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Abstract

In common neural network practice, algorithms re-
quire heuristic rules. We introduce a better way of
using heuristics by means of a fuzzy logic controller
to adjust neural network parameters in conventjonal
neural network training. Specific attention is given
to control of learning parameters in ART 1 and back-
propagation.

1 Introduction

Many nonlinear optimization algorithms, or classifi-
cation procedures, utilize heuristics that are in gen-
eral not well specified and are thus to some degree
fuzzy. It is therefore natural to attempt to apply
fuzzy set theory to such algorithms and techniques
with the hope of improving their performance.

A general architecture of a neuro-fuzzy system is
shown in Fig. 1. There is an attribute of the neural
network that we wish to control. In the ART 1 exam-
ple to follow, it is the number of classes. In the lay-
ered perceptron example, it is low training error. The
difference between the target and actual attribute is
fed into a fuzzy parameter controller. In ART 1 this
parameter is the vigilance. In back-propagation the
attributes will be the step size and momentum pa-
rameters. The output of the neural network and the
actual performance attribute are the same for back-
propagation learning. They differ for ART 1. The
model in Fig. 1 can be applied to other models,
including Kohonen’s self organizing maps and the
layered perceptrons trained by other parameterized
methods (e.g. random search [1]).
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The on-line fuzzy controller is used to adapt the
value of a parameter according to certain heuristics.
This in turn results in a change in a network perfor-
mance attribute. By adaptively updating the value
of the parameter, we arrive at the desired value of the
performance attribute.

The fuzzy controller consists of a set of fuzzy im-
plications of the type “IF A THEN B”, where A and
B are fuzzy subsets on the universe of discourse of
input and output, respectively. Consider for example
the case of a single input, single output system and
suppose there are N such implications. Each of these
rules associates a fuzzy input subset to a fuzzy output
subset, represented by their membership functions.
Fuzzy set theory can be used to “quantify” such rule
based descriptions, and as such, can serve as an in-
terface between the imprecise descriptive nature of
control and the control actions that need to be taken.
Details of operation of a simple fuzzy controller can
be found in [2].

In this paper, we illustrate parameter adaptation
in neural systems by application to the layered per-
ceptron and ART 1.

2 Fuzzy back-propagation

In this section we introduce a fuzzy logic controlled
implementation of the back-propagation (BP) algo-
rithm for layered feed forward networks. This is a
more sophisticated version of the fuzzy BP algorithm
considered in [3].

Our approach is to adjust the learning parameter
based on Jacobs’ [4] heuristics by use of a fuzzy con-
troller for automatic tuning of the learning parameter
depending on the shape of the error surface. Details
of the heuristics and Jacobs’ use of them in learning
parameter adjustment are in our previous paper (3]
Fuzzy control of BP can greatly improve the speed of
the training of a layered perceptron.



2.1 Problem setting

The back-propagation algorithm [5] is a gradient de-
scent search algorithm in the space of network weights,
and aims to minimize an energy function E, normally
defined as the sum of squared output errors,

L
E(@) =) (t —w)? (1)
k=1
where t; and yj are the target and neural network
output of the k*» output unit, respectively. L repre-
sents the total number of output units. Weight vec-
tors @ will be updated according to:

ﬁcﬁ—a%, (2)

or
AT = —aVE(@) + 1A,

where A is the change in weight vector; a is the
learning parameter, and 7 is the momentum gain.

2.2 Fuzzy controller for fast BP con-
vergence

The central idea behind fuzzy control of the BP al-
gorithm is the implementation of heuristics used for
faster convergence in terms of fuzzy IF ..... THEN
rules. The heuristics we are using are mostly those of
Jacobs (except for the momentum gain adjustement
for which Jacobs does not provide a heuristic). They
are driven by the behavior of the error E (Eq. 1). In
the following heuristics the change of error CE is an
approximation of the gradient and the change of CE
(CCE) is the 2nd order gradient information which
is related to the acceleration of convergence:

o IF CE is small with no sign changes in several
consecutive time steps, THEN the value of the
learning parameter should be increased.

o |F sign changes occur in CE for several consecu-
tive time steps, THEN the value of the learning
parameter should be reduced with no regard to
the value of CCE.

e IF CE is very small AND CCE is very small,
with no sign change for several consecutive time
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steps, THEN the value of the learning param-
eter as well as the momentum gain should be
increased.

Notice that the sign change of the gradient is iden-
tical to the sign change of the CE. For example, if
Ei_ < E,; and E; > EH-I then CE; = Ei—F;_1 > 0
and CE;y1 = Ety1 — Ey < 0. This means there has
been a sign change in route from the (¢—1)* iteration
to the (¢ + 1)** iteration. Let us therefore introduce
the sign change parameter,

SCi=1~- -;—{sgn(CEt_l) + sgn(CEy}|, (3)

where the hard limiter sgn(z) = 1 ifz > 0 and 0
otherwise. The factor £ is to ensure SC is either 0 (no
sign change) or 1 (one sign change). The cumulative
sum of SC (or CSC) thus can reflect the history of
the sign changes, i.e.,

CSCt = SCt +SC¢_1 + SCt—Z 4

The bigger the CSC, the more frequent the sign changes
have occured. We use a five step tracking of the sign
changes, and thus define

1
CSCi= Y, SCpm.

m=t—4

The heuristic rules for this application are shown
in the form of a table in Table 1. The fuzzy values
that CE and CCE can take on (NB, NS, ZE, PS,
PB) are defined in terms of their membership func-
tions in Fig. 2. From this table for instance, one can
read the following rule:

o Ir CE is negative small, THEN Ir CCE is zero,
THEN A« is positive small.

CE | NB | NS | ZE | PS | PB
CCE
NB NS | NS [ NS | NS | NS
NS NS | ZE | PS | ZE | NS
ZE ZE | PS | PS | PS | ZE
PS NS | ZE | PS | ZE | NS
PB NS | NS | NS | NS | NS

Table 1: Decision Table for the fuzzy controller. Table
contents represent the value of the fuzzy variable A« for
a given choice of values for CE & CCE, for CSC: < 2.



The universe of discourse for both CE and CCE
is [-0.3, 0.3]. Values outside of this limit are clamped
to -0.3 and 0.3 respectively.

CE] AL [ ¥s [ 2E | Ps | PL
CCE
L —ot|-o1 [ — [ = | =<
NS -0 - [ =T =
ZE - Tt [o1 | .01 | —-
PS - | = —=1 =< [-o1
PL - [ -1 =T1-01]-.01

Table 2: Decision Table for the fuzzy controller. Table
contents represent the value of the fuzzy variable Ay for
a given choice of values for CE & CCE. -- denotes no
adaptation. The maximum value that 1 can take on is set
to 1.

2.3 Results

We present here results of a comparison between reg-
ular BP, Jacobs’ Delta-bar-delta rule (DBD), and fuzzy
BP as applied to a detection problem. The neural
network is trained to distinguish between a constant
signal corrupted with Laplace noise, and pure Laplace
noise [6]. Typical training curves are shown in figures
3-5. Fuzzy BP results in dramatically faster conver-
gence, and has a significantly smaller tail than regular
BP. Note that the scales of the plots differ.

3 Fuzzy control of ART 1

In the Adaptive Resonance Theory model [7] the num-
ber of clusters formed directly depends on the value
of the vigilance parameter p. The higher the value
of p, the greater the number of clusters required to
represent the input data. In applications where the
number of desired clusters is known before hand, the
value of p can be incrementally changed so that fi-
nally, complete classification into the fixed number of
clusters is achieved. We propose to do this incremen-
tal updating of the value of the vigilance parameter
automatically by means of a simple external fuzzy
controller.

Assume that the number of clusters we wish to
obtain is known a priori and is equal to some desired
number Ny. The set of all input vectors is presented
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to the stand-alone ART 1 network and classified ac-
cordingly into N, (actual) classes. This preliminary
classification is undesirable as the requirement that
Ny clusters should be formed has not been satisfied.
Some adjustment of the vigilance parameter followed
by another presentation of the input data is thus nec-
essary. For instance, if Ny < N,, an increase in the
value of p would be desired, and if N, > Ny, then
we would want to decrease p. The question naturally
arises as to the magnitude of the change in p that
would make N, = N; (in a single sweep after the ini-
tial classification), or let N, approach N gradually
(after multiple sweeps).

If one chooses to change p in small increments
of 8p, then a simple fuzzy controller can be used to
arrive at the optimum value for p. The controller will
seek to regulate the value of the vigilance parameter
based on how far we are from achieving Ny classes,
having started out with N, clusters. Its policy can
be formulated as a set of rules of the form shown in
Table 3.

Following the controller’s updating of the value of
p by é6p, the ART 1 network performs a second clas-
sification with this new value for p. If the number of
classes resulting from this classification is again un-
satisfactory, we repeat the process described above.
Eventually, the number of classes formed by the net-
work N, will approach and become equal to Ny, at
which point the classification process is over.

The heuristic rules for this application are shown
in the form of a Table in Table 3. The fuzzy values
that E and CF can take on (NB, NS, ZE, PS, PB)
are defined in terms of their membership functions in
Fig. 6. Here E = N; — N, and CE is the change in

E|NB|NS|[ZE|PS | PB
CE
NB -— | NS |2ZE | PS | --
NS NB | NS | ZE | PS | PB
ZE NB | NS | ZE | PS | PB
PS NB | NS | ZE | PS | PB
PB -- | NS | ZE | PS | —-

Table 3: Decision Table for the fuzzy controller of ART
1. Table contents represent the value of the fuzzy variable
dp for given values of E = Ny — N, and CE.



3.1 Results

Shown in Fig. 7 is the number of classes in an ART 1
classifier versus the vigilance parameter. We used the
same Boeing parts data used by Caudell et. al. [8].
The fuzzy vigilance controller, for a fixed number of
classes, always found the appropriate vigilance pa-
rameter. In this one dimensional proof of principle
example, the advantage of a fuzzy vigilance control
over a simpler search approach (e.g. interval halving)
is not obvious. We anticipate that in a more complex
ART architecture [8], fuzzy multidimensional vigi-
lance control will be quite effective.

4 Conclusion

We have presented in this paper the general struc-
ture of a neuro-fuzzy controller, applicable to many
diverse neural systems. As an example, we consid-
ered fuzzy control of the back-propagation training
technique for multilayer perceptrons where significant
speedup in training was observed. We also consid-
ered fuzzy control of the number of classes in an ART
1 classifier. This can be advantageous in situations
where the number of classes that we wish to classify
our input data into, is known a priori.
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Fig. 2(a): Membership functions for CE. The
same membership functions are used for CCE.
NB = negative big, NS = negative small, ZE =
zero, PS = positive small, PB = positive big.

Fig. 2(b): Membership functions for Aa.

Fig. 3: Typical learning curve for the Laplace
noise detection problem using regular BP (4 input
neurons, 1 output, one 15 unit hidden layer, @ = 0.9,
n = 0.5, 800 training data).

Fig. 4: Typical learning curve for the Laplace
noise detection problem using Jacobs’ DBD rule (4
input neurons, 1 output, one 15 unit hidden layer,
initial @ = 0.9, 5 = 0.5, 800 training data).

Fig. 5: Typical lea.rmng curve for the Laplace
noise detection problem using Fuzzy BP (4 input neu-
rons, 1 output, one 15 unit hidden layer, initial o =
0.9, initial 9 = 0.5, 800 training data).

Fig. 6(a): Membership functions for E.
Fig. 6(b): Membership functions for CE.
Fig. 6(c): Membership functions for 6p.

Fig. 7: Number of classes versus vigilance param-
eter for fuzzy controlled ART 1 (total of 47 classes,
data from [8]).
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Fig. 2(a): Membership functions for CE. The
same membership functions are used for CCE.
NB = negative big, NS = negative small, ZE =
zero, PS = positive small, PB = positive big.

NS ZE PS

nm-rmo

0.00% 200 @ -0.0100 ©_ 0.0000  0.0100  0.0200
D_alp

Fig. m?vnsy,mwivoa—;v functions for Aa.

learning curve for BP
oo T

° o
s 8

sum squored (per—sampie) error
°
°
£
T

0.02}
L _, | r
- g RN J ]
0.00 VTR L LLLLL
0 2000 4000 6000 8000 10000
number of dota somple presented
Fig. 3: Typical learning curve for the Laplace
noise detection problem using regular BP (4 input
neurons, 1 output, one 15 unit hidden layer, a = 0.9,
n = 0.5, 800 training data).
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Fig. 4: Typical learning curve for the Laplace
noise detection problem using Jacobs’ DBD rule (4
input neurons, 1 output, one 15 unit hidden layer,
initial & = 0.9, » = 0.5, 800 training data).
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Fig. 7: Number of classes versus vigilance param-
eter for fuzzy controlled ART 1 (total of 47 classes, Drho
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Fig. 6(c): Membership functions for ép.



