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Abstract—We consider the problem of minimum power multi-
casting in wireless networks with sectored antennas. For omnidi-
rectional wireless broadcast to a node, a transmission from node
i to node j will also reach all nodes which are closer toi than j.
Depending on the network geometry, this strategy can be highly
power efficient. In ideal sectored antenna systems, however, this
phenomenon is sector specific;i.e., only those nodes which are
located in the same sector asj will receive the transmission im-
plicitly. Though this might seem an apparent disadvantage, the
higher gains associated with directional antennas (as opposed to
omni-directional antennas) allow for reduced transmission powers
without sacrificing the signal-to-interference ratio at the receiver.
In this paper, we first develop a mixed integer linear programming
model for optimal solution of the minimum power multicast prob-
lem with sectored antennas. Subsequently, we discuss a biologi-
cally inspired algorithm for solving the problem to near-optimality
at a very reasonable computation time. Experiments on randomly
generated 10, 20 and 30-node networks indicate that near-optimal
solutions can be obtained using the proposed algorithm.

I. I NTRODUCTION

The minimum power broadcast/multicast (MPB/MPM)
problem in wireless networks was first investigated by
Wieselthieret al [1] in the context of omni-directional anten-
nas. They showed that the inherently broadcast nature of the
wireless medium can be exploited effectively to obtain power
efficient multicast trees. Specifically, they showed that, in cer-
tain cases (depending on the network geometry), it may be ben-
eficial for a transmitting nodei to transmit to the farthest node
within its radio range (sayj), thereby covering other nodes
which are geometrically closer toi than j. They termed this
property the “wireless multicast advantage”. Subsequently, it
was shown in [2] that the MPB/MPM problem is NP-complete,
necessitating the need for good and fast heuristics.

While there has been considerable recent research activity on
solving the MPB/MPM problem with omni-directional anten-
nas, there has been relatively little research ([3], [4]) directed
towards solving the problem with directional antennas, or more
specifically, sectored antennas. Unlike omni-directional anten-
nas, in sectored antenna systems, the wireless multicast advan-
tage property is sector specific;i.e., only those nodes which
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are located in the same sector asj will receive the transmission
from i implicitly. Though this might seem an apparent disad-
vantage, the higher gains associated with directional antennas
(as opposed to omni-directional antennas) allow for reduced
transmitter powers without sacrificing the signal-to-interference
ratio at the receiver.

In this paper, we first develop a mixed integer linear pro-
gramming (MILP) model for optimal solution of the minimum
power multicast problem with sectored antennas. Subsequently,
we discuss a biologically inspired algorithm, based onswarm
intelligence[5], for solving the problem to near-optimality at
a very reasonable computational time. Swarm intelligence ap-
pears in biological swarms of certain insect species. The main
principle behind swarm intelligence interactions is stigmergy,
or communication through the environment. An example is
pheromonelaying on trails followed by ants. Pheromone is
a potent form of hormone that can be sensed by ants as they
travel along trails. It attracts ants and causes them to follow
trails which have high pheromone concentrations. This causes
an auto-catalytic reaction,i.e., ants attracted by a pheromone
trail will deposit even more pheromone on the same trail, caus-
ing even more ants to be attracted. In essence, therefore, swarm
intelligence paradigms use positive reinforcement as a search
strategy.

The rest of the paper is organized as follows. In Section II,
we describe the network model and outline our assumptions. In
Section III, we formally define the problem and in Section IV,
we develop the MILP model for solving the problem optimally.
Section V explains the computational efficient swarm intelli-
gent algorithm. Simulation results are discussed in Section VI.

II. N ETWORK MODEL

We assume a fixedN -node network with a specified source
node which has to broadcast(multicast) a message to all(some)
other nodes in the network. We assume static broadcast-
ing(multicasting); i.e., the same tree is used for the entire
broadcast(multicast) duration. Any node can be used as a re-
lay node to reach other nodes in the network.

All nodes are assumed to haveS-sector antennas. The num-
ber of sectors,S, is related to the beamwidth,θ (in degrees), as
follows:

S = 360/θ (1)

We make several simplifying assumptions on the antenna prop-
erties. These are listed below:



• Each sector is assumed to span the angular region[(s −
1)360/θ, (s)360/θ] in the 2-D plane, where1 ≤ s ≤ S is
the sector number.

• We ignore sidelobe effects and assume that when sector
s is switched on, 100% of the radiated power is confined
within that sector, providing an uniform gain within the
angular region spanned by the sector.

• We consider antennas with 100% efficiency. That is, we
ignore any antenna power losses.

Several operating modes are possible in networks with direc-
tional antennas. These are: (a)Directional transmit, directional
receive(DTxDRx) (b) Directional transmit, omni-directional
receive(DTxODRx) (c)Omni-directional transmit, directional
receive(ODTxDRx) and (d)Omni-directional transmit, omni-
directional receive(ODTxODRx). In this paper, we adopt the
directional transmit, omni-directional receive (DTxODRx) op-
erating mode.

Following our simplifying assumptions, the transmitter
power ati necessary to support the link (i → j), Pij , can be
written to be proportional (accounting for link/antenna gains
and other factors) todα

ij/S, wheredij is the Euclidean distance
between nodesi andj. If (xi, yi) are the coordinates of node
i andα (typically in the range2 ≤ α ≤ 4) is the channel loss
exponent,dij is given by:

dij =
[
(xi − xj)2 + (yi − yj)2

]1/2
(2)

Without any loss of generality, we set the proportionality con-
stant to be equal to 1 and therefore:

Pij = dα
ij/S (3)

Finally, we assume that power expenditures due to signal re-
ception and processing are negligible compared to signal trans-
mission and hence thecost of a multicast tree is determined
solely by the choice of transmitter powers.

III. PROBLEM STATEMENT

Let Y be a vector of node transmission powers, the element
Yi representing the total transmission power cost of nodei. For
anS-sector antenna,Yi can be written as:

Yi =
S∑

s=1

Yi,s (4)

whereYi,s is the transmission power cost corresponding to sec-
tor s of nodei. We assume that each node has a constraint on
the maximum transmitter power it can use per sector, denoted
by Y max

i,s . That is:

0 ≤ Yi,s ≤ Y max
i,s :∀i ∈ N (5)

whereN is the set of all nodes in the network and|N | = N .
Also, let E the set of all directed edges1 andD the set of

destination nodes,D ⊆ {N \ source}. Let the cardinality of

1In this paper, we assume that all edges are directed. The notation(i → j)
will be used to denote a directed edge from nodei to j. The notation (i, j) will
be used to refer to the node pair.

these sets beE andD respectively;i.e., , E = |E| andD =
|D|. Using the transmitter power constraint, the set of all edges,
E , is given by:

E = {(i → j) : (i, j) ∈ N , i 6= j,Pij ≤ Y max
i,s } (6)

The third condition in the right hand side of (6) defines the set
of nodes which are reachable by a direct transmission from any
transmitting node depending on its maximum sector power con-
straint.

Fig. 1. Multicast illustration with a 3-sector antenna. Assume that the destina-
tion nodes areB, C andD. SinceC andD are located in the same sector, node
A can simply transmit toD, covering nodeC implicitly. Whether this is the
best strategy depends on whetherPAC + PAC > PAD . If the inequality is
satisfied, a direct transmission toD is preferable over the multihop transmission
A → C, C → D. We refer to the transmissionA → C as animplicit transmis-
sionandA → D as anactual transmission. In this example, the transmitting
node,A, needs to use two sectors (sectors 1 and 3) to reach all the destination
nodes. The total transmission cost of nodeA is: YA = YA,1 + YA,3, where
YA,1 = max(PAC ,PAD) = PAD andYA,3 = PAB . Since sector 2 is
not used,YA,2 = 0.

Note that a transmission from nodei to nodej would also be
received by all nodes which are located within the same sector
asj and are geometrically closer toi thanj. For example, in
Figure 1, nodesC andD are located in the same sector w.r.t
nodeA and therefore the transmissionA → D would also be
received by nodeC. Since no additional cost is required to
reach nodeC, we refer to the transmissionA → C as anim-
plicit transmissionandA → D as anactual transmission.

Let {Xij : (i → j) ∈ E} be a set of binary variables such
thatXij = 1 if the transmissioni → j is used in the optimum
tree and 0 otherwise. Also, letne(i, s) be the set of neighbors of
nodei which are within radio range ofi and are located within
the same sector,s, w.r.t nodei. For example, in Figure 1,
ne(A, 1) = {C, D}, ne(A, 2) = {E} andne(A, 3) = {B}.
Following our discussion in the previous paragraph, we can
write:

Yi,s = maxj{XijPij : j ∈ ne(i, s)} (7)

whereXij = 1 if node j is reached from nodei (actually or
implicitly) and 0 otherwise.

For minimum power multicasting with sectored antennas,
our objective function is:

minimize

(
N∑

i=1

Yi

)
= minimize

(
N∑

i=1

S∑
s=1

Yi,s

)
(8)



whereYi,s is as defined in (7). The objective function, (8), has
to be solved subject to the following constraints: (a) all destina-
tion nodes must be reached, either actually or implicitly, (b) the
source node must reach at least one other node, (c) the tree must
beconnected; i.e., there must be directed paths from the source
to all destination nodes, possibly involving other intermediate
nodes and (d) the tree must not have anycycles.

In the next section, we develop a mixed integer programming
(MILP) model for optimal solution of the above optimization
problem.

IV. MILP M ODEL

Let {Fij : ∀(i → j) ∈ E} be a set of flow variables (Fij

represents the flow from nodei to nodej), with E defined as
in (6). The general multicast problem can be interpreted as a
single-origin multiple-destination uncapacitated flow problem,
with the source havingD units of supply (no demand) and the
destination nodes having one unit of demand each (see eqns.
(9) to (11) below). For other nodes, the net in-flow must equal
the net out-flow, since they serve only as relay nodes (see eqn.
12 below).

Fig. 2. Example multicast tree. Node 1 is the source. The shaded nodes
are the destination nodes and the dashed line represents implicit transmissions.
Assume that all nodes are equipped with a 3-sector antenna. Suppose that (a)
nodes 2 and 5 are located in sector 3 w.r.t node 1 (b) node 3 is located in sector
1 w.r.t node 2 (c) node 4 is located in sector 3 w.r.t node 2 and (c) node 6 is
located in sector 1 w.r.t node 5. The cost of the multicast tree is therefore:
Y1,3 + Y2,1 + Y2,3 + Y5,1 = P12 + P23 + P24 + P56.

At a conceptual level, the flow model can be viewed as a to-
ken allocation scheme where the source node generates as many
tokens as there are destination nodes and distributes them along
the “most efficient” tree such that each destination node gets to
keep one token each. For example, for the multicast tree in Fig-
ure 2, the flow variables are:F12 = F15 = 2, F23 = F24 = 1,
F56 = 1. All other flow variables are 0.

The supply and demand constraints discussed above can be
expressed as the followingflow conservation equations(see for
example [7]):

N∑

j=1

Fij = D; i = source, (i → j) ∈ E (9)

N∑

j=1

Fji = 0; i = source, (i → j) ∈ E (10)

N∑

j=1

Fji −
N∑

j=1

Fij = 1; ∀i ∈ D, (i → j) ∈ E (11)

N∑

j=1

Fji −
N∑

j=1

Fij = 0; ∀i ∈ R, (i → j) ∈ E (12)

whereR 4
= N \{D∪ source} is the set of all nodes other than

the source or destinations. Note that (10) effectively constrains
all flows directed into the source node to 0.

Having set up the flow equations, we now need to link the
flow variables to the power variables,{Yi,s : i = 1, · · ·N ; s =
1, · · ·S}. This is done in two stages. In the first stage (eqn. 13),
we couple the flow variables and the indicator variables{Xij}
and in the next stage (eqn. 14), we link the{Xij} variables to
the power variables. Recall from Section III thatXij = 1 if
the edge (i → j) appears in the optimum solution (either as an
actual transmission or as an implicit transmission) and 0 oth-
erwise. The set of constraints which couple the flow variables
and theXij variables is:

D ·Xij − Fij ≥ 0; ∀(i → j) ∈ E (13)

Note that (13) ensures that “Xij = 1 if Fij > 0”. For the
multicast tree in Figure 2, the status of theXij variables are
X12 = X15 = X23 = X24 = X56 = 1, the rest being
equal to 0. The coefficient ofXij in (13) is due to the fact
that the maximum flow out of any node on a single link is equal
to the number of destination nodes. Equation (13), however,
leaves open the possibility ofXij being equal to 1 forFij = 0.
We show later that this possibility can be discounted since it
would unnecessarily increase the cost of the optimum solution.
It should also be noted that the smallest integer value ofXij

which satisfies (13) for any nonzero flow out of nodei (i.e.,
if

∑
j Xij ≥ 1) is 1. Consequently, we can simply define the

Xij ’s to be integers, instead of explicitly declaring them to be
binary variables.

Next, we write down constraints linking theXij variables
and the power variables. As discussed in Section III (see eqn.
7), the cost of spanning in multiple nodes, located within the
same sector, from nodei is simply the cost incurred in reaching
the farthest node. This condition is expressed as:

Yi,s −PijXij ≥ 0; ∀i ∈ N , ∀j ∈ ne(i, s) (14)

It is now clear that, if there is no flow out of nodei (i.e.,∑
j Fij = 0), settingXij = 1 would result in a positive value

for Yi and thereby unnecessarily increase the cost of the optimal
solution.

Next, consider the case when there are multiple flows out of
nodei, i.e.,

∑
j Fij > 1. Supposej∗ ∈ ne(i, s) is the node

such thatŶi,s = Pij∗Xij∗ = maxj (PijXij : j ∈ ne(i, s)) is
part of the optimal solution. In this case, settingXij = 1,
j 6= j∗, would not affect the cost of the optimal solution if
PijXij ≤ Pij∗Xij∗ . If, however,PijXij > Pij∗Xij∗ , this
solution cannot be optimal since it can easily be improved by
settingXij = 0.

The final set of constraints express the integrality of theXij

variables and non-negativity of theFij andYi,s variables.

Xij ≥ 0, integer; ∀(i → j) ∈ E (15)

Fij ≥ 0; ∀(i → j) ∈ E (16)

0 ≤ Yi,s ≤ Y max
i,s ; ∀i ∈ N , s = 1, 2, · · ·S (17)

To summarize, solving the objective function (8), subject to
constraints (9) to (17) solves the minimum power multicast



problem in wireless networks with sectored antennas. The
number of integer variables in the MILP model is equal toE
while the number of continuous variables is equal toE + SN .
The number of constraints is approximately on the order of
E + N(1 + S).

Since integer programming is known to be NP-complete, we
are currently using the model to benchmark the performance of
heuristic algorithms on small and medium size networks. Re-
search is under way to develop fast approximation algorithms
based on the model. In the following section, we describe an
ant colony system(ACS) approach to solving the MILP opti-
mization problem. ACS algorithms, first proposed by Dorigo
and Gambardella [6] for solving the celebrated travelling sales-
man problem, have their roots in the foraging behavior of ants
and, in essence, are positive reinforcement intelligent search
strategies.

V. ACS OPTIMIZATION APPROACH

We start out by establishing the following notation.

A. Notation

t = time index
tmax = maximum time index
NA = number of Type-A ants
NB = number of Type-B ants
τmin = minimum pheromone level
τmax = maximum pheromone level
τij(t) = pheromone level on edge (i → j) at timet,

τmin ≤ τij(t) ≤ τmax

ηij = local visibility of nodej from nodei
4
= 1/Pij

βA = tunable parameter to controlηij for Type-A ants,
0 < βA ≤ 1

βB = tunable parameter to controlηij for Type-B ants,
0 < βB < βA ≤ 1

Tm(t) = tree developed by antm at timet
Cm(t) = the cost ofTm(t)
ρ = pheromone decay coefficient,ρ ∈ (0, 1]
q = uniformly distributed random variable over the

interval [0,1]
q0 = tunable parameter,q0 ∈ [0, 1]

At time t = 0, the pheromone level on all edges is initialized to
τmin; i.e.,

τij(0) = τmin : ∀(i → j) ∈ E (18)

B. Tree building by an ant

Tree building2 is an iterative process which starts with a
transmission from the source and continues till all the intended
destination nodes are reached. The iteration converges inat
mostN − 1 iterations (i.e., k ≤ N − 1). It should be noted
that, because of the inherently broadcast nature of the wireless
medium, the number of iterations can range from as few as 1
(this will be the case if all destination nodes are located within
the same sector and are within direct radio range of the source)

2In keeping with swarm intelligence terminology, we will refer to the tree-
building agents as ants.

to N − 1 (e.g., if exactly one new node is reached during each
iteration and the last edge chosen reaches a destination node).
Before explaining the tree-building process, we define the fol-
lowing additional parameters:

k = transmission step number
NRk = set of new nodes reached at transmission stepk

(NR0 = [source])
NR0:k = set of all nodes reached till transmission stepk

4
=

⋃k
x=0 NRx

NNRk = set of all nodesnot reachedtill transmission stepk
4
= N \NR0:k

Node i is said to be newly reached at stepk if i ∈ NRk but
i 6∈ NR0:k−1.

In general, at any transmission stepk, an antm can travel
from any node which has been reached till stepk − 1, to any
node which has not yet been reached till stepk − 1. The set of
possible edges to choose from,edge listkm, is therefore given
by:

edge listkm = {(i → j) : i ∈ NR0:k−1, j ∈ NNRk−1,

(i → j) ∈ E} (19)

whereE is as defined in (6). The decision rule governing which
edge is chosen at stepk of the tree building process ispseudo-
random-proportional, as described in Figure 3. Starting with
k = 0, this decision rule is executed till all the intended desti-
nation nodes are reached. It can be easily seen from Figure 3
that the worst case complexity of the tree-building procedure is
on the order ofO(N2).

It can be seen from Figure 3 that edges are chosen either de-
terministically or probabilistically. The extent to which proba-
bilistic decisions are made is controlled by the tunable param-
eterq0. Probabilistic edge selection is used for efficient explo-
ration of the search space. In our simulations, we variedq0 with
t so that decision making is predominantly probabilistic during
the initial stages of the algorithm and mostly deterministic dur-
ing the latter stages. This is discussed in Section VI.

The factors which determine the desirability of choosing an
edge(i, j) at iterationk and timet are:
• local visibility of nodej from i, scaled exponentially by the
parameterβA or βB , depending on the type of ant. Higher the
local visibility, higher the desirability of choosing that edge.
The degree of desirability can be varied by properly selecting
βA andβB , as explained subsequently.
• pheromone level,τij(t), on the edge at timet. Since edges
which are part of better solutions are positively reinforced3,
presence of a high pheromone level on an edge is used to boost
the desirability of choosing that edge. A very high pheromone
level on any edge, therefore, makes it much more probable for
that edge to be included in the final tree.

We now explain how the degree of desirability of choosing
an edge can be controlled by varying the parametersβA and
βB . Consider an arbitrary 4-node network. Suppose we have

3At any timet, the pheromone level on the edge(i, j), τij(t), reflects the
cumulative knowledge acquired by the ants till timet− 1 on the desirability of
moving to nodej from nodei.



1. Prepare a list of candidate edges to choose from,edge listk
m.

2. Randomly choose a transmitting node from the set of possible trans-
mitters inedge listk

m. Let the transmitting node befk.
3. LetAk,m = {aij : i = fk, (i → j) ∈ edge listk

m} be the decision
matrix based on which antm makes its decision for selecting an edge
at stepk. The probabilities{aij} are computed as follows:

aij =





[τij(t)][ηij ]βA
∑

x[τix(t)][ηix]βA
, i = fk, Type-A ants

[τij(t)][ηij ]βB
∑

x[τix(t)][ηix]βB
, i = fk, Type-B ants

(20)

where(fk → x) ∈ edge listk
m.

4. Sampleq from a uniform distribution over [0,1].
5. if (q < q0) /* Deterministic decision making */

Choose the strongest edge,(fk, tk), fromAk,m.

(fk, tk) = argmaxi,j{aij} (21)

else /* Explore. Probabilistic decision making. */
Choose an edge(fk, tk) from Ak,m probabilistically,e.g.,
using a roulette-wheel type mechanism.

end if
6. SetNRk = {tk}. If other nodes, located within the same sector as
tk, are reached implicitly (see Figure 1 for illustration), include them
in NRk.
7. Update the sets:

NR0:k ← NR0:k−1
⋃

NRk (22)

NNRk ← N \NR0:k (23)

Fig. 3. Pseudo-random-proportionaledge selection criterion at any iteration
k of the tree building process by antm. Note from eqn. (20) that the edge-
selection criterion is dependent on the time instantt through the pheromone
level parametersτij(t). Multicast trees are built by repeated application of
this edge-selection criterion which terminates when all destination nodes are
reached.

one Type-A and one Type-B ant at node 1. Assume that the
local visibilities of nodes 2, 3 and 4 from 1 are given by:η12 =
0.5, η13 = 1.5, η14 = 2.0. Let τ12(t) = τ13(t) = τ14(t) = 1.
ChoosingβA = 1 andβB = 0.1, the probabilities{aij} (see
eqn. 20) for the two types of ants are as follows:

• Type-A: a12 = 0.11, a13 = 0.33, a14 = 0.56
• Type-B: a12 = 0.31, a13 = 0.34, a14 = 0.35

Clearly, if both the ants are following their exploratory regi-
men (see Step 5 in Figure 3), while the Type-A ant will choose
the edge1 → 4 (note that node 4 is closest to node 1 since
ηij = 1/Pij) 56% of the time, the Type-B ant has almost equal
chances of selecting any of the three edges. Type-B ants, there-
fore, can select their edges by lookingdeeper into the network,
as opposed to Type-A ants which aremostly greedyand tend
to choose nearby nodes. Because of this reason, we will refer
to Type-A ants asnarrow-visionants and Type-B ants aswide-
visionants. It may be noted that the wide-vision ants, because
of their ability to make decisions by looking deeper into the net-
work, are better suited for exploiting the broadcast nature of the
wireless medium than the narrow-vision ants.

A high level description of the ACS algorithm is provided in
Figure 4. For a multicast application, the tree generated using
the edge-selection criterion in Figure 3 can have a lot ofredun-
dant edges. An edge, (i → j), is deemed to be redundant ifj

1. Sett = 0.
2. Setτij(0) = τmin : ∀(i → j) ∈ E .
3. LetT best be the tree grown by the global best ant andY best its cost.
4. LetT best(t) be the best tree grown by any ant during iterationt and
Y best(t) its cost.
5. while(t < tmax)

for(m = 1 : NA + NB) /* ant number */
/* Tree building depends on whether the ant is Type A or B*/
• Build the treeTm(t); /* See Figure 3*/
/* prune(T ) is a function which takes a treeT , prunes it, and
returns the updated tree*/
• Tm(t) ← prune(Tm(t));
• Compute the costCm(t) of Tm(t); /* See Figure 2*/
/* Local pheromone update*/
• τij(t) ← ρτij(0) + (1− ρ)τij(t), ∀(i → j) ∈ Tm(t);

end for

if (t == 0)
T best ← T best(t), Y best ← Y best(t);

else

if (Y best(t) < Y best)
T best ← T best(t), Y best ← Y best(t);

end if

end if

/* Global pheromone update*/
• τij(t + 1) ← ρ/Y best + (1− ρ)τij(t), ∀(i → j) ∈ T best;
/* Increment t*/
• t ← t + 1;

end while

6. PrintT best andY best.

Fig. 4. High level description of the ACS algorithm.

itself is not a destination node or none of the descendants ofj is
a destination node. Given a directed graph,G, thedescendants
of nodei, denoted byde(i), is defined as the set of nodes,{j},
such that there is a path fromi to all nodes in{j}. That is,

de(i)
4
= {j | i 7→ j but notj 7→ i}

where (i 7→ j) is a directed path from nodei to nodej. A
pruning operation is therefore necessary to eliminate all redun-
dant edges. Note that the pruning step can lead to a substantial
reduction in the total transmission power cost of the tree, espe-
cially if D/N << 1.

We now discuss the edge-reinforcement mechanism in Fig-
ure 4. We have adopted a two-level pheromone update opera-
tion; a local update after computing each treeTk(t) (the update
step inside thefor loop in Figure 4) and a global update after all
trees{Tk(t)} have been computed at a given time instantt (the
update step after thefor loop). Note that the latter pheromone
update is partly proportional to the quality of the best solution
produced till iterationt. Better the best solution, the higher
the pheromone amount that is deposited on the set of directed
edges in the best multicast tree. The role of the pheromone de-
cay coefficient,ρ, is to prevent stagnation in the search process,
a situation where all or most of the ants end up choosing the
same set of edges and hence generating identical trees.



TABLE I
Parameter values used in the simulations.

Parameter N = 10 N = 20 N = 30
Y max

i,s 0.050 0.030 0.015
tmax 50 50 50
NA 3 3 3
NB 2 2 2
ρ 0.2 0.2 0.2

τmin 10−4 10−4 10−4

τmax 2 2 2
βA 1 1 1

1/α2, if t ≤ b0.3 ∗ tMAXc
βB 1/α, if b0.3 ∗ tMAXc+ 1 ≤ t ≤ b0.6 ∗ tMAXc

1, if b0.6 ∗ tMAXc+ 1 ≤ t ≤ tMAX

0.3, if t ≤ b0.3 ∗ tMAXc
q0 0.6, if b0.3 ∗ tMAXc+ 1 ≤ t ≤ b0.6 ∗ tMAXc

0.9, if b0.6 ∗ tMAXc+ 1 ≤ t ≤ tMAX

VI. SIMULATION RESULTS

We conducted a study of the performance of optimal and
ACS methods in 10, 20 and 30-node networks with 3-sector
antennas. Multicast group sizes were chosen to be 9 (in effect,
a broadcast application) for 10-node networks and 5 for 20/30-
node networks. In each case, 25 networks were randomly gen-
erated and the tree powers were averaged to obtain the mean
tree power. ‘α’ was chosen to be equal to 2 for all cases.
The open source linear programming software, LPSOLVE [8],
which uses a LP-based branch and brand algorithm to solve
MILP problems, was used to compute the optimal solutions.
Values of the parameters used in the simulations are given in
Table I.

A key point to note in Table I is the dynamic nature of the pa-
rametersq0 andβB with respect tot. Gradually reducingq0 en-
sures that the bulk of the exploration work (Step 5 in Figure 3)
is carried out during the initial stages of the algorithm, when the
pheromone distribution on the edges is not too uneven and “trail
conditions” are more suitable for wide-vision ants, as explained
in Section V-B. IncreasingβB with respect tot has the effect
of reducing the local visibility of wide-vision ants so that they
start behaving more like their narrow-vision counterparts as it-
eration progresses. In fact, forb0.6 ∗ tmaxc + 1 ≤ t ≤ tmax,
βB is equal toβA, which ensures that all ants concentrate on the
best routes generated and look for better solutions within local
neighborhoods during the last stages of the algorithm.

Our performance measures for comparing the optimal and
ACS solutions are as follows:

PM1 = Mean

[
100×

∑
i Yi(ACS)−∑

i Yi(opt)∑
i Yi(opt)

]
(24)

PM2 = Max.

[
100×

∑
i Yi(ACS)−∑

i Yi(opt)∑
i Yi(opt)

]
(25)

PM3 = St. Dev.

[
100×

∑
i Yi(ACS)−∑

i Yi(opt)∑
i Yi(opt)

]
(26)

Table II provides a statistical summary of the simulation results.
Clearly, the solutions generated by the ACS algorithm are near-
optimal, being within 4% of the mean optimal solution in all
cases. The computational time required to find the solutions

using the ACS algorithm was extremely small since only 250
(tmax× (NA +NB) = 50×5; see Table I) total solutions were
generated in each case.

TABLE II
Comparison of the optimal and ACS solutions.α = 2 for all N . See equations

(24), (25) and (26) for definitions of the parametersPM1, PM2 andPM3.

N D PM1 PM2 PM3

10 9 3.68 16.78 5.23
20 5 3.75 19.71 4.42
30 5 2.25 8.31 2.49

VII. C ONCLUSION

In this paper, we developed a mixed integer linear program-
ming (MILP) model for solving the minimum power multicast
problem with sectored antennas in energy constrained wireless
networks. We also discussed an ant colony system (ACS) opti-
mization approach for solving the MILP optimization problem.
The algorithm uses a mix of narrow-vision and wide-vision
ants. While a narrow-vision ant located at a particular node
tends to choose a nearby unreached node to visit next, wide-
vision ants are allowed to choose distant nodes to visit next.
Experiments carried out on 10, 20 and 30-node networks con-
firm that near-optimal results can be obtained using the ACS
algorithm, and in very little computation time.
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