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Abstract— We consider the problem of power controlled min-
imum frame length scheduling for TDMA wireless networks.
Given a set of one-hop transmission requests, our objective is to
schedule them in a minimum number of time slots, so that each
slot schedule is free of self-interferences and meets desired SINR
constraints. Additionally, the transmit power vector correspond-
ing to each slot schedule should be minimal. We consider two dif-
ferent versions of the problem, a per-slot version and a per-frame
version, and develop mixed integer linear programming models
which can be used for solving the problems optimally. In addition,
we propose a heuristic algorithm for the per-slot version.

I. INTRODUCTION

In this paper, we consider the problem of power controlled
adaptive frame length scheduling in TDMA wireless networks.
To the best of our knowledge, the issue of joint scheduling and
power control was first addressed by Tamer and Ephremides
in [1, 2]. Given a set of one-hop transmission requests consti-
tuting a request list, they suggest a two-phase algorithm which
essentially decouples the scheduling and power control objec-
tives. The scheduling objective, which is used to remove “self-
interferences” from the request list, is achieved by executing
a centralized algorithm at the scheduler. After successful ex-
ecution of this phase, the authors show that the power control
problem in TDMA or hybrid TDMA/CDMA ad hoc networks is
similar to the power control problem in cellular systems. Con-
sequently, algorithms developed for the latter can be used for
ad hoc networks.

In [1, 2], the authors assume that the frame length comprises
a fixed number of time slots, which is determined heuristically.
Our work, on the other hand, focusses on the adaptive frame
length case wherein, given a request list, the objective is to
schedule them in a minimum number of time slots, so that
each slot schedule is free of self-interferences and meets de-
sired SINR constraints. Additionally, the transmit power vector
corresponding to each slot schedule should be minimal. Ide-
ally, the optimization should be carried out on a per-frame ba-
sis. However, this approach requires an excessive number of
variables prohibiting optimal offline analysis even for moder-
ately sized request lists. Consequently, for the most part, we
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focus on a (sub-optimal) per-slot optimization approach which
is much more tractable than a per-frame approach. Another as-
pect of our work, which differs from [1, 2], is our consideration
of sectored antennas as opposed to omnidirectional antennas.

The minimum frame length scheduling objective in our work
has also been researched in the context of link scheduling in
spatial-TDMA (STDMA) networks [3, 4]. The work in [3]
provides a comparison of graph-based versus SINR based link
scheduling policies while [4] proposes optimal link and node
scheduling algorithms using mixed integer linear programming
(MILP) techniques. However, transmitter power is assumed to
be fixed in these papers. Our work can therefore be seen as an
extension of the link scheduling problem with variable trans-
mitter powers. A closely related work is [5] which discusses a
heuristic algorithm based on graph coloring.

The aspect of power control, on the other hand, has been re-
searched extensively in the context of channelized and CDMA
based cellular systems [6-17]. Several centralized as well as
distributed algorithms have been suggested for the power con-
trol problem. While initial research focussed on linear first-
order methods [7-10,12], faster second order linear methods
[13] as well as nonlinear methods [14] have recently been sug-
gested in the literature. Experimental results in [14] show that
their nonlinear algorithm converges faster than the first order
linear methods discussed in [10,12]. Besides the issue of algo-
rithm design for fast distributed power control, there is a consid-
erable body of research on convergence properties of distributed
algorithms, of particular significance being the work by Huang
and Yates [16].

The rest of this paper is organized as follows. In Section
II, we outline our network model and assumptions. In Section
III, we discuss MILP models for optimal solution of the per-
frame and per-slot versions of the power controlled minimum
frame length scheduling problem. We also include a numerical
example which illustrates that a per-slot approach is not guar-
anteed to use a minimum number of time slots, as a per-frame
approach would. A heuristic algorithm for the per-slot version
is explained in Section IV. Finally, Section V summarizes our
conclusions.

II. NETWORK MODEL, ASSUMPTIONS AND DEFINITIONS

In this section, we outline our network model and assump-
tions. Some of these assumptions are similar to those made in
[1, 2].
1. We consider a fixed N -node wireless network in a two-



dimensional plane. The nodes could be organized as a flat archi-
tecture or as a hierarchy of clusters. In either case, we assume
the presence of a scheduler which is responsible for schedul-
ing a set of transmission requests from different nodes. Nodes
which wish to transmit in a particular frame send their requests
to the scheduler which attempts to accommodate the requests
using as few time slots as possible, meeting certain scheduling
and signal-to-interference-noise-ratio (SINR) constraints. We
will refer to the set of requests to be accommodated during a

particular frame as the request list, denoted byR
4
= {m→ n},

where m is the transmitting node and n is the receiving node.
The element Ri refers to the ith transmission request in R.
Also, the notations Rtx

i and Rrx
i are used to refer to the trans-

mitter and the receiver corresponding to the ith request. The
minimum number of time slots required to accommodate all
transmission requests in R, subject to certain constraints dis-
cussed subsequently, constitutes a frame.
2. We assume that all transmission requests in the request list
are of equal priority.
3. The data rate for all slots is fixed.
4. We assume that the data packets generated by the nodes are
of identical length. Time is divided into equal sized slots, with
each slot duration being equal to the packet transmission time
plus an adequate “guard band”.
5. We assume that the request list comprises of one-hop trans-
mission requests only. Extending this work to the case where
the request list may comprise of multi-hop transmission re-
quests is a subject of future research.
6. We assume that each node is aware of the location of its
neighbors by means of location-discovery schemes. This infor-
mation is required for the receivers to feed back the SINR mea-
surements to their transmitters. Additionally, we assume the
existence of a separate contention-free control channel which
the receivers use to feed back their SINR measurements.
7. Each node has the following scheduling constraints:

• It cannot transmit and receive in the same time slot. For
example, the requests i → j and j → k cannot be sched-
uled in the same time slot.

• It cannot receive from more than one transmitter in the
same time slot. For example, the requests i → j and k →
j cannot be scheduled in the same time slot.

• It cannot transmit to more than one receiver in the same
time slot. For example, the requests i → j and i → k
cannot be scheduled in the same time slot.

Collectively, we refer to the above constraints as primary con-
straints. Any slot schedule which satisfies these constraints
is referred to as a primary feasible schedule or a conflict free
schedule. In graph theoretic terms, primary feasible schedules
constitute matchings on a directed graph representation of the
request list.
8. All nodes are assumed to have identical S-sector antennas.
The number of sectors, S, is related to the beamwidth, θ (in
degrees), as follows:

S = 360/θ (1)

Each sector is assumed to span the angular region [(s −
1)360/θ, (s)360/θ] in the 2-D plane, where 1 ≤ s ≤ S is the

sector number. Note that θ = 360 (⇒ S = 1) corresponds to
an omnidirectional antenna.
9. The efficiency of the antennas is assumed to be 100%; i.e.,
all the input power is assumed to be converted to radiated
power. With this assumption, the signal power at the intended
receiver j, due to a transmission from node i at a power level of
Pt Watts, is given by:

Pr = PtKtKrGij (2)

where Kt and Kr are the gains of the transmit and receive an-
tennas and Gij is the link gain from node i to node j. Strictly
speaking, the received power is proportional to the quantity on
the right hand side of (2) [21]. In the context of this paper,
however, we assume w.l.o.g that the proportionality constant is
equal to 1 and therefore (2) holds to equality.

Letting α (2 ≤ α ≤ 4) be the channel loss exponent, dij the
Euclidean distance in meters between nodes i and j and fij the
flat fading component, the link gain Gij is modelled as:

Gij = fij d−α
ij (3)

Note that even if the distance-dependent term in (3) is known
precisely, the fading component is modelled as a non-negative
random variable1, which implies that it is impossible to have a
perfect knowledge of the Gij factors a priori.
10. We assume that both transmission and reception is direc-
tional. Consequently, the parameters Kt and Kr refer to the
mainlobe gains of the transmit and receive antennas.
11. Typically, the mainlobe gain in sectored antennas is speci-
fied in units of dBi, or, with respect to an isotropic antenna. For
example, a mainlobe gain of 12dBi implies that Kt/Kti = 16,
where Kti is the gain of an isotropic antenna in transmit mode.

Additionally, the sidelobe and backlobe gains are generally
specified with respect to the mainlobe gain, known as the front-
to-back (F/B) ratio. For example, a F/B ratio of 20dB implies
that the back and sidelobe gain is 1/100th of the mainlobe gain.

In this paper, we make the following simplifying assump-
tions:

• The F/B ratio is exact and holds uniformly across the entire
side/backlobe. It should be noted that, in practice, manu-
facturers may quote a minimum F/B ratio or specify it at
a particular angle of the backlobe structure. In either case,
there may be angular regions where signal attenuation may
deviate from the specified F/B ratio.

• For any node, whether in transmit mode or in receive
mode, the reference isotropic antenna has unity gain; i.e.,
Kti = Kri = 1.

• For any node, whether in transmit mode or in receive
mode, the mainlobe gain is proportional to antenna direc-
tivity. Coupled with our previous assumptions on antenna
efficiency and reference isotropic antenna gain, this im-
plies: Kt = S ×Kti = S and Kr = S ×Kri = S, where
S, the number of sectors, is related to sectoral beamwidth
as in (1). In dB (or dBi) units, the mainlobe gain is there-
fore:

Kt = Kr = 10log10S (4)

1Several probability distributions have been suggested for the fading param-
eter, e.g., Nakagami, Rayleigh or Ricean.



Using the relation Kt = Kr = S, we simplify eqn. (2) as:

Pr = PtS
2Gij (5)

12. In [2], the authors assume an interference model whereby
each transmitter can potentially cause interference at any other
receiver, irrespective of the distance between them. This is
in contrast with the interference model recognized in IEEE
802.11, for instance, which assumes a circular transmission
range for each transmitter, beyond which interference is ig-
nored. The authors in [2] argue that their interference model
is more realistic since the aggregate interference from far-away
transmitters may be significant enough to disrupt an ongoing
transmission.

The interference model we assume is similar in spirit to that
in [2]. However, because of different mainlobe and sidelobe
gains in sectored antennas, the interference power at any re-
ceiver is also a function of the relative location of the trans-
mitter w.r.t the receiver and vice versa. We illustrate with an
example.

Consider the various transmission scenarios in Figure 1. As-
sume that the F/B ratio of all nodes is 20dB. In Figure 1(a),
nodes i and k are located in the same sector with respect to
node l. Also, nodes j and l are located in the same sector with
respect to node i. Consequently, the mainlobe of l is directed
towards k and i, and the mainlobe of i is directed towards j
and l. The interference power at node l is therefore equal to:
PijS

2Gil where Gil is the link gain from node i to node l.
However, in Figure 1(b), while the mainlobe of node i is still
directed towards j and l, node l’s backlobe is now directed to-
wards i. Since an F/B ratio of 20dB corresponds to a backlobe
gain of 1/100th the mainlobe gain, the interference power at
node l in this case is equal to: Pij(

S2

100 )Gil. Finally, in Fig-
ure 1(c), the backlobe of node i is directed towards l and vice
versa. Consequently, the interference power at node l is equal
to: Pij(

S2

10000 )Gil. In all three scenarios, the signal power at
node l due to the transmission k → l is equal to PklS

2Gkl.
In general, given a transmission pair i → j and k → l, the

interference power at node l is equal to PijS
2δilGil, where δil

is the sectoring gain factor at node l. Let θmn denote the sector
location (1, 2, · · · , S) of node n w.r.t node m. The parameter
δil is then given by:

δil =











1, if θij = θil and θlk = θli
(

100.1×F/B
)−2

, if θij 6= θil and θlk 6= θli
(

100.1×F/B
)−1

, otherwise

(6)

where F/B is the front-to-back ratio in dB. It should be noted
that we have adopted a double subscript notation for δil for
simplicity. Each δ parameter is dependent on a pair of trans-
missions and therefore δil should be interpreted as δ(i,j)(k,l).
13. Following our above discussion, given a transmission pair
i→ j and k → l, the SINR at node l, γkl, can be written as:

γkl =
PklS

2Gkl

PijS2δilGil + ηkl
(7)

where ηkl (> 0) is the thermal noise at receiver l. A double-
subscript notation is used for γ and η to ensure a direct corre-
spondence with the set of transmission requests inR.

Dividing the numerator and the denominator of the right-
hand-side of (7) by S2, we obtain:

γkl =
PklGkl

PijδilGil + (ηkl/S2)
(8)

14. Corresponding to every transmission request i → j in R,
we assume that there is a target SINR, denoted by γ̂ij , which
must be met at receiver j.

γij ≥ γ̂ij ; ∀(i→ j) ∈ R (9)

We will refer to these constraints as the secondary constraints.
15. All nodes are equipped with limited capacity batteries. Fur-
thermore, we assume that there is a constraint on the maximum
power level (denoted by P max) which a node can use for trans-
mission and that this parameter is identical for all nodes. This
maximum power level is adequate to meet SINR constraints for
all transmission requests in the absence of any interference.

Pmax ≥
γ̂ijηij

S2Gij
; ∀(i→ j) ∈ R (10)

16. Any slot schedule which meets the primary and secondary
constraints, and for which there exists a transmit power vector
which is strictly positive and upper bounded by P max (i.e., all
elements of the transmit power vector are less than or equal to
Pmax), is referred to as a feasible schedule. A feasible slot
schedule which accommodates the maximum number of trans-
mission requests is known as the maximal feasible schedule.
17. We mentioned in item 1 above that the responsibility of the
scheduler is to accommodate the transmission requests using as
few time slots as possible, meeting the primary and secondary
constraints. Ideally, this optimization should be carried out on
a per-frame basis. An alternative to the per-frame optimiza-
tion approach is to adopt a sequential slot-by-slot optimization
approach which ensures that each successive slot is maximally
packed. Even for offline analysis, a sequential approach is em-
inently more solvable than a per-frame approach, as shown in
the next section. We should emphasize, however, that a sequen-
tial approach is not guaranteed to use the minimum number of
slots as a per-frame approach would. Furthermore, the trans-
mit power vectors corresponding to a per-frame optimization
model and a sequential per-slot optimization model need not be
identical.

The (sub-optimal) heuristic algorithm we discuss in this
paper is based on sequential slot-by-slot decision making.
Broadly speaking, this involves (a) identifying the maximal fea-
sible schedule and (b) computing the transmit power vector cor-
responding to the maximal feasible schedule. While both these
functions can be executed in a centralized manner at the sched-
uler, we concentrate on the case where only identification of
the maximal schedule is done at the scheduler but the corre-
sponding power vector computation is executed in a distributed
fashion by the transmitters. We assume that the scheduler has
knowledge of the link gain factors (3), the sectoring gain fac-
tors2 (6), the noise vector (ηij’s), the target SINR’s (γ̂ij’s), the
number of sectors (S) and the maximum power level P max.

2Since δij is dependent on the relative angular locations of the transmitters
and the receivers, we do not envision our approach to be feasible in a mobile
network.



Fig. 1. Illustrating the effect of sectoring on interference power. Let Gil = sild
−α
il

be the link gain from node i to node l. Assume that the F/B ratio of all nodes
is 20dB. (a) Consider the effect of the transmission i → j, at a power level Pij , on receiver l. Note that nodes i and k are located in the same sector with respect
to node l. Also, nodes j and l are located in the same sector with respect to node i. In this scenario, the mainlobe of l is directed towards k and i, and the mainlobe
of i is directed towards j and l. Consequently, the interference power at node l is equal to: PijS2Gil. (b) In this figure, while the mainlobe of node i is still
directed towards j and l, node l’s backlobe is directed towards i. Since an F/B ratio of 20dB corresponds to a backlobe gain of 1/100th the mainlobe gain, the

interference power at node l in this case is equal to: Pij

(

S2

100

)

Gil. (c) In this figure, the backlobe of node i is directed towards l and vice versa. Consequently,

the interference power at node l is equal to: Pij

(

S2

10000

)

Gil.

III. MATHEMATICAL MODEL

In this section, we develop mixed integer linear program-
ming (MILP) models for solving the power controlled mini-
mum frame length scheduling problem. The optimization ap-
proaches we discuss in this section assume perfect knowledge
of the link gain and sectoring gain parameters and is therefore
intended to be used for offline studies to benchmark the perfor-
mance of practical, heuristic algorithms.

The first model we propose is for per-slot optimization which
is solved iteratively until all transmission requests have been al-
located one time slot. This model is subsequently extended for
the per-frame case. We conclude this section with a numeri-
cal example which shows that slot optimization, as opposed to
frame-optimization, may not be optimal in terms of the number
of time slots used.

A. Per-slot optimization model

We first introduce the notationR(s) denoting the request list
at the start of iteration s. We also define a set of nonnegative
continuous power variables {Pij : ∀(i → j) ∈ R(s)}, upper
bounded by the parameter P max, and a set of binary variables
{Xij : ∀(i→ j) ∈ R(s)} such that Xij = 1 if the transmission
i → j is scheduled in the current slot s and 0 otherwise. The
variable definitions are therefore:

Pij ≥ 0; ∀(i→ j) ∈ R(s) (11)

Pij ≤ Pmax; ∀(i→ j) ∈ R(s) (12)

Xij ∈ {0, 1}; ∀(i→ j) ∈ R(s) (13)

The objective function for slot s is:

maximize:
∑

(i,j)

Xij : (i→ j) ∈ R(s) (14)

Next, we model the primary constraints listed in item (5), Sec-
tion II. We denote the set of transmitting nodes inR(s) byN tx

and the set of receiving nodes in R(s) by N rx. Let N be the

set of all nodes inR(s); i.e., N = {N tx ∪N rx}.
1) A node cannot receive from more than one transmitter in the
same time slot. In graph theoretic terms, this is equivalent to
the statement “the indegree3 of any node in the slot schedule
must be less than or equal to 1”, which is modelled as:

∑

k

Xki ≤ 1 : ∀i ∈ N rx, (k → i) ∈ R(s) (15)

2) A node cannot transmit to more than one receiver in the same
time slot. In graph theoretic terms, this is equivalent to the state-
ment “the outdegree4 of any node in the slot schedule must be
less than or equal to 1”, which is modelled as:

∑

j

Xij ≤ 1 : ∀i ∈ N tx, (i→ j) ∈ R(s) (16)

3) A node cannot transmit and receive in the same time slot.
Coupled with the previous two constraints, this condition is
equivalent to the statement “the degree5 of any node in the slot
schedule must be less than or equal to 1”. This is modelled as:

∑

j

Xij +
∑

k

Xki ≤ 1 : ∀i ∈ N (17)

Although constraints (15) and (16) are subsumed by the aggre-
gated constraint (17), experimental results suggest that using all
three sets of constraints (or either (15) or (16) along with (17))
usually results in a considerable speed-up of the solution time6.

We now turn our attention to the SINR constraints or the
secondary constraints (item (12), Section II. By a straightfor-
ward extension of (7), the SINR constraint corresponding to the
transmission request i→ j can be written as:

PijGij
∑

(k,l) PklδkjGkj + (ηij/S2)
≥ γ̂ij (18)

3The indegree of a node is defined as the number of links incident to the node.
4The outdegree of a node is defined as the number of links directed away

from the node.
5The degree of a node is defined as the sum of its indegree and outdegree.
6This phenomenon is certainly not atypical in integer programs.



where (i → j) 6= (k → l) ∈ R(s)7. Recall from item (10),
Section II, that the parameter δkj reflects the sectoring gain at
node j due to the interfering transmission k → l when it is
receiving from node i. The restriction (i → j) 6= (k → l)
is valid since constraints (15) - (17) will force the optimal slot
schedule to be conflict free.

Note, however, that (18) is really a conditional constraint
which ought to be applied only if i → j is allocated slot s.
Otherwise, this constraint should be ignored. In other words,
the r.h.s of (18) should be set to 0 if i → j is not allocated slot
s. In order to express (18) as a conditional, we first rewrite it as
follows:

PijGij
∑

(k,l)6=(i,j) PklδkjGkj + (ηij/S2)
≥ γ̂ij

⇒Pij ≥
γ̂ijηij

S2Gij
+ γ̂ij

∑

(k,l)6=(i,j)

PklδkjGkj

Gij
(19)

Since Pij ≤ Pmax, for all i → j, the maximum value of the
r.h.s of (19) is given by:

γ̂ijηij

S2Gij
+

∑

(k,l)6=(i,j)

γ̂ijP
maxδkjGkj

Gij
(20)

Note that all the parameters involved in (20) are assumed to be
known and therefore (20) can be solved explicitly.

Next, we define a set of constants {Mij : ∀(i→ j) ∈ R(s)}
such that (21) is satisfied:

Mij < −





γ̂ijηij

S2Gij
+ γ̂ij

∑

(k,l)6=(i,j)

PmaxδkjGkj

Gij



 (21)

Then, equation (22) correctly conditionalizes constraint (18).

Pij −





γ̂ijηij

S2Gij
+ γ̂ij

∑

(k,l)6=(i,j)

PklδkjGkj

Gij





+ MijXij ≥ Mij (22)

To see why, let us first consider the case when i→ j is allocated
the current slot⇒Xij = 1. It is easy to verify that, in this case,
equation (22) reduces to the desired SINR constraint (19). If
i→ j is not allocated the current slot⇒Xij = 0, equation (22)
reduces to the redundant (i.e., superseded by the non-negativity
constraints on Pij variables) constraint:

Pij ≥Mij +





γ̂ijηij

S2Gij
+ γ̂ij

∑

(k,l)6=(i,j)

PklδkjGkj

Gij





since the expression on the r.h.s of the inequality is strictly neg-
ative by (21).

To summarize, solving the objective function (14), subject to
constraints (11) - (13), (15) - (17) and (22) yields the maximal
feasible schedule for slot s. Each iteration of the sequential
MILP involves |R(s)| binary variables and |R(s)| continuous
variables, where |R(s)| is the number of requests inR(s).

7The notation (i → j) 6= (k → l) implies i 6= j 6= k 6= l.

If all requests in R(s) have been allocated to slot s, the it-
erative method terminates. Otherwise, we compute R(s + 1)
as:

R(s + 1)← R(s) \ RA(s) (23)

where RA(s) is the set of requests which have been allocated
slot s and solve the optimization problem again on R(s + 1).
Figure 2 provides a flow diagram of the sequential MILP opti-
mization algorithm.

Fig. 2. Flow diagram of the sequential MILP optimization algorithm. The
notation R(s) denotes the request list at the start of iteration s and RA(s)
denotes the set of requests in R(s) which have been allocated to slot s.

It is clear from the nature of the iterative algorithm that the
initial slots would be more heavily packed than the latter slots.
Later, in Section IV, we concretize the notion of “heavy pack-
ing” in terms of the spectral radius of a coefficient matrix. For
now, it suffices to say that heavily packed slots may exhibit ex-
treme sensitivity to even minor perturbations of the coefficient
matrix, which is to be expected in view of the dependence of
link gain factors on a random fading component. In fact, the
optimization problem with a slightly perturbed coefficient ma-
trix may not even remain feasible, particularly with respect to
the limiting constraints on Pij variables (12). In that event,
even if a slot is optimally packed, it might be prudent to re-
move a transmission which exhibits the greatest sensitivity to
perturbations and reschedule it for a latter slot.

Before concluding this section, we note that the objective
in (14) is a function of the scheduling variables {Xij} only,
the power variables appearing as constraint satisfying auxiliary
variables within the MILP model. It might so happen that there
is more than one schedule which allocates the same number of
requests (though not identical) to the current slot but with differ-
ent power vectors. For example, suppose that one could choose



between two schedules S1 and S2, where |S1| = |S2|. Let
the power vectors corresponding to these schedules be ~P (S1)

and ~P (S2), such that
∑

i∈S1
Pi(S1) <

∑

i∈S2
Pi(S2). In this

case, an objective function involving only the scheduling vari-
ables will have no incentive in choosing the most power effi-
cient schedule which is S1.

Even if an unique optimal schedule exists, in the absence of
any power cost in the objective function, the integer program
may not return the optimum power vector; i.e., the power val-
ues may not satisfy equations (18) to strict equality. Worse still,
requests which have not been allocated may have a positive
power cost since it does not affect the value of the objective
function. In offline analysis, these issues may not be as crit-
ical as the one explained in the previous paragraph since one
can always solve the linear system of equations (18) to equality
to obtain the optimum power vector corresponding to the slot
schedule.

To force the optimization model to choose the maximally
packed schedule with minimum power cost, we can use the fol-
lowing modified objective function which is a convex combina-
tion of the scheduling variables and the power variables:

maximize: (1− µ)
∑

(i,j)

Xij − µ
∑

(i,j)

Pij (24)

where 0 ≤ µ ≤ 1 and the summations in (24) are taken over
all (i → j) ∈ R(s). Note that the power term in (24) has been
negated to conform with the maximization of the scheduling
variables.

As with all weighted objectives, care must be taken in choos-
ing a proper value of µ which result in the desired solution.
Viewing the first term in (24) as a reward and the second term
as a penalty, it is easy to see that a transmission request will be
allocated to the current slot only if the associated reward, 1−µ,
is greater than the maximum possible penalty, which is equal to
µPmax since Pij ≤ Pmax,∀(i → j). A proper choice of µ
should therefore satisfy:

1− µ > µP max ⇒ µ <
1

1 + Pmax
(25)

B. Discrete power levels

In practice, transmitters usually do not have continuous
power control but instead have to choose from a discrete set
of power levels. The MILP model we discussed above can be
easily modified to handle the discrete power case.

Let {Yk : 1 ≤ k ≤ K} be the set of ordered discrete power
levels for each node such that P max = YK . Corresponding
to each power variable Pij , define a set of K binary variables
{βijk : 1 ≤ k ≤ K} such that:

∑

k

βijk = 1;∀(i→ j) ∈ R(s) (26)

The power variable Pij can then be expressed as:

Pij =
∑

k

βijkYk;∀(i→ j) ∈ R(s) (27)

It is obvious that no bounds on the Pij variables (see equations
11 and 12) are needed. All other constraints hold for the dis-
crete power case. Each iteration of the sequential MILP now
involves (K + 1) · |R(s)| binary variables and |R(s)| continu-
ous variables.

C. Per-frame optimization model

The per slot optimization model we discussed in Section III-
A can be extended straightforwardly to the per-frame case. Let
{Bt : 1 ≤ t ≤ T max} be a set of binary variables such that
Bt = 1 if slot t is occupied and 0 otherwise. The maximum
number of allowable slots is denoted by T max which is usu-
ally obtained heuristically8. In the absence of any known upper
bound on the number of slots, one can set T max equal to the
number of requests in the request list, i.e., T max = |R|. As we
will soon see, this results in an integer program with O(|R|2)
binary variables. Even for moderately sized request lists, e.g.
|R| ≈ 50, solving an integer program with 2500 binary vari-
ables might require an unacceptably high solution time even
with state-of-the-art commercial ILP solvers. The per-slot ILP
model, on the other hand, requires about O(|R|) binary vari-
ables in the worst case (the initial slots). Since integer linear
programming is of exponential time complexity, the time re-
quired to solve |R| integer programs, each with O(|R|) binary
variables, is usually considerably smaller than the time required
to solve one integer program with O(|R|2) binary variables.

In a per-frame model, since a request in R can be sched-
uled in any of T max possible time slots, the Xij and Pij vari-
ables need to be defined per slot. Our set of variables are
therefore: {Xijt : ∀(i → j) ∈ R, 1 ≤ t ≤ T max} and
{Pijt : ∀(i → j) ∈ R, 1 ≤ t ≤ T max}. We also let N tx

be the set of transmitting nodes in R, N rx the set of receiving
nodes inR and N = {N tx ∪N rx} the set of all nodes inR.

The objective function in the per-frame model is a convex
combination of the total number of slots used and the sum of the
transmit powers, which should be jointly minimized as shown
in (29). As in (24), the parameter µ should be chosen care-
fully so that the “maximal packing” objective (the first term in
(29)) takes precedence over the “power minimization” objective
which is the second term in (29). Note that these two objectives
are contradictory; a frame schedule which packs all transmis-
sion requests in one slot will have a much higher power cost
than a schedule which allocates one request per slot. In the lat-
ter case, all slots are interference-free and the transmit power
cost is determined essentially by the link gain factor and re-
ceiver thermal noise. A proper choice of µ is obtained by con-
sidering the extreme case when all requests can be packed in
one slot. In order to dissuade the optimization algorithm from
using any additional slot, it should be ensured that the cost of
using even one additional slot, 1 − µ, is greater than the maxi-
mum possible savings in power cost. The following inequality
can be used for a conservative estimate of the parameter µ:

1− µ > µ|R|P max ⇒ µ <
1

1 + |R| · P max
(28)

8For example, by a sequential application of the procedure discussed in Sec-
tion IV.



minimize: (1− µ)

T max

∑

t

Bt + µ

T max

∑

t

∑

(i,j)∈R

Pijt (29)

subject to

Bt ∈ {0, 1}; 1 ≤ t ≤ T max (30)

0 ≤ Pijt ≤ Pmax; ∀(i→ j) ∈ R,∀t (31)

Xijt ∈ {0, 1}; ∀(i→ j) ∈ R,∀t (32)
T max

∑

t

Xijt = 1;∀(i→ j) ∈ R (33)

|R|Bt −
∑

(i,j)∈R

Xijt ≥ 0; ∀t (34)

∑

k

Xkit ≤ 1;∀i ∈ N rx, (k → i) ∈ R,∀t (35)

∑

j

Xijt ≤ 1;∀i ∈ N tx, (i→ j) ∈ R,∀t (36)

∑

k

Xkit +
∑

j

Xijt ≤ 1;∀i ∈ N , ∀t (37)

Pijt −





γ̂ijηij

S2Gij
+ γ̂ij

∑

(k,l)6=(i,j)

PkltδkjGkj

Gij





+ MijXijt ≥Mij ; ∀(i→ j) ∈ R, ∀t (38)

Fig. 3. MILP model for per-frame optimization.

The rest of the model is shown in Figure 3. Equations (30) -
(32) are variable definitions. Other constraints are interpreted
as follows:

• Constraint (33): This constraint ensures that each request
inR is allocated one time slot.

• Constraint (34): This constraint forces Bt to be equal to 1
if at least one request is allocated to slot t. Strictly speak-
ing, the coefficient of each variable Bt can be set equal
to the cardinality of the maximum matching of R, which
we denote by |MR|. Any slot schedule which has more
than |MR| transmissions must have at least one conflict-
ing pair of transmissions and is therefore infeasible.

• Constraints (35) - (37): These constraints ensure that all
slot assignments are conflict free and are analogous to (15)
- (17), but expressed for each possible slot. Similar to the
per-slot model, equations (35) and (36) are subsumed by
(37), but using one of them with (37) may speed up the
solution time.

• Constraint (38): This conditional constraint on SINR re-
quirements is analogous to (22). Note that the variables
in (38) are slot-indexed, but the constants, including the
Mij’s, are not.

D. Numerical Example: Per-frame vs. Per-slot

In this section, we illustrate with an example the difference
between a per-frame optimization approach versus a per-slot
optimization approach. Consider the simple 9-node network

in Figure 4, the directed lines representing the transmission re-
quests. The nodes are located in a 50m × 50m grid. We as-
sume the following parameter choices for all requests: fij = 1,
ηij = 0.001 and γ̂ij = 2. Also, let α = 2, P max = 10 and
S = 1.

Figures 4(a) and 4(b) show the optimal slot schedules ob-
tained using the per-frame and per-slot optimization models,
for µ = 0.001. The models were solved using the commercially
available MILP solver LINDO [22]. The numbers above the di-
rected edges represent the slots to which the requests have been
assigned. While the per-frame model uses 3 slots to accommo-
date all requests, the per-slot model uses 4 slots. A comparison
of the slot schedules reveals that an additional slot is needed by
the per-slot model because of its selection of requests for the
first time slot. Specifically, while the per-frame version allo-
cates 3 → 5 and 9 → 1 to the same slot, the per-slot version
allocates 3 → 5 and 7 → 4 to slot 1 since 7 → 4 requires a
smaller transmit power support than 9→ 1.

From the aspect of transmit power cost, however, the to-
tal power cost for the per-slot model (6.675 units) is much
smaller than the total transmit power cost of the per-frame
model (11.915 units). This is expected since lightly packed
slots will, in general, incur smaller transmit power costs than
slots which are more heavily packed.

IV. HEURISTIC APPROACH

In this section, we explain a sub-optimal heuristic method
for obtaining a maximal feasible slot schedule. The method
utilizes some properties of non-negative and M(inkowski) ma-
trices, which we briefly review below. After a maximal feasi-
ble slot schedule has been identified, the corresponding trans-
mit power vector can be computed in a distributed fashion. As
mentioned in Section I, this problem has been researched exten-
sively in the context of cellular power control and we exclude
it from the scope of this section. We would like to refer the
reader to the bibliography at the end of this paper, in particular
[13] and [14], which deal with distributed second order power
control methods with very fast convergence properties.

First, we establish some notations.

A. Notation

A A is a matrix
A

′ transpose of A

~X ~X is a column vector
~e unit column vector
‖ · ‖p p-norm of a vector or matrix
A ≥ 0 each element of A is non-negative.
A > 0 A ≥ 0 and at least one element of A is positive.
A� 0 each element of A is positive.
σ(A) set of all eigenvalues (spectrum) of A.
ρ(A) spectral radius of A.
UB(ρ(A)) upper bound on the spectral radius of A.
Rn×n set of all n× n real matrices.
Zn×n set of all matrices A ∈ Rn×n with Aij ≤ 0, ∀i 6= j

In addition, we will use the notation | · | to denote either the
absolute value of a number or the cardinality of a set. The usage
will be clear from the type of the argument.



Fig. 4. Slot schedules obtained using (a) the per-frame model and (b) the per-slot model. µ = 0.001 was used for both models. The per-frame model uses
3 slots to accommodate all requests but the per-slot model uses 4 slots. The numbers above the directed edges represent the slots to which the requests have
been assigned. Because the per-slot model uses one more time slot, its total transmit power cost (6.675 units) is smaller than the total transmit power cost of the
per-frame model (11.915 units).

B. Some definitions and theorems

Definition 1: The ∞-norm (maximum absolute row sum
norm) of any matrix A ∈ Rn×n is defined as:

‖ A ‖∞ = maxi

∑

j

|Aij | (39)

Definition 2: If {λ1, · · ·λn} is the set of eigenvalues of an
n× n square matrix A, the spectral radius of A is defined as:

ρ(A) = maxi|λi| (40)

Definition 3: The directed graph of an n × n matrix A,
G(A), consists of n vertices, {V1, V2, · · ·Vn}, where an edge
leads from Vi to Vj if and only if Aij 6= 0.

Definition 4: Any matrix A of the form:

A = sI−B, s > 0, B ≥ 0 (41)

where I is the identity matrix and for which s ≥ ρ(B) is called
an M-matrix. Note that A is characterized by non-positive
off-diagonal elements and non-negative diagonal elements.

Definition 5: An M-matrix A is non-singular if s > ρ(B).
If s = ρ(B), the matrix A is singular.

We now provide a compilation of several theorems pertaining
mostly to positive and non-negative matrices. These theorems
and, in most cases, their proofs can be found in the references
cited.

Theorem 1: If ‖ · ‖ is any matrix norm and if A ∈ Rn×n

(see Sections 5.6.8 and 5.6.9 of [19]), then:

ρ(A) ≤ ‖ A ‖ (42)

Theorem 2: A non-negative matrix A ∈ Rn×n is irre-
ducible if and only if, for every (i, j), there exists a natural
number q such that Aq

ij > 0 (see Chapter 2, Section 2 of [18]).
In graph theoretic terms, the above condition is equivalent

to the statement “the matrix A is irreducible if and only if the
directed graph corresponding to A (see Definition 3) is strongly
connected”.

Clearly, while not all non-negative matrices are not necessar-
ily irreducible, all positive matrices are irreducible. The class
of positive matrices is therefore contained within the class of
nonnegative irreducible matrices.

Theorem 3: For any non-negative and irreducible A ∈
Rn×n, the spectral radius of A is bounded by (see Section
8.1.22 of [19]):

mini

∑

j

Aij ≤ r ≤ maxi

∑

j

Aij (43)

mini

∑

j

Aji ≤ r ≤ maxi

∑

j

Aji (44)

Moreover, the inequalities in (43) and (44) are strict unless the
upper and lower bounds are equal. We will refer to these bounds
as the Frobenius bounds. Note that the upper bounds in (43) and
(44) are equal to the∞ and 1-norms since A is non-negative.

Theorem 4: Let B ∈ Rn×n with B ≥ 0. If A = sI − B

where s > 0, then A is non-singular and A
−1 ≥ 0 if and only

if s > ρ(B). Moreover, A is inverse-positive, i.e., A
−1 � 0,

if and only if s > ρ(B) and B is irreducible. (for a proof of this
theorem, see Section 3.11, pp. 145 of [18])

Theorem 5: Let A ∈ Rn×n, n ≥ 2 be a non-singular M-
matrix. Then each principal sub-matrix of A is inverse-positive.
(see Section 2.4, pp. 140 of [18] for a proof)

C. The algorithm

The material in this section essentially answers the question
“Given a conflict-free request list, what is the maximum number
of requests that can be accommodated in the current slot, such
that all SINR constraints (18) are satisfied and a feasible trans-
mit power vector exists”? A power vector is considered feasible
if all elements of the vector are positive and upper bounded by
Pmax. Towards that end, we propose a couple of conditions
which are sufficient to guarantee that a feasible power vector
exists. We emphasize that the algorithm we discuss cannot han-
dle the primary constraints (see item 6, Section II) and therefore



these should first be removed by executing a maximum match-
ing algorithm on the request listR9. LetMR denote the max-
imum matching ofR.

We first focus on the set of inequalities (18) which we rewrite
as follows:

PijGij
∑

(k,l)6=(i,j) PklδkjGkj + (ηij/S2)
≥ γ̂ij ; ∀(i→ j) ∈MR

⇒ (Gij/γ̂ij)Pij ≥
∑

(k,l)6=(i,j)

PklδkjGkj + (ηij/S
2) (45)

Let D be a |MR|×|MR| diagonal matrix such that its (i, k)th
element is given by:

Dik =

{

GMRtx

i
,MRrx

i
/γ̂MRtx

i
,MRrx

i
i = k

0 otherwise
(46)

Recall thatMRtx
i andMRrx

i denote the transmitting and re-
ceiving nodes corresponding to the ith request in MR. All
diagonal elements of D are smaller than 1 since all link gain
factors are smaller than 1 and all target SINR’s are greater than
1 (or, > 0 dB).

Also, let B be a |MR| × |MR| matrix whose (i, k)th is
given by:

Bik =

{

δMRtx

k
,MRrx

i
GMRtx

k
,MRrx

i
i 6= k

0 otherwise
(47)

Following our assumption that every transmitter causes interfer-
ence at all other receivers, irrespective of the distance between
them (see item 12, Section II), and because of the positivity of
all δij’s and Gij’s, it is easy to see that the B is strictly positive
(B� 0).

As an example, supposeMR = {(3 → 4), (1 → 2), (5 →
6)}. The matrices D and B corresponding toMR are:

D =





G34/γ̂34 0 0
0 G12/γ̂12 0
0 0 G56/γ̂56



 (48)

B =





0 δ14G14 δ54G54

δ32G32 0 δ52G52

δ36G36 δ16G16 0



 (49)

Finally, we define the vector ~ζ, the ith element of which is given
by ηij/S

2.

~ζ
4
=

{ηij

S2
; ∀(i→ j) ∈MR

}

(50)

Note that ~ζ � 0 since ~η = {ηij ;∀(i → j) ∈ MR} � 0 by
assumption.

With the above definitions in place, equation (45) can be writ-
ten in matrix form as follows:

(D−B) ~P ≥ ~ζ (51)

where ~P is the unknown transmit power vector. Since all diag-
onal elements of D are in the interval (0, 1), we can rewrite it
as:

9For computing the maximum matching, a request list can be interpreted as
a directed graph with edges defined by the elements of R. All edges in the
digraph can be assigned an unit weight.

D = I− D̃ (52)

where I is the identity matrix and D̃ is a diagonal matrix whose
(i, i)th element is equal to 1−Dii. Defining

B̃ = D̃ + B = I−D + B · · · (using eqn. 52) (53)

we can rewrite (51) as follows:

(I− B̃)~P ≥ ~ζ (54)

The minimum power solution of (54) is therefore given by:

~P opt = (I− B̃)−1~ζ (55)

if the inverse exists.
It is easy to see that the matrix B̃ is irreducible (see Theorem

2, Section IV-B) since B̃ � 0. Also, A
4
= (I − B̃) is an

M-matrix (41), with s = 1. By Theorem 4 in Section IV-B,
therefore, A

−1 � 0 if ρ(B̃) < 1, where ρ(B̃) is the spectral
radius of B̃. If ρ(B̃) < 1, the power vector ~P opt = A

−1~ζ � 0

since ~ζ � 0.
For reasons that will be apparent when we derive our second

lemma, we strengthen the condition ρ(B̃) < 1 with ‖ B̃ ‖∞<
1. Note that, by Theorem 1, ‖ B̃ ‖∞< 1 ⇒ ρ(B̃) < 1. We
therefore have the following lemma:

Lemma 1: The matrix A = (I − B̃) is inverse-positive ⇒
~P opt is strictly positive if:

‖ B̃ ‖∞ < 1 (56)

where B̃ is as defined in (53).
While Lemma 1 is a sufficient condition for ensuring positivity
of the transmit power vector, it depends critically on the accu-
racy of the B̃ matrix. In practice, since it is impossible to know
the link gains and the fading factors precisely, a slight perturba-
tion of B̃ might cause the spectral radius of the perturbed ma-
trix to be greater than 1, in which case a finite positive power
vector solution may not exist. This problem will be especially
acute for heavily packed slots, which we characterize as those
for which the difference 1− ρ(B̃) is small. Smaller this differ-
ence, the higher is the sensitivity of the optimal power vector to
perturbations of the matrix B̃. As mentioned in Section III-A,
it might therefore be prudent to remove one10 or more transmis-
sions from heavily packed slots so that the resultant slot sched-
ule remains feasible in the event of expected perturbations.

The preceding paragraph also indicates the need for a fast
iterative algorithm which could be run at the scheduler for quick
and accurate determination of the spectral radius of B̃. Such an
algorithm was proposed by Hall and Porsching [20] for positive
matrices. Their algorithm is computationally cheaper than the
traditional power method and converges much faster. Moreover,
the authors claim that the rate of convergence of their algorithm
does not seem to depend on the dominance ratio of the matrix.

Next, we look at the sufficient condition for ensuring that
~P opt ≤ Pmax. For this condition to be satisfied, we must have:

maxi

(

P opt
i

) 4
= ‖ ~P opt ‖∞ ≤ Pmax (57)

10For example, the transmission whose removal causes the greatest reduction
in ‖ B̃ ‖∞ may be deleted.



For any matrix X ∈ R
n×n and a conforming vector ~y, we know

that (see Section 5.6.5, pp. 295 of [19] for a proof):

‖ X · ~y ‖∞ ≤ ‖ X ‖∞ · ‖ ~y ‖∞ (58)

Applying (58) to (55), we have:

‖ ~P opt ‖∞ ≤ ‖ (I− B̃)−1 ‖∞ · ‖ ~ζ ‖∞ (59)

A sufficient condition for ensuring that ~P opt ≤ Pmax is there-
fore given by:

‖ (I− B̃)−1 ‖∞ · ‖ ~ζ ‖∞ ≤ Pmax (60)

For any matrix X ∈ Rn×n such that ‖ X ‖∞< 1, it can be
shown that11 (see pp. 301, [19])):

1

1+ ‖ X ‖∞
≤ ‖ (I−X)−1 ‖∞ ≤

1

1− ‖ X ‖∞
(61)

Since ‖ B̃ ‖∞< 1 by Lemma 1, we can apply the upper bound
in (61) to (59) and (60). We therefore have:

‖ ~P opt ‖∞ = ‖ (I− B̃)−1 · ~ζ ‖∞

≤ ‖ (I− B̃)−1 ‖∞ · ‖ ~ζ ‖∞

≤
1

1− ‖ B̃ ‖∞
· ‖ ~ζ ‖∞ (62)

An alternate upper bound to ‖ ~P opt ‖∞, which can be shown
to be at least as tight as (62), can be derived by considering the
properties of the M-matrix A = I− B̃. We denote the ith row
sums of A and B̃ by Σi(A) and Σi(B̃) respectively. Clearly,

Σi(A) =
∑

j

Aij = 1−
∑

j

B̃ij = 1− Σi(B̃) (63)

⇒mini{Σi(A)} = 1−maxi{Σi(B̃)} = 1− ‖ B̃ ‖∞ (64)

the last equality in (64) following from (39). From Lemma 1
and the positivity property of B̃, we know that 0 < Σi(B̃) < 1
for all i. Using (63), we therefore have: 0 < Σi(A) < 1.

We now consider the matrix equation A · ~P opt = ~ζ and write
the ith component of ~ζ as follows:

∑

j

AijP
opt
j = ζi

⇒AiiP
opt
i +

∑

j 6=i

AijP
opt
j = ζi

⇒
∑

j

AijP
opt
i −

∑

j 6=i

AijP
opt
i +

∑

j 6=i

AijP
opt
j = ζi

⇒P opt
i

∑

j

Aij =
∑

j 6=i

Aij(P
opt
i − P opt

j ) + ζi

⇒P opt
i Σi(A) =

∑

j 6=i

Aij(P
opt
i − P opt

j ) + ζi

⇒P opt
i =

∑

j 6=i

Aij

Σi(A)
(P opt

i − P opt
j ) +

ζi

Σi(A)
(65)

11In general, the result holds for n × n complex matrices. Also, it holds for
any induced matrix norm, not just the ∞-norm.

Assume i = argmax( ~P opt). Then the first term on the r.h.s of
(65) is nonpositive since P opt

i − P opt
j ≥ 0 and Aij ≤ 0 for

all j 6= i and Σi(A) > 0, ∀i. Consequently, P opt
i is upper

bounded by ζi

Σi(A) .

If, on the other hand, i = argmin( ~P opt), the first term on the
r.h.s of (65) is nonnegative since P opt

i −P opt
j ≤ 0 and Aij ≤ 0

for all j 6= i and Σi(A) > 0, ∀i. Consequently, P opt
i is lower

bounded by ζi

Σi(A) . Since we do not know in general whether

the ith term of ~P opt is maximum, we can compute ζi

Σi(A) for

all i, the maximum of which is an upper bound for any P opt
i .

Thus:

‖ ~P opt ‖∞ ≤ maxi

(

ζi

Σi(A)

)

(66)

By a similar argument, it is easy to see that ~P opt is lower

bounded12 by mini

(

ζi

Σi(A)

)

and therefore:

mini

(

ζi

Σi(A)

)

≤ ~P opt ≤ maxi

(

ζi

Σi(A)

)

(67)

Before showing that the upper bound in (66) is at least as tight
as (62), we state the following lemma:

Lemma 2: Provided Lemma 1 is satisfied, the solution ~P opt

in (55) is upper bounded by P max if:

maxi

(

ζi

Σi(A)

)

≤ Pmax (68)

To prove that the upper bound in (66) is at least as tight as (62),
we first define two diagonal matrices Dζ = diag(ζi) and DΣ =

diag( 1
Σi(A) ). Clearly, ‖ Dζ ‖∞ = ‖ ~ζ ‖∞ and ‖ DΣ ‖∞

is equal to the maximum of ( 1
Σi(A) ). Since maxi(

ζi

Σi(A) ) is
equal to the maximum row sum of the matrix product DζDΣ,
or equivalently, the∞-norm of DζDΣ, we have the following
sequence of inequalities:

maxi

(

ζi

Σi(A)

)

= ‖ DζDΣ ‖∞

≤ ‖ Dζ ‖∞ ‖ DΣ ‖∞

= ‖ ~ζ ‖∞ maxi

(

1

Σi(A)

)

=
‖ ~ζ ‖∞

mini (Σi(A))
=

‖ ~ζ ‖∞

1− ‖ B̃ ‖∞
(69)

where the inequality follows from the submultiplicative prop-
erty of matrix ∞-norms and the final equality follows from
(64). This proves our claim that the upper bound in (66) is
at least as tight as (62). We note however that the two upper
bounds are exactly the same if all noise components are equal,
i.e., if ~η = η · ~e ⇒ Dζ = (η/S2)I, since,

‖ DζDΣ ‖∞ = (η/S2)· ‖ DΣ ‖∞ = ‖ Dζ ‖∞ · ‖ DΣ ‖∞

With the above lemmas in place, we approximate the maximal
feasible schedule for slot s, RA(s), by a maximum cardinality

12The lower bound might be useful for choosing the starting vector in itera-
tive computation of transmit powers.



subset of MR(s) satisfying the conditions of Lemmas 1 and
2. Recall thatMR(s) is a maximum matching of the request
list at the start of iteration s. We emphasize that constraining
RA(s) ⊆MR(s) may not be an optimal policy. However, this
restriction is necessary since it is certainly possible for a pair of
conflicting transmissions to satisfy the conditions of both lem-
mas.

If the matrices A and B̃ corresponding toMR(s)13 satisfy
the lemmas, we define a request list for the next iteration as in
(23) and proceed to the next iteration. If not, we seek to identify
the highest order principal sub-matrix of B̃ (and correspond-
ingly that of A) which satisfies the conditions of Lemmas 1
and 2. This is done sequentially as shown in Figure 5. The
first while loop in Figure 5 ensures that Lemma 1 is satisfied
and the second while loop ensures that Lemma 2 is satisfied.
If |MR(s)| = 1 at any stage during the loops, we proceed di-
rectly to step 3. Following Theorem 5, the inverse-positivity
of A, which is assured by the first loop, is preserved during
execution of the second loop. Within a loop, the row which
most violates the lemma condition is deleted during each iter-
ation. Note that deleting the kth row in B̃ (or A) corresponds
to deleting the kth transmission from its corresponding request
list. This deletion policy is intuitively very simple and parallels
the weakest receiver removal policy suggested for distributed
cellular power control [15]. We are currently evaluating other
schemes, e.g., strongest interferer removal as opposed to weak-
est receiver removal, to determine the best approximation to the
optimal highest order principal sub-matrices of B̃ and A which
satisfy Lemmas 1 and 2.

/* The first while loop ensures that
Lemma 1 is satisfied. */

1. while

(

‖ B̃ ‖∞≥ 1
)

• Identify the row (say ‘k’) which corresponds to the
maximum row sum of B̃; k = argmax(

∑

j B̃ij)
• Delete the kth row (transmission request) fromMR(s);
• Delete the kth row and column from B̃;
• Delete the kth row and column from A;

end while

/* The next while loop ensures that
Lemma 2 is satisfied. */

2. while

(

maxi(
ζi

Σi(A) ) > Pmax
)

• Let k = argmax( ζi

Σi(A) )

• Delete the kth row fromMR(s);
• Delete the kth row and column from A;

end while

3. AssignRA(s)←MR(s);
4. Define a request list for the next iteration as in (23) and

proceed to the next iteration.

Fig. 5. Sequential row/column deletion algorithm to ensure Lemmas 1 and 2
are satisfied.

13We assume that |MR(s)| > 1. It can be easily verified that both lemma
conditions are automatically satisfied if |MR(s)| = 1. Also see item 15,
Section II.

V. CONCLUSION

In this paper, we considered the problem of power controlled
minimum frame length scheduling for TDMA wireless net-
works. Two different versions of the problem were studied, a
per-slot version and a per-frame version. We developed mixed
integer linear programming models for both versions which can
be used for solving the problems optimally. In addition, we pro-
posed a heuristic algorithm for the per-slot version. We are cur-
rently studying the convergence rates for iterative power vector
solution methods when slots are heavily packed. This issue,
along with detailed simulation results, will be addressed in a
subsequent paper.

REFERENCES

1) Tamer Elbatt and Anthony Ephremides, “Joint Schedul-
ing and Power Control for Wireless Ad-Hoc Networks”,
Proc. IEEE INFOCOM, 2002.

2) Tamer Elbatt and Anthony Ephremides, “Joint Schedul-
ing and Power Control for Wireless Ad-Hoc Networks”,
IEEE Trans. on Wireless Communications, Vol. 3, No.
1, Jan. 2004.

3) Jimmi Gronkvist and Anders Hansson, “Comparison
between Graph-based and Interference-based STDMA
Scheduling”, Proc. of MOBIHOC, 2001.

4) Patrik Bjorklund, Peter Varbrand and Di Yuan, “Resource
Optimization of Spatial TDMA in Ad-Hoc Radio Net-
works: A Column Generation Approach”, Proc. IEEE
INFOCOM, 2003.

5) Arash Behzad and Izhak Rubin, “Power Controlled Mul-
tiple Access Control for Wireless Access Nets”, Proc. of
IEEE Vehicular Technology Conference, 2003.

6) J. Monks, V. Bharghavan, and W. Hwu, “A Power Con-
trolled Multiple Access protocol for Wireless Packet Net-
works”, Proc. IEEE INFOCOM, Apr. 2001.

7) Sudhir Grandhi, Rajiv Vijayan, David J. Goodman and
Jens Zander, “Centralized Power Control in Cellular Ra-
dio Systems”, IEEE Trans. on Vehicular Technology, Vol.
42, No. 4, November 1993.

8) Sudhir Grandhi, Rajiv Vijayan and David J. Goodman,
“Distributed Power Control in Cellular Radio Systems”,
IEEE Trans. on Communications, Vol. 42, No. 2/3/4,
February/March/April 1994.

9) Sudhir Grandhi and Jens Zander, “Constrained Power
Control in Cellular Radio Systems”, IEEE Trans. on
Communications, Vol. 42, No. 2/3/4, Febru-
ary/March/April 1994.

10) S. A. Grandhi, J. Zander, and R. Yates, “Constrained
Power Control”, Wireless Personal Communications,
Vol. 1, 1995.

11) R. Yates, “A Framework for Uplink Power Control in Cel-
lular Radio Systems”, IEEE Journal on Selected Areas in
Communications, Vol. 13, 1995.

12) G.J. Foschini and Z. Miljanic, “A simple Distributed
Autonomous Power Control algorithm and its Conver-
gence”, IEEE Trans. on Vehicular Technology, Vol. 42,
Issue 4, Nov. 1993.



13) R. Jantti and Seong-Lyun Kim, “Second-Order Power
Control with Asymptotically Fast Convergence”, IEEE
Journal on Selected Areas in Communications, Vol. 18,
No. 3, March 2000.

14) Z. Uykan and H.N. Koivo, “Sigmoid-Basis Nonlinear
Power-Control Algorithm for Mobile Radio Systems”,
IEEE Trans. on Vehicular Technology, Vol. 53, Issue
1 , Jan. 2004.

15) J. Zander, “Distributed cochannel interference control in
cellular radio systems,” IEEE Trans. on Vehicular Tech-
nology, Vol. 41, Aug. 1992.

16) C.-Y. Huang and R. D. Yates, “Rate of Convergence for
Minimum Power Assignment in Cellular Radio Systems”,
ACM/Baltzer Wireless Networks Journal, Vol. 1, 1998.

17) R. Jantti and Seong-Lyun Kim, “On the Convergence
of Linear Power Control for Cellular Radio Systems”,
IEEE Vehicular Technology Conference, Spring 2001,
May 2001.

18) Abraham Berman and Robert J. Plemmons, “Nonneg-
ative matrices in the Mathematical Sciences”, SIAM,
1994.

19) Roger A. Horn and Charles R. Johnson, “Matrix Analy-
sis”, Cambridge University Press, 1999.

20) C. A. Hall and T. A. Porsching, “Computing the Maximal
Eigenvalue and Eigenvector of a Positive Matrix”, SIAM
J. Numerical Analysis, Vol. 5, pp. 269-274, 1968.

21) Theodore S. Rappaport, “Wireless Communications:
Principles and Practice”, Prentice Hall PTR, 1996.

22) <http://www.lindo.com>


