes which are ratio at the receiver.
located in the same sector ag will receive the transmission im- In this paper, we first develop a mixed integer linear pro-
plicitly. Though this might seem an apparent disadvantage, the gramming (MILP) model for optimal solution of the minimum

higher gains associated with directional antennas (as opposed to lticast bl ith tored ant Sub "
omni-directional antennas) allow for reduced transmission powers power muiticast problem with sectored antennas. subsequently,

without sacrificing the signal-to-interference ratio at the receiver. We discuss a biologically inspired algorithm, basedsararm

In this paper, we first develop a mixed integer linear programming intelligence[5], for solving the problem to near-optimality at
model for optimal solution of the minimum power multicast prob- 3 very reasonable computational time. Swarm intelligence ap-
lem with sectored antennas. Subsequently, we discuss a biologi-years in biological swarms of certain insect species. The main

cally inspired algorithm for solving the problem to near-optimality inciole behind intelli int fi is sti
at a very reasonable computation time. Experiments on randomly principle behind swarm intefligence interactions Is stigmergy,

generated 10, 20 and 30-node networks indicate that near-optimal Of communication through the environment. An example is
solutions can be obtained using the proposed algorithm. pheromondaying on trails followed by ants. Pheromone is

a potent form of hormone that can be sensed by ants as they
| INTRODUCTION trayel alpng trails. _ It attracts ants and causes them _to follow
trails which have high pheromone concentrations. This causes

The minimum power broadcast/multicast (MPB/MPM), 510 catalytic reactiori,c., ants attracted by a pheromone
problem in wireless networks was first investigated by il deposit even more pheromone on the same trail, caus-
Wieselthieret al [1] in the context of omni-directional anten-j,, even more ants to be attracted. In essence, therefore, swarm

nas. They showed that the inherently broadcast nature of {isligence paradigms use positive reinforcement as a search
wireless medium can be exploited effectively to obtain POWEfrateqy.

efficient multicast trees. Specifically, they showed that, in cer- 1o rest of the paper is organized as follows. In Section I,

tain cases (depending on the network geometry), it may be bgps jescribe the network model and outline our assumptions. In
eficial for a transmitting nodéto transmit to the farthest nodeggtion 111 we formally define the problem and in Section IV
within its radio range (say), thereby covering other nodes,;e geyelop the MILP model for solving the problem optimally.
which are geometrically closer tthan j. They termed thiS gection v explains the computational efficient swarm intelli-

property the “wireless multicast advantage”. Subsequently,gitn¢ a1gorithm. Simulation results are discussed in Section VI.
was shown in [2] that the MPB/MPM problem is NP-complete,

necessitating the need for good and fast heuristics.
While there has been considerable recent research activity on Il. NETWORK MODEL

solving the MPB/MPM problem with omni-directional anten- We assume a fixed/-node network with a specified source
nas, there has been relatively little research ([3], [4]) directé@de which has to broadcast(multicast) a message to all(some)
towards solving the problem with directional antennas, or moggher nodes in the network. We assume static broadcast-
specifically, sectored antennas. Unlike omni-directional antgng(multicasting); i.e., the same tree is used for the entire
nas, in sectored antenna systems, the wireless multicast adWnadcast(multicast) duration. Any node can be used as a re-
tage property is sector specifite., only those nodes which lay node to reach other nodes in the network.

All nodes are assumed to hasesector antennas. The num-
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« Each sector is assumed to span the angular regior  these sets b& and D respectively;i.e., , E = || andD =
1)360/6, (s)360/6] in the 2-D plane, wheré < s < S'is |D|. Using the transmitter power constraint, the set of all edges,
the sector number. &, is given by:

« We ignore sidelobe effects and assume that when sector
s is switched on, 100% of the radiated power is confined € = {(i — j) : (4,5) € N,i # j, Py <Y5*" (6)
within that sector, providing an uniform gain within the

angular region spanned by the sector. The third condition in the right hand side of (6) defines the set
« We consider antennas with 100% efficiency. That is, wf nodes which are reachable by a direct transmission from any
ignore any antenna power losses. transmitting node depending on its maximum sector power con-

Several operating modes are possible in networks with diretraint.
tional antennas. These are: @jectional transmit, directional
receive (DTXDRX) (b) Directional transmit, omni-directional
receive(DTXODRX) (c) Omni-directional transmit, directional
receive(ODTxDRXx) and (d)Omni-directional transmit, omni-
directional receivg ODTXODRX). In this paper, we adopt the
directional transmit, omni-directional receive (DTXODRX) op-
erating mode.

Following our simplifying assumptions, the transmitter
power ati necessary to support the link & ), P;;, can be
written to be proportional (accounting for link/antenna gains
and other factors) td?j/S, whered;; is the Euclidean distance Tector 2
between nodesandj. If (z;,y;) are the coordinates of node

i anda (typically in the range2 < o < 4) is the channel loss Fig. 1. Multicast illustration with a 3-sector antenna. Assume that the destina-
i i . tion nodes aré3, C andD. SinceC andD are located in the same sector, node
eXponentd” IS given by' A can simply transmit td), covering node”' implicitly. Whether this is the
best strategy depends on whetlei - + P ac > P ap. If the inequality is
dij =|[(x;—2 ,)2 + (yi — .)2 1/2 (2) satisfied, adirect transmissioniois preferable over the multihop transmission
ij i j Yi = Yj e e ;
A — C,C — D. We refer to the transmissiofh — C' as arimplicit transmis-

. . . . sionand A — D as anactual transmissionlIn this example, the transmitting
Without any loss of generality, we set the proportionality cofode, A, needs to use two sectors (sectors 1 and 3) to reach all the destination

Sector 1

Sector 3

stant to be equal to 1 and therefore: nodes. The total transmission cost of notlés: Y4 = Y4 1 + Y4 3, where
Ya,1 = maz(Pac,Pap) = Pap andYy 3 = P 4p. Since sector 2 is
not usedY4 o = 0.
Pi; =d/S 3) 2

Finally, we assume that power expenditures due to signal re-Note that a transmission from nodé& node;j would also be
ception and processing are negligible compared to signal traresceived by all nodes which are located within the same sector
mission and hence theost of a multicast tree is determinedas; and are geometrically closer ichan;j. For example, in

solely by the choice of transmitter powers. Figure 1, nodes” and D are located in the same sector w.r.t
node A and therefore the transmissioh— D would also be
lIl. PROBLEM STATEMENT received by node”. Since no additional cost is required to

reach node”, we refer to the transmissioA — C' as anim-
e[mcit transmissiorand A — D as anactual transmission

Let {X;; : (i — j) € £} be a set of binary variables such
that X;; = 1 if the transmissiori — j is used in the optimum

LetY be a vector of node transmission powers, the elem
Y; representing the total transmission power cost of no@@r
an S-sector antennd;; can be written as:

s tree and O otherwise. Also, Iet(i, s) be the set of neighbors of
Y, = Z Yis (4) nodei which are within radio range afand are located within
s=1 the same sectoi, w.r.t nodei. For example, in Figure 1,

) o i ne(A4,1) = {C, D}, ne(4,2) = {E} andne(A,3) = {B}.
whereY; ; is the transmission power cost corresponding t0 S&€giowing our discussion in the previous paragraph, we can
tor s of nodei. We assume that each node has a constraint Rite:

the maximum transmitter power it can use per sector, denoted
by Y;r,rslaoc. Thatis: YVLS = max; {XijPZ‘j j S ne(i, S)} (7)

0<Y,s <Y VieN (5) whereX;; = 1 if nodej is reached from node (actually or
implicitly) and 0 otherwise.

For minimum power multicasting with sectored antennas,
our objective function is:

where\ is the set of all nodes in the network apd| = N.
Also, let £ the set of all directed edgesind D the set of
destination nodes) C {N\ \ source}. Let the cardinality of

N N

Ln this paper, we assume that all edges are directed. The notatien) s e

will be used to denote a directed edge from notte;. The notation{, 5) will minimaize Z Yi | =minimize Z Z Y;’S (8)
i=1 i=1 s=1

be used to refer to the node pair.



whereY; , is as defined in (7). The objective function, (8), hagshereR = A\ {D U source} is the set of all nodes other than
to be solved subject to the following constraints: (a) all destinghe source or destinations. Note that (10) effectively constrains
tion nodes must be reached, either actually or implicitly, (b) thg| flows directed into the source node to 0.

source node must reach at least one other node, (c) the tree mugfaving set up the flow equations, we now need to link the
beconnectedi.e., there must be directed paths from the sourgfw variables to the power variable§y; ; :i = 1,---N;5 =
to all destination nodes, possibly involving other intermediate . .. §}. This is done in two stages. In the first stage (eqn. 13),
nodes and (d) the tree must not have aygles we couple the flow variables and the indicator varial&s; }

In the next section, we develop a mixed integer programmingd in the next stage (eqn. 14), we link th,; } variables to
(MILP) model for optimal solution of the above optimizationhe power variables. Recall from Section Il th&t; = 1 if
problem. the edged{ — j) appears in the optimum solution (either as an

actual transmission or as an implicit transmission) and 0 oth-
IV. MILP M ODEL

) erwise. The set of constraints which couple the flow variables
Let {F; : V(i — j) € £} be a set of flow variablesI{; gnq theX;; variables is:

represents the flow from nodeto nodey), with £ defined as

in (6). The general multicast problem can be interpreted as a D -X;;—F;; >0; V(i —j)e& (13)

single-origin multiple-destination uncapacitated flow problem, _

with the source havind units of supply (no demand) and theNote that (13) ensures tha’; = 1if F5; > 0". For the

destination nodes having one unit of demand each (see edgg!hcast tree in Figure 2, the status of thg; variables are
(9) to (11) below). For other nodes, the net in-flow must equaiiz = X15 = Xas = Xos = X56 = 1, the rest being

the net out-flow, since they serve only as relay nodes (see egfiyal to 0. The coefficient ok’;; in (13) is due to the fact
12 below). that the maximum flow out of any node on a single link is equal

to the number of destination nodes. Equation (13), however,
103 leaves open the possipility dfi.j .b_eing equal tp 1foF;; = O _
We show later that this possibility can be discounted since it
a4 would unnecessarily increase the cost of the optimum solution.
2 It should also be noted that the smallest integer valug gf
which satisfies (13) for any nonzero flow out of nodé.e.,
if Zj Xi; > 1) is 1. Consequently, we can simply define the
Xi;'s to be integers, instead of explicitly declaring them to be
binary variables.
Fig. 2. Example multicast tree. Node 1 is the source. The shaded nodeJ\IEXt’ we write down constraints linking thgij variables
are the destination nodes and the dashed line represents implicit transmissiaf€l the power variables. As discussed in Section Ill (see eqn.

Assume that all nodes are_equipped with a 3-sector antenna. Suppose tha'yl;?)the cost of spanning in multiple nodes, located within the
nodes 2 and 5 are located in sector 3 w.r.t node 1 (b) node 3 is located in sector

1 w.r.t node 2 (c) node 4 is located in sector 3 w.r.t node 2 and (c) node eS@me sector, from nodes simply the cost incurred in reaching
located in sector 1 w.r.t node 5. The cost of the multicast tree is therefotlie farthest node. This condition is expressed as:
Yi3+ Y21 +Ya3+ Y51 =Pi2+ Posz + Poy + Pse.

At a conceptual level, the flow model can be viewed as a to- Yis = PijXij 2 0; Vi € N, Vj € ne(i, s) (14)
ken allocation scheme where the source node generates as MaRY now clear that, if there is no flow out of node(i.c.
tokens as there are destination nodes and distributes them alongz, e ; i ’
the “most efficient” tree such that each destination node getst Fig = 0), settingX;; = 1 V\{ou_ld result in a positive valug

' J=f0r Y; and thereby unnecessarily increase the cost of the optimal

keep one token each. For example, for the multicast tree in Figs) tion.
ure 2, the flow variables ardfy = Fi5 = 2, Faz = Foy = 1, Next, consider the case when there are multiple flows out of

Fss = 1. All other flow variables are 0. nodei, i.e., .. F;; > 1. Suppose* € ne(i, s) is the node
The supply and demand constraints discussed above can be J

expressed as the followirftpw conservation equatiorfsee for such thatt; , = Py;- Xy;. = max; (Py; Xy : j € ne(i, 5)) Is
example [7]): part of the optimal solution. In this case, setting; = 1,

j # j* would not affect the cost of the optimal solution if

N . . . Pinij < Pij*Xij*- If, however,Pinij > Pij*Xij*y this
ZF’U = D; i =source, (i—j)c& (9 goiytion cannot be optimal since it can easily be improved by
=1 settingX;; = 0.

N

' o The final set of constraints express the integrality ofihe
Z Fji = 0; i = source, (i —j) €& (10)  variables and non-negativity of tHe; andY; , variables.
j=1

N N Xi; >0, integet V(i —j) €& (15)
N Fi—-> Fj=LVieD, (i—j)e& (11) F>0; Y(i—j)eé (16)
j;1 J;l OSKaSYV:Za$7 ViENaS:1527"'S (17)
ZFji - ZF’J =0 VieR,(i—j)€E (12) To summarize, solving the objective function (8), subject to
j=1 j=1 constraints (9) to (17) solves the minimum power multicast



problem in wireless networks with sectored antennas.

TheN — 1 (e.g., if exactly one new node is reached during each

number of integer variables in the MILP model is equalito iteration and the last edge chosen reaches a destination node).

while the number of continuous variables is equakte- SN.

Before explaining the tree-building process, we define the fol-

The number of constraints is approximately on the order tdwing additional parameters:

E+N1+8).

Since integer programming is known to be NP-complete,
are currently using the model to benchmark the performanc
heuristic algorithms on small and medium size networks. Re-
search is under way to develop fast approximation algorith
based on the model. In the following section, we describe an

= transmission step number

k
:fﬁf{’“ = set of new nodes reached at transmission ktep

(NR = [source])
= set of all nodes reached till transmission step

2 NR*

ant colony systenfACS) approach to solving the MILP opti- NNR* = set of all nodesiot reachedill transmission step:

mization problem. ACS algorithms, first proposed by Dorigo

2 N\ NR%*

and Gambardella [6] for solving the celebrated travelling sales-
man problem, have their roots in the foraging behavior of arlode: is said to be newly reached at stepf i € NR* but
and, in essence, are positive reinforcement intelligent seaicy NRY*-1,

strategies.

V. ACS OPTIMIZATION APPROACH
We start out by establishing the following notation.

A. Notation

t =time index

e = maximum time index

N4 =number of TypeA ants

Np  =number of TypeB ants

T™im = minimum pheromone level

TmeZ = maximum pheromone level

7;;(t) = pheromone level on edge{ j) at timet,
Tmi,n S Tij (f,) S Fmaz

ni; = local visibility of nodej from nodei 2 1/P,;

Ba  =tunable parameter to contrg); for Type-A ants,
0<pa<l

Br = tunable parameter to contrg); for Type-B ants,

0<Bp<pBa<l

T (t) =tree developed by amt at timet

Cn(t) = the cost ofl,, (t)

p = pheromone decay coefficiepte (0, 1]

q = uniformly distributed random variable over the
interval [0,1]

q0 = tunable parametegqy € [0, 1]

In general, at any transmission stepan antm can travel
from any node which has been reached till step 1, to any
node which has not yet been reached till step 1. The set of
possible edges to choose fromige listk , is therefore given
by:

edge listt, = {(i — j) : i e NR¥*71 j e NNR"!,
(i —j) €&} (19)

wheref is as defined in (6). The decision rule governing which
edge is chosen at stépof the tree building process pseudo-
random-proportiongl as described in Figure 3. Starting with

k = 0, this decision rule is executed till all the intended desti-
nation nodes are reached. It can be easily seen from Figure 3
that the worst case complexity of the tree-building procedure is
on the order oD (N?).

It can be seen from Figure 3 that edges are chosen either de-
terministically or probabilistically. The extent to which proba-
bilistic decisions are made is controlled by the tunable param-
eterqy. Probabilistic edge selection is used for efficient explo-
ration of the search space. In our simulations, we vagieslith
t so that decision making is predominantly probabilistic during
the initial stages of the algorithm and mostly deterministic dur-
ing the latter stages. This is discussed in Section VI.

The factors which determine the desirability of choosing an
edge(i, j) at iterationk and timet are:

Attime t = 0, the pheromone level on all edges is initialized t8 0@l visibility of node from 7, scaled exponentially by the

TTV”/VL; Ze ,

7;;(0) = TG — §) €E (18)

B. Tree building by an ant

parametes4 or 5z, depending on the type of ant. Higher the
local visibility, higher the desirability of choosing that edge.
The degree of desirability can be varied by properly selecting
B4 andfSp, as explained subsequently.

e pheromone levelr;;(t), on the edge at timé. Since edges
which are part of better solutions are positively reinfofged

Tree building is an iterative process which starts with gresence of a high pheromone level on an edge is used to boost
transmission from the source and continues till all the intend@gk desirability of choosing that edge. A very high pheromone
destination nodes are reached. The iteration converges inevel on any edge, therefore, makes it much more probable for
mostN — 1 iterations {.e., k < N —1). It should be noted that edge to be included in the final tree.
that, because of the inherently broadcast nature of the wirelesgye now explain how the degree of desirability of choosing
medium, the number of iterations can range from as few a4 edge can be controlled by varying the parametarsind

(this will be the case if all destination nodes are located withi,, . Consider an arbitrary 4-node network. Suppose we have
the same sector and are within direct radio range of the source)

3At any timet, the pheromone level on the edge ), 7;;(t), reflects the

2In keeping with swarm intelligence terminology, we will refer to the treeeumulative knowledge acquired by the ants till titne 1 on the desirability of

building agents as ants.

moving to nodej from nodesi.



1. Prep:jare Ia Iisht of candidate edges todchfoose I]m?ﬂ?lifst’fn- o 1. Sett = 0.

2. Randomly choose a transmitting node from the set of possi etragSgat. () = +7" . \(; .
mitters inedge_list®,. Let the transmitting node bg". > “{,e(?t) T Vi = g) € 6. AFES |

3 LetAk™m — {aij 0= fr, (i — j) € edge,listfn} be the decision 3. LetT”*** be the tree grown by the global best ant its cost.
matrix based on which amt makes its decision for selecting an edgéh LetT"**'(t) be the best tree grown by any ant during iteratiamd

at stepk. The probabilitiea;; } are computed as follows: y'best(¢) its cost.
B 5. while(t < t™*%)
% . i=f* Type-Aants for(m = 1: Na + Ng) /* ant number */
aij = (s (O (mi5]19B o (20) I* Tree building depends on whether the ant is Type At B
=, i = f", Type-Bants . .
Y o [miz (D)][0i2]°B o Build the treeT’,, (¢); I* See Figure 3/

* prune(T) is a function which takes a treég, prunes it, and

k - gk
where(f* — x) € edge list,,. returns the updated tre#

4. Sample; from a uniform distribution over [0,1].

5.if(q < qo) I* Deterministic decision making */ o T (t) < prune(Tm(t));

Choose the strongest edd¢”, t*), from A®™, o Compute the cost, (t) of T, (t); /* See Figure 2/

. /* Local pheromone updaté
(f7,17) = argmax ;{ai;} (21) o 7;;(t) «— p1i;(0) + (1 — p)73; (1), V(i — 7) € T (t);
d fi
else /* Explore. Probabilistic decision making/ ?fnt _O_ro
Choose an edggf*, t*) from A*™ probabilistically,e.g., if( s ) best best bt
using a roulette-wheel type mechanism. T7F = TP (L), YOO = YOO (t);
end if else
6. SetNR* = {t*}. If other nodes, located within the same sector as iF(YPest (1) < ybesty
?f"’,l\?gkreached implicitly (see Figure 1 for illustration), include them Thest  Thest(p), YPest — ybest(y);
in . .
7. Update the sets: erfd if
end if
0:k 0:k—1 k [* Global pheromone updateé
NR — NR U NR (22) p bestp . . best.
. ok o 7ij(t+1) — p/Y*" + (1= p)7i;(t), V(i —j) € T,
NNR" — N\ NR" (23) I* Increment t/
ot —1+1;
end while

Fig. 3. Pseudo-random-proportion@dge selection criterion at any iteration6 PrintTtet andybest
k of the tree building process by ant. Note from eqn. (20) that the edge- '
selection criterion is dependent on the time instattirough the pheromone
level parameters;;(¢). Multicast trees are built by repeated application of ) o )
this edge-selection criterion which terminates when all destination nodes &ig- 4. High level description of the ACS algorithm.
reached.

itself is not a destination node or none of the descendantssof
one TypeA and one TypeB ant at node 1. Assume that the, gestination node. Given a directed graphthedescendants
local visibilities of nodes 2, 3 and 4 from 1 are given by; = 4 nodei, denoted byle(i), is defined as the set of noddg},

0.5, 13 = 1.5, 14 = 2.0. LetTis(t) = 713(1) = 7a(t) = 1. sych that there is a path froito all nodes in{;}. That s,
Choosing34 = 1 andfp = 0.1, the probabilities{a;;} (see

egn. 20) for the two types of ants are as follows:
. Type-A: a2 = 0.11, a13 = 0.33, a14 = 0.56
o Type-B: a1z = 0.31, a13 = 0.34, a14 = 0.35 where ¢ — j) is a directed path from nodeto nodej. A
Clearly, if both the ants are following their exploratory regipruning operation is therefore necessary to eliminate all redun-
men (see Step 5 in Figure 3), while the Typeant will choose dant edges. Note that the pruning step can lead to a substantial
the edgel — 4 (note that node 4 is closest to node 1 sinceeduction in the total transmission power cost of the tree, espe-
n;; = 1/P;;) 56% of the time, the Typé ant has almost equal cially if D/N << 1.
chances of selecting any of the three edges. Ty@ts, there-  We now discuss the edge-reinforcement mechanism in Fig-
fore, can select their edges by lookitigeper into the network, ure 4. We have adopted a two-level pheromone update opera-
as opposed to Typé-ants which aremostly greedyand tend tion; a local update after computing each ti&gt) (the update
to choose nearby nodes. Because of this reason, we will re§esp inside théor loop in Figure 4) and a global update after all
to Type-A ants asarrow-visionants and Type3 ants asvide- trees{T},(¢)} have been computed at a given time instafthe
visionants. It may be noted that the wide-vision ants, becaugpdate step after thésr loop). Note that the latter pheromone
of their ability to make decisions by looking deeper into the netpdate is partly proportional to the quality of the best solution
work, are better suited for exploiting the broadcast nature of theoduced till iterationt. Better the best solution, the higher
wireless medium than the narrow-vision ants. the pheromone amount that is deposited on the set of directed
A high level description of the ACS algorithm is provided iredges in the best multicast tree. The role of the pheromone de-
Figure 4. For a multicast application, the tree generated usicay coefficientp, is to prevent stagnation in the search process,
the edge-selection criterion in Figure 3 can have a loedtin- a situation where all or most of the ants end up choosing the
dantedges. An edgej (— j), is deemed to be redundantjif same set of edges and hence generating identical trees.

de(i) £ {j | i~ jbutnotj v i}



TABLE |

using the ACS algorithm was extremely small since only 250
Parameter values used in the simulations.

(™ x (Na+ Np) = 50 x 5; see Table |) total solutions were

Parameter | N=10 | N =20 N =30 generated in each case.
Y, 0.050 0.030 0.015
tmer 50 50 50 TABLE Il
Na 3 3 3 Comparison of the optimal and ACS solutions= 2 for all N. See equations
Np 2 2 2 (24), (25) and (26) for definitions of the parameté&¥d/,, P My and P Ms.
) 0.2 0.2 0.2
Tmen 1077 1077 1077 N | D | PM, | PMy; | PM;
T 2 2 2 10| 9 | 3.68 | 16.78| 5.23
Pa ” ! L Lolg T 1 20| 5 | 3.75 | 19.71| 4.42
a”, Tt < [Vo*xlpmax
BB 1/ayif 0.3 % tmax]| +1<t<1[0.6xtrpax] 0] 5 2.25 8.31 249
1,if [0.6*tmax]+1 <t <tmax
0.3,if t < [0.3%tarax]
q 0.6,if [0.3*tapax|+1<t<[0.6%trmax) VII. CONCLUSION
0.9,if [0.6*tpmax]+1<t<tyax

In this paper, we developed a mixed integer linear program-
ming (MILP) model for solving the minimum power multicast
problem with sectored antennas in energy constrained wireless
networks. We also discussed an ant colony system (ACS) opti-

We conducted a study of the performance of optimal arfdization approach for solving the MILP optimization problem.
ACS methods in 10, 20 and 30-node networks with 3-sectbhe algorithm uses a mix of narrow-vision and wide-vision
antennas. Multicast group sizes were chosen to be 9 (in effédifs. While a narrow-vision ant located at a particular node
a broadcast application) for 10-node networks and 5 for 20/3@nds to choose a nearby unreached node to visit next, wide-
node networks. In each case, 25 networks were randomly g#igion ants are allowed to choose distant nodes to visit next.
erated and the tree powers were averaged to obtain the mE%periments carried out on 10, 20 and 30-node networks con-
tree power. & was chosen to be equal to 2 for all casedirm that near-optimal results can be obtained using the ACS
The open source linear programming software, LPSOLVE [glgorithm, and in very little computation time.
which uses a LP-based branch and brand algorithm to solve
MILP problems, was used to compute the optimal solutions.
Values of the parameters used in the simulations are given in ) . )
Table |. 1) J.E.Wieselthier, G.D. Nguyen and A. Ephremides, “On

A key point to note in Table 1is the dynamic nature of the pa- € construction of energy-efficient broadcast and multi-
rametersy, and3z with respect ta. Gradually reducingy en- cast trees in wireless networksEEE INFOCOM2000,
sures that the bulk of the exploration work (Step 5 in Figure 3) Pp- 585'5_94' I
is carried out during the initial stages of the algorithm, when the 2) M- Cagalj, J.-P. Hubaux, C. Enz, "Minimum-energy
pheromone distribution on the edges is not too uneven and “trail b_roa_dca_st n aII-er”eIess networks: NP-completeness and
conditions” are more suitable for wide-vision ants, as explained ~ distribution issues”MOBICOM, Sep. 2002, Atlanta,
in Section V-B. Increasing; with respect ta has the effect Georgia, USA.
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