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ABSTRACT

We consider the problem of feature based automatic clas-
sification of single and multitone signals. Our objective is
to extend existing blind demodulation techniques to multi-
tone waveforms such as MIL-STD-188-110B (Appendix
B) and OFDM, developing a capability to identify signal
types based on short data records, and maintaining robust-
ness to channel effects. In this paper, we report on the first
phase of our approach, namely, building a coarse classifier
for a range of single tone and multitone signals. Among
the features considered by the coarse classifier are those
based on trigonometric moments and higher order statistics
of the instantaneous frequencies of the received signal. No
a priori information is assumed on the part of the received
signal. The received signal of interest has not been previ-
ously observed; it is not part of a library of known signals;
and no automated classifier has been built for it. Extensive
simulation results based on real world signals are presented
demonstrating the feasibility of the above features for au-
tomatic classification purposes of single and multitone sig-
nals.
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1 Introduction

We address the problem of automatically recognizing and
processing multitone signals (such as the parallel FSK de-
fined in MIL-STD-188-110B, and OFDM used in the Wi-Fi
standard IEEE 802.11a) in a modulation recognition sys-
tem. Typical approaches to automated processing up to
this point have focused on single-carrier signals such as
PSK and FSK signals, or on multitone signals from apre-
determined signal set; such approaches overlook potential
sources of new information or new, unknown threats. An
automated processing system that includes multi-tone sig-
nals would open a broader range of signals to interception
and analysis, and enable the operator to focus on tasks re-
quiring human input.

Our objective is to extend existing blind demodulation

techniques to multi-tone waveforms such as MIL-STD-
188-110B (Appendix B) and OFDM, developing a capabil-
ity to identify signal types based on short data records, and
maintaining robustness to channel effects. This objective
will be achieved by leveraging earlier work [1]-[5] in blind
demodulation and emitter identification. For a recent sur-
vey on techniques for automatic modulation classification,
readers are referred to [6].

Automatic emitter identification requires intelligent
signal pre-processing techniques combined with modula-
tion recognition and in some cases blind demodulation. Po-
tential signals of interest (SOI) must be detected, differen-
tiated from noise and interference, and isolated as separate
signals for further automatic analysis and identification.
Multitone communications signals pose a difficult problem
in that they are an amalgam of individual communications
signals that must be treated separately.

We address the classification problem through a com-
bination of advanced signal processing methods and novel
automatic classification architectures. Signal representa-
tions such as modulation spectra can reveal multitone com-
munication signal structure via sub-band decomposition
and analysis. Modulation classification will be performed
through a staged approach that first classifies a signal
into one of several broad signal classes (coarse classifier),
specifically single carrier/OFDM/multitone, and then ap-
plies demodulation methods specific to that class of signal
(fine classifier). Given the wide range of signal classes of
interest, it is our intent to use minimal signal pre-processing
at the coarse classifier stage. In particular, we have made
no attempt to remove the residual carrier before computing
the distinguishing features reported here. In this paper we
discuss the performance of one set of features used at the
coarse classifier stage.

2 Background Information

In this section, we briefly review the concepts of trigono-
metric (circular) moments and higher order statistics of cir-
cularly distributed data. We use these features for coarse
classification of single and multitone signals. The signals
were generated using the Harris RF-5710A modem based
on MIL-STD-188-110B. Brief descriptions of the signal
types and our hardware setup are also provided.



2.1 Review of trigonometric moments and higher or-
der statistics

Circular statistics are often used for statistical analysis of
circularly distributed variables, such as data samples that
take angles as values. As with linear statistics, moments
of a circular random variable (referred to astrigonometric
or circular moments) are defined in terms of its probability
density function. Measures of spread and symmetry, i.e.,
variance and skew, can be defined in terms of these mo-
ments. Circular kurtosis, a measure of peakedness in the
circular density, can also be defined. A comprehensive de-
scription of trigonometric moments and other statistics for
circular data can be found in [7].

Let Θ = {θ1, θ2, . . . θK} denote a vector of data sam-
ples of lengthK, with θk ∈ [0, 2π), 1 ≤ k ≤ K. Then:

• Trigonometric Moments: The pth order sample
trigonometric moment of the data setΘ is defined as:

µp =
1

K

K
∑

k=1

ejpθk (1)

and can be interpreted as the first-order moment of the
data setΘp = {p · θk mod2π : 1 ≤ k ≤ K}.

• Trigonometric Variance: The sample trigonometric
variance of the data setΘ is defined as:

σ2 = 1 − |µ1| (2)

where|µ1| is the absolute value of the first order sam-
ple trigonometric moment (mean).

• Trigonometric Standard Deviation: The sample
trigonometric standard deviation of the data setΘ is
defined as:

σ =
√

−2 ln |µ1| (3)

Note that the use ofσ to denote the standard deviation
is purely for notational convenience.

• Trigonometric skew: The sample trigonometric skew
of the data setΘ is defined as:

γ =
|µ2| sin( 6 µ2 − 26 µ1)

(σ2)
3/2

(4)

where6 µ1 denotes the angle of the (complex valued)
trigonometric mean andσ2 is as defined in Eq. (2).

• Trigonometric kurtosis: The sample trigonometric
kurtosis of the data setΘ is defined as:

κ =
|µ2| cos(6 µ2 − 26 µ1) − |µ1|

4

(σ2)
2 (5)

2.2 Brief description of signal types

We have considered four different signal types in this paper,
all generated according to MIL-STD-188-110B using the
Harris RF-5710A modem. Essential characteristics of the
signal waveforms are described below.

• Parallel multitone: In this mode, the modem gener-
ates parallel 39-tone signal waveforms in the audio
frequency band, as specified in Appendix-B of MIL-
STD-188-110B. Several bit rates are supported, rang-
ing from 75 bps to 2400 bps. The 39 orthogonal sub-
carrier tones, which are keyed simultaneously to pro-
duce a signal element interval of 22.5 milliseconds
(ms) for each data tone, are spread between 675 Hz
and 2812.50 Hz. In addition, a continuous Doppler
tone (393.75 Hz) is used, which is 6 dB± 1 dB higher
than the normal level of any data tone. Each data
tone is modulated according to QDPSK. The modu-
lator output has a constant modulation rate of 44.44
baud (Bd) for all input data signaling rates. At input
signaling rates less than 2400 bps, information carried
on data tones 1 through 7 is repeated on data tones 33
through 39. The power spectral density of a sample
39-tone signal waveform is shown in Fig. 1.
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Figure 1. Power spectral density of parallel 39-tone signal
waveform (sampling rate = 7350 Hz.).

• MIL-STD-188-110B serial single tone: Input data
rates ranging from 75 bps to 4800 bps are supported
in this mode. At 75 bps and 150-600 bps, BPSK
modulation is used. At 1200 bps, 4-PSK is used and
for 2400 bps and 4800 bps, 8-PSK is used. Modulated
symbols are mapped onto an 1800 Hz fixed frequency
sine carrier. The modulation rate is constant and set at
2400 Bd.

Appendix-C of the standard specifies the requirements
for higher data signaling rates. For 6400 bps and
above, the standard prescribes M-QAM modulation,
with M = 16 for 6400 bps,M = 32 for 8000 bps
andM = 64 for 9600 bps and 12800 bps. For data



rates below 6400 bps, M-PSK is used, withM = 4
for 3200 bps andM = 8 for 4800 bps. An 1800 Hz
carrier is used and the modulation rate is set at 2400
Bd.

• MIL-STD-188-110B binary FSK: The modem sup-
ports wide shift FSK modulation, narrow shift FSK or
a variable shift FSK. We have used the variable shift
mode with a mark frequency of 1100 Hz and a space
frequency of 2500 Hz (for a data rate of 600 bps).

2.3 Hardware setup

At the heart of our hardware setup is the Harris RF-5710A
modem. This is an advanced high speed data modem which
can accommodate 19,200 bps adaptively-equalized HF
waveforms and the ability to auto-detect between the MIL-
STD-188-110B QAM waveforms and the MIL-STD-188-
110A serial tone waveforms. The modem supports fully
adaptive data rates from 75 bps to 9600 bps. It also supports
higher speed LF/MF transmissions using the STANAG
5065 MSK waveform. The RF-5710A-MD001 is com-
pliant with the waveform and performance requirements
of MIL-STD-188-110B, STANAG4539, MIL-STD-188-
110A, STANAG 4285, STANAG 4481,STANAG 4529,
STANAG 4415, STANAG 5065, and FSK.

In our setup, the modem is connected to a PC, and
programmed using a terminal emulator through the RE-
MOTE port, to specify waveform type, baud rate, and other
parameters. Using a custom written LabVIEW program,
the PC transmits characters to the DTE port of the mo-
dem. The modem then encodes the characters and sends
the waveform out through its audio port. The audio sig-
nal is fed into the MIC input of the PC, digitized using the
internal sound card by the same LabVIEW program, and
stored. Additive White Gaussian noise (AWGN) is added
via MATLAB to create areceivedsignal, and the pream-
ble and silence portions are removed for purposes of signal
analysis. A real, over-the-air received signal can be read-
ily created by transmitting the recorded modem output over
the HF band by interfacing the modem with a transceiver.

An extensive digital library of modem signals with
different parameters is thus created and used for analysis.

3 Simulation Results based on moments and
higher order statistics

In this section, we discuss simulation results for features
based on moments and higher order statistics for the dis-
crete instantaneous frequencies of the Hilbert transform of
the received signal samples (which are real). All computa-
tions were done directly on the passband samples (i.e., no
attempt was made to remove the carrier). Given an analytic
signalz[n], represented in polar form as

z[n] = a(n)ejφ[n], (6)

wherea[n] andφ[n] are the discrete magnitude and phase
functions, the discrete time instantaneous frequency is
given by the first order backward difference of the phase
functionφ[n]:1

f [n] = (φ[n] − φ[n − 1]) mod2π. (7)

Note that the ‘mod2π’ operation is used to reflect the peri-
odic nature off [n].

We have studied the feasibility of the following fea-
ture spaces, which have been computed on the instanta-
neous frequencies of the Hilbert transform of the received
signal samples.

1. Feature Space 1: Absolute value of first order trigono-
metric moment (|µ1|) vs. absolute value of second or-
der trigonometric moment (|µ2|).

2. Feature Space 2: Trigonometric standard deviation.
(σ) vs. trigonometric kurtosis (κ).

3. Feature Space 3: Trigonometric skew (γ) vs. trigono-
metric kurtosis (κ).

The above features were also used by Davidson et al in [8]
for automatic classification of single carrier modulated sig-
nals. In this paper, we have investigated whether the same
features can also be used to differentiate between single and
multitone signals. As indicated before, the signal types we
have considered so far are: (a) parallel 39-tone QDPSK,
(b) serial single tone QPSK, (c) serial single tone 16-QAM
and (d) BFSK. We are currently conducting simulations for
other single and multicarrier modulation formats, resultsof
which will be incorporated into the final version of this pa-
per.

Some parameters for the test signals (generated using
the Harris RF-5710A modem, 26 signals of each type) are
indicated below:

• Parallel 39-tone QDPSKand Serial single tone
QPSK: (a) Input data rate = 1200 bps, (b) Sampling
rate = 22050 Hz.

• Serial single tone 16-QAM: (a) Input data rate = 6400
bps, (b) Sampling rate = 22050 Hz.

• BFSK: (a) Input data rate = 600 bps, (b) Sampling rate
= 22050 Hz.

The received signal sequences were created using MAT-
LAB by adding AWGN (SNR = 30 dB, 10 dB) to the mo-
dem output signals.

In Figures 2a and 2b, we have plotted the absolute
values of the first and second order trigonometric moments
for 30 dB and 10 dB SNRs respectively. For 30 dB SNR,
the serial tone QPSK and parallel 39-tone QDPSK signals
almost completely overlap in this feature space. Classifica-
tion is possible for (16-QAM), (BFSK) and (serial QPSK
or 39-tone QDPSK). In the 10 dB case, the 16-QAM sig-
nals are still well separated but the rest are relatively close.
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Figure 2a. Scatter plot of|µ1| vs. |µ2| for 26 instances each
of different test signals (SNR of received signal = 30 dB).
The serial tone QPSK and parallel 39-tone QDPSK signals
almost completely overlap in this feature space. The un-
known signal can be classified as belonging to one of the
three classes: (i) 16-QAM, or (ii) BFSK or (iii) either serial
QPSK or 39-tone QDPSK.

In Figures 3a and 3c, we have plotted trigonomet-
ric standard deviation versus kurtosis for 30 dB and 10
dB SNRs respectively. For clarity, we have also included
zoomed views of the scatterplots for serial single tone
QPSK and parallel 39-tone QDPSK signals only in Fig-
ures 3b (corresponding to 30 dB SNR) and 3d (10 dB
SNR). Under 30 dB SNR, it appears from Figure 3a that
good separation exists between 16-QAM, BFSK and the
superset of serial single tone QPSK and parallel 39-tone
QDPSK signals. However, from Figure 3b, it can be seen
that in 24 out of 26 instances, the kurtosis for the paral-
lel 39-tone signals is smaller than 2.4, whereas it is greater
than 2.5 for all the serial single tone QPSK signals. A 1-
D kurtosis based classifier can therefore be used to distin-
guish between these two signal types, although it wouldn’t
be robust by itself as evidenced by our experimentation so
far. Similar observations hold for 10 dB SNR conditions.
In this case also (cf. Figure 3c), there is a fair degree of
separation between 16-QAM, BFSK and the superset of se-
rial single tone QPSK and parallel 39-tone QDPSK signals.
However, compared to the 30 dB case (cf. Figure 3b), the
latter two signal types are demarcated much better in the
σ − κ feature space.

In Figures 4a and 4c, we have plotted trigonometric
skew versus kurtosis for 30 dB and 10 dB SNRs respec-
tively. For clarity, we have also included zoomed views of
the scatterplots for serial single tone QPSK and parallel 39-
tone QDPSK signals only in Figures 4b (corresponding to
30 dB SNR) and 4d (10 dB SNR). Under 30 dB SNR (see
Figure 4a), the four signal classes are well separated in the
γ − κ feature space. Moreover, as can be seen from Fig-

1Other definitions are also possible, based on forward differencing,
central differencing or higher order differencing of the phase function.
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Figure 2b. Scatter plot of|µ1| vs. |µ2| for 26 instances
each of different test signals (SNR of received signal = 10
dB). The 16-QAM signals are still well-separated but the
rest are close.
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Figure 3a. Scatter plot of standard deviation vs. kurtosis for
26 instances each of different test signals (SNR of received
signal = 30 dB).

ure 4b, the serial single tone QPSK and parallel 39-tone
QDPSK signals can be distinguished based on a simple
skew-based threshold classifier. Under 10 dB SNR, (cf.
Figure 4c), there is a good degree of separation between 16-
QAM, BFSK and the superset of serial single tone QPSK
and parallel 39-tone QDPSK signals. However, in this case
too, a simple kurtosis based threshold classifier can be used
to distinguish between the latter two signal types, as can be
seen from Figure 4d. Based on the above discussion, we
summarize our observations below:

• 30 dB SNR: The µ1 − µ2 andσ − κ feature spaces
both provide adequate distinction between (16-QAM),
(BFSK) and (parallel 39-tone QDPSK or serial sin-
gle tone QPSK) signal classes. A 1-D skew or kur-
tosis based threshold classifier can be used to distin-
guish between parallel 39-tone QDPSK and serial sin-
gle tone QPSK in theγ − κ feature space.



0.4 0.405 0.41 0.415
2.1

2.2

2.3

2.4

2.5

2.6

2.7

Std. devn.

K
ur

to
si

s

30 dB

110B, App. B, parallel 39−tone, QDPSK
110B, serial, single tone, QPSK

Figure 3b. Zoomed view of scatter plot of standard devia-
tion vs. kurtosis (cf. Fig. 3a) for 26 instances each of serial
single tone QPSK and parallel 39-tone QDPSK (SNR of
received signal = 30 dB). In 24 instances, the kurtosis of
the parallel 39-tone signal is smaller than 2.4.
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Figure 3c. Scatter plot of standard deviation vs. kurtosis for
26 instances each of different test signals (SNR of received
signal = 10 dB).

• 10 dB SNR: The µ1 − µ2 feature space provides ad-
equate distinction between (16-QAM) and the other
signal classes. Theσ − κ space can be used to iso-
late (16-QAM) and (BFSK) from the serial QPSK
and parallel 39-tone QDPSK signal classes. Further-
more, although not robust, a kurtosis based threshold
classifier can be used for distinguishing between the
latter two signal types in theσ − κ space. In the
γ − κ domain, there is adequate separation between
(16-QAM), (BFSK) and (parallel 39-tone QDPSK or
serial single tone QPSK) signal types. A fine 1-D kur-
tosis based threshold classifier can then be used to dis-
tinguish between parallel 39-tone QDPSK and serial
single tone QPSK in theγ − κ feature space.
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Figure 3d. Zoomed view of scatter plot of standard devia-
tion vs. kurtosis (cf. Fig. 3c) for 26 instances each of serial
single tone QPSK and parallel 39-tone QDPSK (SNR of
received signal = 10 dB). A kurtosis based threshold (2.0)
classifier separates out these two signal classes.
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Figure 4a. Scatter plot of skew vs. kurtosis for 26 instances
each of different test signals (SNR of received signal = 30
dB).

4 Discussion and Conclusion

We have considered the problem of automatic classifica-
tion of single tone, OFDM and multitone signals. Our
overall classifier incorporates a coarse classification stage
and a fine classification stage. At the coarse stage, the re-
ceived signal is pre-processed minimally, features are ex-
tracted and the feature vectors are routed into a classifier
(e.g., Gaussian Mixture Model or neural network) for clas-
sification into a broad signal class (single tone, OFDM or
multitone). Based on the coarse classifier output, the re-
ceived signal would be fed into a signal class specific fine
classifier module and relevant signal parameters extracted.
In this paper, we have reported on the feasibility of one set
of features at the coarse classifier stage, namely, trigono-
metric moments and higher order statistics of the instan-
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Figure 4c. Scatter plot of skew vs. kurtosis for 26 instances
each of different test signals (SNR of received signal = 10
dB).

taneous frequencies of the (analytic) received signal. The
overall performance of the coarse classifier and a discus-
sion of other features used at this stage will be reported in
a subsequent paper.
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