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Abstract
In this study we will show that the research on N-
version high-reliability software structures can be
extended to neural networks architecture.  In addition,
we will explore the possibility of applying this
structure to a spacecraft tracking problem. One such
system is the Automated Spacecraft Monitoring
System (ASMS), a beacon-monitoring or detection
system. Four neural networks, each trained for various
operating environments, are implemented in an N-
version structure.  The results of the networks are
combined to form a composite outcome.  The
combined outcome is used as part of a hypothesis
testing procedure to distinguish between the presence
or absence of the beacon signal.  The results show that
any of a number of composite outcomes outperforms
the use of any single neural network.  Further, the
simple average of network results provides the
composite outcome with best performance.

1. Introduction
Computer hardware and software have become an
integral part of many sophisticated and complex
systems, such as systems for space exploration. This
trend has been the motivation for research efforts to
improve software reliability and performance by
introducing redundancy in computing hardware and/or
software [1-7]. Multiple-version programming has
been one such approach to fault-tolerant and high-
reliability software development. In this method,
software faults are compensated by concurrently
executing N functionally-similar or -dissimilar
software programs. By devising a voting scheme, the
output of the programs is checked against each other
for correctness. These static or dynamic consistency
checking techniques have been subject of many
research papers and reports [1-2].  This research has
shown that N independently developed and designed
programs will improve system reliability.

In this study, we will show that N-version high-
reliability software structures can be extended to
neural network architecture.  Furthermore, we will
show the advantages of this architecture over the
conventional approach.  In addition, we will explore
the possibility of applying this structure to a spacecraft
tracking problem.  Artificial neural networks (ANN's)
are suitable to N-version application structures for a
number of reasons:

1. Many neural network paradigms, including
backpropagation, use Least Mean Square (LMS)
learning laws. These methods do not guarantee
convergence of the network to the global
minimum in the hyperspace of the network
parameters. Subsequently, networks trained under
similar conditions could produce different results.

 
2. In most cases, multilayer networks are trained

with a subset of all possible input/output data
sets.  A network that is properly trained can
interpolate and/or extrapolate correctly on inputs
outside of the trained data set. In most
applications, the goal is to train the network to
achieve a balance between the ability of the
network to respond correctly to the trained data
set  (memorization), and the ability to produce
reasonable responses to input sets that are similar
but not identical to the trained data set
(generalization). Hence, properly trained
networks using different design and convergence
parameters will have the capability to extrapolate
beyond trained data sets.  This extrapolation
feature will significantly improve the
performance of the network under N-version
structures.  This improvement is the main reason
for exploring N-version structures in a neural
network environment.



 
3. If a particular application requires the neural

network to operate over a wide range of design
parameters, the network's training time may be
excessive or impractical.  For example, the
spacecraft tone detection problem considered in
this paper was first attempted with single-network
architecture. The network did not converge
because of the wide range of signal-to-noise
ratios (SNR's).

In this paper, the authors present an N-version ANN
approach with temporal history statistics to detect a
tone in a very noisy environment.  After some
background is presented, the ANN structure is
described.  Then, the statistical methodology used to
explore the use of several composite ANN outcomes is
described and implemented.

2. Application

The era of the "New Millennium" discovery mission
series brings NASA's Jet Propulsion Laboratory (JPL)
to a revolutionary period in spacecraft design,
deployment, and tracking paradigms. NASA has been
planning to use micro-technology and -
instrumentation, and more frequently launch smaller
spacecraft at lower cost, with narrowly-focused
missions. Since budget limitations prohibit increases in
mission operations staff, this vision sets forth a
tremendous challenge to introduce intelligent
automation into all aspects of mission control,
telemetry equipment, and ground tracking. One such
system is the Automated Spacecraft Monitoring
System (ASMS), a beacon-monitoring or detection
system [9]. This system will lower the cost of Deep
Space Network (DSN) operation in monitoring
multiple spacecraft. Currently, large 70-meter antennas
are used to track spacecraft during transmission phases
as well as cruise phases.

The proposed system will require tracking of
spacecraft using antennas as small as 5 meters during
cruise phases and antennas as large as 34 meters
during transmission phases of the mission. In this
system, the spacecraft transmits a carrier signal
modulated by a square-wave subcarrier at one of four
known frequencies to indicate the health status of the
spacecraft. During routine operation, the spacecraft
transmits a healthy beacon signal to the ground
receiver on a regular basis at a prescribed time
window. If the ground receiver detects the presence of
the signal, the spacecraft is declared to be healthy. If
the signal is not present, either due to spacecraft
anomalies or ground equipment malfunctions, the
station personnel will turn on the telemetry for
possible downlink of emergency data. The fact that
smaller spacecraft will have much less transmission
power, compounded by the use of smaller antennas
(lower SNR), will require an intelligent tone detection
scheme in a very noisy environment.

The main objective of this work is to automatically
recognize the presence of a spacecraft beacon or the
telemetry downlink carrier signal buried in the noise
using the output signal of a small tracking antenna's
receiver amplifier.

3. Network Structure

Figure 1 shows the general structure of the ANN and
the tone detection system. The tracking-antenna
amplifier output signal is fed to a non-overlapping
moving window block. The output of this block, which
is a sequence of noisy data, is fed to the fast Fourier
transform (FFT) block for conversion to frequency
domain. For a sequence of data, x(n), with N points,
the FFT relationship is:
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Figure 1: Tone-Detection Architecture
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Then, the power spectral density of each sequence is
computed and the results are presented to the bank of
neural networks.

The network block consists of 4 ANN's, each
implementing a backpropagation paradigm. Networks
1 through 4 are designed to detect a carrier frequency
in received signals with SNR of (greater than -3), (-3
to -9), (-9 to -12), and (-12 to -15) dB, respectively.
Each network is trained using an adaptive learning rate
to expedite the convergence process. Figure 2 shows a
backpropagation network's general structure.
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Figure 2: Structure of Each Network
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Where X is the input vector; Xi is the ith  unit input; t is
the output target vector; α is the learning rate; BVj is
the Jth hidden unit bias; Zj is the jth hidden unit output;
BWk is the kth unit bias; and Yk representing the kth unit
output. Then with f(.) designating the activation
function of each neuron, the network information
propagation equations are:

XVB ∗+=+= ∑
=

V

n

i
ijiVjin XVBz

j

1

(3)

)(
jinj zfZ = (4)

ZWB ∗+=+= ∑
=

W

p

j
jkjWkin ZWBy

k

1

(5)

)(
kink yfY = (6)

Let p(X), p(X,tj), and p(tj|X) signify the unconditional
density function of the networks' input data, the joint
probability density function of the training set (X, ti),
and the conditional probability density function of the
training set respectively. Using these definitions the
networks' error as shown in [8] can be written as:
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The first term of Equation 8 is dependent on network
weights, and for minimum value of the network error,
E, this term should vanish. Also note that the residual
of this equation is the variance of the training data set.
This important result is used to properly set the
termination parameters during training phases of the
networks.

For training purposes, the data stream is partitioned
into non-overlapping windows, and the power spectral
density of each time series is calculated before
presenting them to the neural networks. A supervised
backpropagation paradigm based on gradient descent
is used to train each network with a single output
assuming two integer target values: 10 indicating the
presence of tone and -10 indicating only noise. During
simulation and operational phase of the network the
input data is prepared in a similar fashion to the
training phases. Output values of the neural networks
are collected over a fixed-length time interval and a
statistical method is devised for final decision making.

4. Statistical Methodology

A hypothesis testing routine is employed to detect the
presence of a signal in a noisy environment.  The
procedure incorporates the following hypotheses:

H0:  No signal exists
H1:  A signal exists

In the system described, the method would statistically
evaluate the one or more ANN scores, by calculating a
test statistic that would be compared to a critical value.
If the test statistic exceeds the critical value, the



decision would be to Reject H0 in favor of H1 and
conclude that a signal exists.  The most effective test
statistic and critical value would be chosen such that
both the probability of a Type I error (rejecting H0

when no signal exists) and the probability of a Type II
error (failing to reject H0 when a signal exists) are
minimized.  For this system, the most effective test
statistic and associated critical values are determined
empirically, based on MATLAB simulations of
various noise environments.  The following steps were
followed:

1. Characterization of the statistical behavior of
scores resulting from each ANN

2. Determination of the degree of cross-correlation
among the ANN scores

3. Generation of a variety of potential composite test
statistics

4. Characterization of the statistical behavior of each
composite test statistic and determination of
corresponding critical values

5. Analysis of the operating characteristic (OC) of
each test statistic

4.1 Analysis of Network Scores

It is assumed that a data stream consisting of pure
noise will follow a Gaussian distribution with mean
zero and variance σ2.  Since the statistical behavior of
the ANN scores may depend on the variance of the
noise, simulations were written to generate network
scores over a range of noise levels.  The objective of
the statistical analysis was to determine, for each
ANN, whether or not a relationship existed between
the noise level and the scores, and if so, to determine
the nature of the relationship.

The average network score across data stream standard
deviation (σ) values is shown in Figure 3, while the
standard deviation of network scores across data
stream σ values is shown in Figure 4.  It is clear that
not only do the average and standard deviation of
network scores vary over the four networks, but, for
each network, the average and standard deviation of
network score varies across the range of data stream
variation.

The distribution of network scores was analyzed and
changes in distribution over the range of data stream σ
values were evaluated. All data streams were in
statistical control over time, which was verified by

analysis of the autocorrelation of network scores for
consecutive data streams using time series analysis
procedures. ANN score histograms followed patterns
as illustrated in Figures 5 and 6. The examples shown
are typical of the all distributions analyzed in terms of
their positive skew.
 
 
4.2 Cross-Correlation of ANN Scores

The cross-correlation of ANN scores among the
networks was evaluated to determine if network scores
for similar data streams provide mutually independent
outcomes. It was evident from scatter plots that
network scores are correlated. Table 1 provides a
sample of Pearson product moment correlation
coefficients for each pair of networks scores.
Correlation coefficients for scores from other data sets
yielded similar results. As a result of this analysis, it
cannot be assumed that the network scores provide
independent scores when evaluating a data set.

Figure 3: Average of ANN Scores
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-11

-10

-9

-8

-7

0 1 2 3 4 5

Data Stream Std Dev

S
co

re
 A

ve
ra

ge ANN#1
ANN#2
ANN#3
ANN#4

Figure 4: Standard Deviation of ANN Scores
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ANN#
ANN# 1 2 3

2 0.637
3 0.554 0.581
4 0.476 0.446 0.530

Table 1: Sample Correlation Coefficients (Data
Stream Std Dev=2.5)

4.3 Determination of Composite Test Statistics

As a result of the analysis above, it can be concluded
that any hypothesis testing procedure must use the
standard deviation of the input data to determine the
expected distribution of scores for each network.  The
plots in Figures 3 and 4 indicate the need for second-
order regression equations.  The equations were
developed and used to determine expected values and
variances of ANN scores given the input data set
standard deviation.

The central limit theorem can be used to characterize
the distribution of each network score under the noise
assumption (H0 true). Assuming that 4 data streams are
evaluated before a decision is made, the distribution of
average scores from neural network model i can be
expected to follow a near-normal distribution. That is,
for network i, the following statistic approximates a
standard normal random variable:
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This statistic can be used to determine if the
assumption of pure noise should be rejected.   The
mean of the standardized Z-scores for each ANN as
well as other test statistics (the median, and the four
order statistics) were considered below.

4.4 Statistical Analysis of Composite Test Statistics

Each composite statistic's average and standard
deviation were used to explore its effectiveness.
Limits for rejecting H0 are determined to ensure that
the probability of falsely claiming a signal exists (a
type I error) is less than 1%.

4.5 Testing OC of Composite Test Statistics

The procedure was tested using the seven potential test
statistics to determine the one that performed best.
The results are shown in Figure 7.   Figure 7 shows the
probability of accepting H0 for a range of data stream
variation given that a tone exists.  This display shows
the Type II error probability, which should be as low
as possible for a procedure to be powerful. In Figure 7,
Zj is the score for the properly trained ANN, Zbar and
median are the average and median Z-score, and Z(1)-
Z(4) are the four order statistics.
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Figure 6: Sample Histogram of ANN Scores
(Data Stream Std Dev=2.5)
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Figure 5: Sample Histogram of ANN Scores
(Data Stream Std Dev=2.5)

Figure 7: Ability to Detect Tone
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It is clear that any of the composite statistics perform
better than the use of a single neural network score.
As shown in Figure 7, the use of the average score
outperforms the other composite test statistics.  While
the improvement over the other test statistics is

relatively small, this improvement has been shown to
be statistically significant.
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