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Abstract – Swarm intelligence forms the core of a new class of 
algorithms inspired by the social behavior of insects that live in 
swarms. Its attractive features include adaptation, robustness 
and a distributed, decentralized nature, rendering swarm-based 
algorithms well-suited for routing in wireless or satellite 
networks, where it is difficult it implement centralized network 
control. We propose one such routing algorithm, dubbed 
Adaptive Swarm-based Distributed Routing (Adaptive-SDR), 
which is scalable, robust and suitable to handle large amounts of 
network traffic, while minimizing delay and packet loss.  

 
I.  INTRODUCTION 

 
Satellite networks exhibit characteristics of wireless and 

wired networks. Transmission is wireless but highly 
directional, therefore resembling a wired link but with higher 
delay. The ideal form of routing in any network is that which 
instantly responds to varying network conditions. However, 
this presents challenges in satellite networks, since the delays 
inherent in the network make centralized control inefficient. 
Thus, a distributed routing scheme is necessary to address 
these issues.  

Swarm intelligence is an evolving field yielding methods 
for distributed systems optimization [1]. For the purpose of 
network routing, the paradigm that has already been proposed 
as most promising is that of ants. These remarkable insects 
have the ability to discover routes to their food sources 
through simple primitive interactions, via a chemical 
substance called a pheromone. Pheromones are used for 
indirect communication between ants, a phenomenon known 
as stigmergy. Its end effect is the manifestation of behavior 
far more complex than expected by such simple organisms.  
There already exist many successful adaptations of ant 
behavior to network control [1-11], with the most prominent 
being AntNet [2,3],  and Ant-based Control (ABC) [4]. An 
overview of swarm-based algorithms can be found in [12]. 
The application of AntNet to a satellite network is discussed 
in [13].  

These and the other existing algorithms lack a number of 
important features, namely scalability, full utilization of the 
network capacity, routing oscillations, and routing loops.  

We propose an algorithm called Adaptive Swarm-based 
Distributed (Adaptive-SDR) that addresses these issues. 

 
II. SWARM ROUTING TECHNIQUES 

 
In all the above swarm-based algorithms [1-11], every node 
has a table of next-hop probabilities to each destination, as 
shown in Table. I.  

 

Table I. Swarm-based Routing Table 
Next Hop 

 3 4 
1 0.15 0.85 

 
 

Destination 
Node 2 0.75 0.25 

 
Each row in this table corresponds to a destination and 

each column to a neighbor. The entries in the table are the 
probabilities that the next-hop is a specific neighbor. In 
previous swarm-based algorithms, these probabilities are 
used by ants to allow them to randomly explore the network 
and possibly find new and better routes. Then, once the routes 
are discovered, the next-hop probabilities are updated to 
reflect the new discoveries. As far as data packets are 
concerned, they are routed to the next-hop with the highest 
probability. A variation of this is cited in the literature [13], 
where data packets are routed in the same random manner as 
ants. 

III. Adaptive-SDR 
 

The algorithm consists of three parts. The first part is 
clustering the network nodes into colonies. The second part is 
finding network routes using special agents called ants. The 
third part is forwarding the network traffic using the routes 
discovered by the ants. The first part is not performed very 
frequently, just in the beginning stage of the algorithm and 
whenever the network topology changes enough to justify a 
re-clustering of the nodes. The second and third parts are 
performed constantly as part of regular network operation. 
 
A. Clustering into Colonies 
 
AntNet and ABC have scalability problems, since each node 
has to send an ant to all the other nodes of the network, which 
means that the total number of ants that have to be sent is   
N× (N-1). For large networks, the amount of traffic generated 
by the ants would be prohibitive. Furthermore, for distant 
destinations there is a larger likelihood of the ants being lost. 
Moreover, the large traveling times of the ant render the 
information they carry outdated. 

One way of addressing all these issues is clustering the 
nodes into colonies. However, the optimal number of 
colonies is not obvious, but a simple derivation may be 
performed if the goal is to minimize the number of ants. 
Assuming that all nodes send ants at the same rate and that all 
colonies have approximately the same number of nodes, then 
the total number of ants is defined by: 

 

* Dept. of Electrical Eng., Box 352500 
University of Washington 
Seattle, WA 98195 USA 

[ikas,elsharkawi,marks]@ee.washington.edu 

†Jet Propulsion Laboratory 
4800 Oak Grove Drive, MS 238-343 

Pasadena, CA 91109 USA 
[payman,gray]@jpl.nasa.gov 



)( 11# −+−= NC
NC
NNNNants  (1)

where NN is the number of nodes in the network and NC is 
the number of colonies. The value of NC minimizing the 
number of ants is NNNC = .  

From the available techniques in the literature, we 
choose k-means clustering [14], where the distance function 
is the Euclidean distance between the nodes. Clustering is 
performed by a central controlling entity that is aware of the 
geographical locations of all the nodes.  

 
B. Discovering Routes 
 
After the network colonies have been formed, two types of 
agents, called ants, are introduced into the network. The first 
type is colony ants and the second type is local ants. The task 
of the colony ants is to find routes from one cluster to the 
other, while local ants are confined within a colony and are 
responsible for finding routes within their colonies. In order 
to facilitate this scheme, every node is equipped with two 
routing tables instead of one. The first, shown in Table II, is 
the colony routing table, while the second, shown in Table III 
is the local routing table.  

 
Table II. Colony Routing Table 

              Next Hop 
 3 4 5 

A 0.1 0.05 0.85 

 
 

Destination  
Colony B 0.2 0.55 0.25 

  
Table III. Local Routing Table 

Next Hop 
 3 4 
1 0.15 0.85 

 
 

Destination Node 
(within colony) 2 0.75 0.25 

 
In the colony routing table, all the neighbors of the nodes 

are included in the next-hop list, while in the local routing 
table only the nodes that belong to the same colony are 
included as possible next-hops.  

The probabilities of the routing tables are updated in a 
manner that borrows some features from the AntNet 
algorithm [2,3], while adding significant improvements. 

1. At regular intervals, each node sends one local ant to 
every destination within the colony, and only one colony ant 
for each outside colony. 

2. The local ants choose next-hops according to the local 
table probabilities, while the colony ants choose next-hops 
according to the colony tables. 

3. Both types of ants record the nodes they follow and 
the corresponding arrival times. 

4. An ant tries to avoid all previously visited nodes. If 
this is impossible, then a loop is detected and all the memory 
pertaining to the loop is erased and a random next hop is 
taken. Also, ants exceeding a certain number of hops to reach 
the destination are terminated. This number is usually set 
equal to the number of nodes in the network.   

5. Once the destination is reached, the ants trace the path 
backwards to their source. When they arrive at each 
intermediate node, they update the routing tables’ 
probabilities of that node. 
 The rules for updating the probabilities of both tables are 
the same. First, the remaining trip time Τ to the destination is 
calculated as follows. 

ndst ttT −= , (3)
where tn is the arrival time at current node and tdst the arrival 
at the destination. Next, the intermediate quantity λ is 
calculated as 
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where µ is the mean of T οf all the ants that have passed from 
this node and had the same destination and c is a scaling 
factor usually set by the user, normally equal to 2. Then, λ is 
used to calculate the changes of the probabilities as follows.   
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where dnext, dprev, drest and Pn,dst, Pp,dst and Pr,dst are the step 
sizes and the probabilities of the next-hop, the previous-hop 
and the rest of the neighbors, respectively. Nk is the set of 
neighbors of the current node k and ∆Pn,dst, ∆Pp,dst and ∆Pr,dst 
are the previous changes in the probabilities of the next-hop, 
the previous-hop and the rest of the neighbors. α and w are 
scaling and inertia factors. 
 The function of the scaling factor α is to prevent network 
oscillations by limiting changes in the probabilities. The 
inertia factor w has the same effect by providing inertia to the 
changes in the probabilities. 

Finally, the routing table probabilities are updated as 
follows: 
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 In Eq. (6), the next-hop receives a reward (positive d) so 
that the probability of that node being chosen by future ants 
passing through the current node is higher. The previous-hop 
receives a penalty (negative d), so that the likelihood of 
taking that next-hop by future ants passing through the 
current node is decreased. Finally, the probabilities of the rest 
of the nodes are decreased.  
 Next, all the probabilities are thresholded between 

( )2#
1

neighbors
and 0.8. The reason for the thresholding is to 

prevent saturation of the probabilities that prevent exploration 
by the ants. The lower threshold is set at that value so that the 
ratio of the initial probabilities and the lowest possible 



probabilities is equal to the number of neighbors. The higher 
threshold is set to this value after sufficient experimentation.  
Since all the above operations yield probabilities with sum 
not equal to unity, the probabilities are normalized so that the 
unity sum condition is met.  
 
C. Traffic forwarding 
 
The routing tables derived by the random movements of ants 
provide an estimate of the condition of the network. As far as 
data packets are concerned, the next-hop with the highest 
probability represents the node with the best promise to lead 
to the destination. Therefore, in algorithms like AntNet or 
ABC, data packets are routed to the node with the highest 
probability. This does not utilize the full network capacity. A 
variation of this is routing data packets in the same random 
manner as ants [13]. This leads to higher network utilization. 
However, the advantage of doing this is not clear, since ants 
are known to follow paths that sometimes are far worse than 
optimal as part of their exploration tasks. This is fine for 
small ant packets, but not for data. It is therefore necessary to 
take the present network conditions into account.  

A first-order approach to network condition-sensitive 
routing is to monitor the state of the queues of the links to all 
outgoing neighbors and adapt the next-hop probabilities 
according to the load in each queue. Then, the next-hop with 
the highest adjusted probability is selected. A simple measure 
of the state of a queue is the total size of its packets. The 
probabilities of the routing table can then be temporarily 
adjusted as follows: 
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where N is the set of neighbors of the node and loadi is the 
load in the queue of the link from the current node to node i. 
 This adjustment is only temporary and for the purpose of 
forwarding data at that specific time instant. It does not 
permanently change the routing table probabilities. The 
advantage of this method is that the best next-hop is 
penalized when it is congested, while it is still the best, and 
thus always chosen, when there is no congestion. 

The data is forwarded to the destination using the 
following procedure: 

1. When a data packet originates from the source, it 
knows the destination node and colony. 

2. If the node where it is at does not belong to the same 
colony as the destination node, then the packet uses the next-
hop with the highest probability of the colony routing table, 
as adjusted in Eq. (7). Otherwise;  

3. If the packet is at a node that belongs to the same 
colony as the destination node, then the packet uses the next-
hop with the highest probability of the local routing table, as 
adjusted by Eq. (7).  

 

IV. TEST SYSTEM 
 

We implement our algorithm on 4×4 and 7×7 networks as a 
proof of concept. The two network topologies are given in 
Figs. 1 and 2. 

The 16-node network is divided into 4 colonies, while 
the 49-node network is divided into 7 colonies. The nodes are 
placed on 4×4 and 7×7 grids with random perturbations 
around the fixed grid positions. The dimensions of the grids 
for both cases are 107x107m and the links’ bandwidth is fixed 
at 1Mbps, while the delay is proportional to the distance 
between the nodes. All edges show bi-directional links. In the 
16-node network there are 4 constant bit rate (CBR) sources, 
while the 49-node network has 7 CBR sources.  

 
Fig 1. 16-node network divided into 4 colonies 

 

The rate of the sources is set at 800kbps for the 16-node 
network and 960kbps for the 49-node network. The packet 
size is 1000bytes for the 16-nodes and 1200bytes for the 49 
nodes. The interval is 0.01s for either network, which brings 
the offered load close to the capacity of the links. The traffic 
is intentionally high to test the algorithms’ performance when 
the network capacity is stretched.  

 
Fig 2. 49-node network divided into 7 colonies 

  



V. RESULTS 
 

We compare our algorithm to  
 

a) The original version of AntNet 
b) The version of AntNet with random data forwarding 
c) link-state algorithm (LS) [15] 
d) distance-vector algorithm (DV) [15]. 

  
The versions of the link-state and distance vector 

algorithms are the ones used by the popular simulation 
software “NS2” [16]. The results for the 16-node network are 
given in Table VII and in Fig. 3. For the 49-node network we 
only show results for Adaptive-SDR. 

 
Table VII. Results for 16-node network 

 Adaptive-
SDR AntNet AntNet-

Random LS DV 

Delay(s)   0.3319 0.2022 0.2367 0.2010 0.2010 
Throughput 

(Mbps) 2.672320 2.059800 1.561200 2.050200 2.050200

Packet loss 
ratio 0.1649 0.3563 0.4879 0.3593 0.3593 
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Fig. 3. Comparison of different routing algorithms on 16-node network 

 
From the results in Table VII and Fig. 3 we notice the 

significant superiority of Adaptive-SDR based on packet loss 
and throughput. The average delay is higher for Adaptive-
SDR, but this is due to the fact that slower routes are chosen 
when the faster ones are occupied.  This is done to reduce 
packet loss.  

Table VIII. Results for 49-node network 
 Adaptive-SDR 

Delay (s)   0.5825 
Throughput (Mbps) 5.149800 

Packet loss ratio 0.0804 

The results of Table VIII show that Adaptive-SDR also 
performs well on larger systems. Comparison of Adaptive-
SDR with other algorithms on larger real-life systems is part 
of ongoing research. 

 

VII. CONCLUSIONS 
 

In this paper we have presented a novel algorithm based 
on swarm intelligence. The algorithm, dubbed Adaptive-
SDR, has attractive features such as:  

1) Scalability 
2) High utilization of the network capacity  
3) Avoiding routing oscillations and routing loops 
Our proof of concept tests on the proposed algorithm 

have shown superior performance compared to other standard 
and swarm-based techniques.  
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